首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
Wada M  Yasuno R  Wada H 《FEBS letters》2001,506(3):286-290
In plant cells, the pyruvate dehydrogenase (PDH) complex that requires lipoic acid as an essential coenzyme is located in plastids and mitochondria. The enzyme complex has to be lipoylated in both organelles. However, the lipoyltransferase located in plastids has not been reported. In this study, an Arabidopsis thaliana LIP2p cDNA for a lipoyltransferase located in plastids has been identified. We have shown that this cDNA encodes a lipoyltransferase by demonstrating its ability to complement an Escherichia coli mutant lacking lipoyltransferase activity, and that LIP2p is targeted into chloroplasts. These findings suggest that LIP2p is located in plastids and responsible for lipoylation of the plastidial PDH complex.  相似文献   

2.
3.
Yasuno R  Wada H 《FEBS letters》2002,517(1-3):110-114
In eukaryotes, the biosynthetic pathway for lipoic acid is present in mitochondria. However, it has been hypothesized that, in plants, the biosynthetic pathway is present in plastids in addition to mitochondria. In this study, Arabidopsis thaliana LIP1p cDNA for a plastidial form of lipoic acid synthase has been identified. We show that it encodes a lipoic acid synthase by demonstrating its ability to complement an Escherichia coli mutant lacking lipoic acid synthase activity. We also show that LIP1p is targeted to chloroplasts. These findings suggest that the biosynthetic pathway for lipoic acid is present not only in mitochondria but also in plastids.  相似文献   

4.
The presence of two glycolytic pathways working in parallel in plastids and cytosol has complicated the understanding of this essential process in plant cells, especially the integration of the plastidial pathway into the metabolism of heterotrophic and autotrophic organs. It is assumed that this integration is achieved by transport systems, which exchange glycolytic intermediates across plastidial membranes. However, it is unknown whether plastidial and cytosolic pools of 3‐phosphoglycerate (3‐PGA) can equilibrate in non‐photosynthetic tissues. To resolve this question, we employed Arabidopsis mutants of the plastidial glycolytic isoforms of glyceraldehyde‐3‐phosphate dehydrogenase (GAPCp) that express the triose phosphate translocator (TPT) under the control of the 35S (35S:TPT) or the native GAPCp1 (GAPCp1:TPT) promoters. TPT expression under the control of both promoters complemented the vegetative developmental defects and metabolic disorders of the GAPCp double mutants (gapcp1gapcp2). However, as the 35S is poorly expressed in the tapetum, full vegetative and reproductive complementation of gapcp1gapcp2 was achieved only by transforming this mutant with the GAPCp1:TPT construct. Our results indicate that the main function of GAPCp is to supply 3‐PGA for anabolic pathways in plastids of heterotrophic cells and suggest that the plastidial glycolysis may contribute to fatty acid biosynthesis in seeds. They also suggest a 3‐PGA deficiency in the plastids of gapcp1gapcp2, and that 3‐PGA pools between cytosol and plastid do not equilibrate in heterotrophic cells.  相似文献   

5.
In this study we report the molecular genetic characterization of the Arabidopsis mitochondrial phosphopantetheinyl transferase (mtPPT), which catalyzes the phosphopantetheinylation and thus activation of mitochondrial acyl carrier protein (mtACP) of mitochondrial fatty acid synthase (mtFAS). This catalytic capability of the purified mtPPT protein (encoded by AT3G11470) was directly demonstrated in an in vitro assay that phosphopantetheinylated mature Arabidopsis apo‐mtACP isoforms. The mitochondrial localization of the AT3G11470‐encoded proteins was validated by the ability of their N‐terminal 80‐residue leader sequence to guide a chimeric GFP protein to this organelle. A T‐DNA‐tagged null mutant mtppt‐1 allele shows an embryo‐lethal phenotype, illustrating a crucial role of mtPPT for embryogenesis. Arabidopsis RNAi transgenic lines with reduced mtPPT expression display typical phenotypes associated with a deficiency in the mtFAS system, namely miniaturized plant morphology, slow growth, reduced lipoylation of mitochondrial proteins, and the hyperaccumulation of photorespiratory intermediates, glycine and glycolate. These morphological and metabolic alterations are reversed when these plants are grown in a non‐photorespiratory condition (i.e. 1% CO2 atmosphere), demonstrating that they are a consequence of a deficiency in photorespiration due to the reduced lipoylation of the photorespiratory glycine decarboxylase.  相似文献   

6.
Prosthetic lipoyl groups are required for the function of several essential multienzyme complexes, such as pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (KGDH), and the glycine cleavage system (glycine decarboxylase [GDC]). How these proteins are lipoylated has been extensively studied in prokaryotes and yeast (Saccharomyces cerevisiae), but little is known for plants. We earlier reported that mitochondrial fatty acid synthesis by ketoacyl-acyl carrier protein synthase is not vital for protein lipoylation in Arabidopsis (Arabidopsis thaliana) and does not play a significant role in roots. Here, we identify Arabidopsis lipoate-protein ligase (AtLPLA) as an essential mitochondrial enzyme that uses octanoyl-nucleoside monophosphate and possibly other donor substrates for the octanoylation of mitochondrial PDH-E2 and GDC H-protein; it shows no reactivity with bacterial and possibly plant KGDH-E2. The octanoate-activating enzyme is unknown, but we assume that it uses octanoyl moieties provided by mitochondrial β-oxidation. AtLPLA is essential for the octanoylation of PDH-E2, whereas GDC H-protein can optionally also be octanoylated by octanoyltransferase (LIP2) using octanoyl chains provided by mitochondrial ketoacyl-acyl carrier protein synthase to meet the high lipoate requirement of leaf mesophyll mitochondria. Similar to protein lipoylation in yeast, LIP2 likely also transfers octanoyl groups attached to the H-protein to KGDH-E2 but not to PDH-E2, which is exclusively octanoylated by LPLA. We suggest that LPLA and LIP2 together provide a basal protein lipoylation network to plants that is similar to that in other eukaryotes.Lipoic acid (LA; 6,8-dithiooctanoic acid) prosthetic groups are essential for the catalytic activity of four important multienzyme complexes in plants and other organisms: pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (KGDH), branched-chain α-ketoacid dehydrogenase (BCDH), and the Gly cleavage system (glycine decarboxylase [GDC]; Perham, 2000; Douce et al., 2001; Mooney et al., 2002). In all these multienzyme complexes, LA is covalently attached to the ε-amino group of a particular lysyl residue of the respective protein subunit. Lipoylated E2 subunits of PDH, KGDH, and BCDH are dihydrolipoyl acyltransferases that interact with E1 and E3 subunits to pass acyl intermediates to CoA (Mooney et al., 2002). By contrast, the lipoylated H-protein of GDC acts as a cosubstrate of three other GDC proteins and has no enzymatic activity itself (Douce et al., 2001). In the course of their respective reaction cycles, LA becomes reduced to dihydrolipoic acid. Most of these enzymes are confined to the mitochondrion. As the only exception, PDH is also present in plastids, where it provides acetyl-CoA for fatty acid biosynthesis (Ohlrogge et al., 1979; Lernmark and Gardeström, 1994; Lin et al., 2003).Mitochondria and plastids each have their own route of de novo LA synthesis, both of which start with the synthesis of protein-bound octanoyl chains (Shimakata and Stumpf, 1982; Ohlrogge and Browse, 1995; Wada et al., 1997; Gueguen et al., 2000; Yasuno et al., 2004). These octanoyl moieties are passed on by organelle-specific octanoyltransferases (Wada et al., 2001a, 2001b) to the respective target apoproteins where lipoyl synthase (LIP1) inserts two sulfur atoms to finally produce functional lipoyl groups (Yasuno and Wada, 1998, 2002; Zhao et al., 2003). A similar pathway has been identified in mammalian mitochondria (Morikawa et al., 2001; Witkowski et al., 2007). In quantitative terms, leaf mesophyll mitochondria have an extraordinarily high requirement for lipoate, because they contain very large amounts of GDC to catalyze the photorespiratory Gly-to-Ser conversion (Bauwe et al., 2010). For this reason, leaf mesophyll mitochondria are the major site of LA synthesis in plants (Wada et al., 1997).It was thought that the octanoyl chains provided by mitochondrial β-ketoacyl-acyl carrier protein synthase (mtKAS) represent the solitary source for protein lipoylation in plant mitochondria (Yasuno et al., 2004). As we reported earlier, however, leaves of mtKAS-deficient knockout mutants show considerable lipoylation of mitochondrial PDH-E2 and KGDH-E2 subunits and some residual lipoylation of GDC H-protein; roots are not at all impaired. Accordingly, the phenotype of such mutants can be fully cured in the low-photorespiratory condition of elevated CO2 (Ewald et al., 2007). These observations indicated that plant mitochondria, in addition to the mtKAS-LIP2-LIP1 route of protein lipoylation, can resort to an alternative pathway. This would not be uncommon. In Escherichia coli, for example, a salvage pathway utilizes free octanoate or LA in an ATP-dependent two-step reaction catalyzed by the bifunctional enzyme lipoate-protein ligase A (LPLA; Morris et al., 1995). Archaea (Christensen and Cronan, 2009; Posner et al., 2009) and vertebrates (Tsunoda and Yasunobu, 1967) require two separate enzymes to first activate octanoate or LA to lipoyl-nucleoside monophosphate (NMP) and then, in a second step, to convey the activated lipoyl group to the respective target proteins. The lipoate-activating enzyme (LAE) of mammals was identified as a refunctioned medium-chain acyl-CoA synthetase that utilizes GTP to produce lipoyl-GMP (Fujiwara et al., 2001). LIP3 from yeast (Saccharomyces cerevisiae) can use octanoyl-CoA to octanoylate apoE2 proteins (Hermes and Cronan, 2013), whereas octanoyl groups from fatty acid biosynthesis are first attached to H-protein and then passed on to apoE2 proteins (Schonauer et al., 2009).The physiological significance of lipoyl-protein ligases in plants is not exactly known. Such enzymes do not operate in plastids (Ewald et al., 2014) but could be present in mitochondria. A single-gene-encoded LPLA with predicted mitochondrial localization has been identified in rice (Oryza sativa; Kang et al., 2007). Complementation studies with the lipoylation-deficient E. coli mutant TM137 (Morris et al., 1995) suggested that OsLPLA belongs to the bifunctional type of LPLAs. We report the identification of the homologous enzyme in Arabidopsis (Arabidopsis thaliana), provide evidence for its mitochondrial location, and show that Arabidopsis LPLA requires a separate enzyme for octanoate/lipoate activation. We also examine the interplay between LPLA, LIP2, and the mtKAS route of protein lipoylation and suggest a model for protein lipoylation in plant mitochondria.  相似文献   

7.
8.
Lipoic acid is a sulfur-containing cofactor required for the function of several multienzyme complexes involved in the oxidative decarboxylation of α-keto acids and glycine. Mechanistic details of lipoic acid metabolism are unclear in eukaryotes, despite two well defined pathways for synthesis and covalent attachment of lipoic acid in prokaryotes. We report here the involvement of four genes in the synthesis and attachment of lipoic acid in Saccharomyces cerevisiae. LIP2 and LIP5 are required for lipoylation of all three mitochondrial target proteins: Lat1 and Kgd2, the respective E2 subunits of pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, and Gcv3, the H protein of the glycine cleavage enzyme. LIP3, which encodes a lipoate-protein ligase homolog, is necessary for lipoylation of Lat1 and Kgd2, and the enzymatic activity of Lip3 is essential for this function. Finally, GCV3, encoding the H protein target of lipoylation, is itself absolutely required for lipoylation of Lat1 and Kgd2. We show that lipoylated Gcv3, and not glycine cleavage activity per se, is responsible for this function. Demonstration that a target of lipoylation is required for lipoylation is a novel result. Through analysis of the role of these genes in protein lipoylation, we conclude that only one pathway for de novo synthesis and attachment of lipoic acid exists in yeast. We propose a model for protein lipoylation in which Lip2, Lip3, Lip5, and Gcv3 function in a complex, which may be regulated by the availability of acetyl-CoA, and which in turn may regulate mitochondrial gene expression.Several oxidative decarboxylation reactions are carried out in prokaryotes and eukaryotes by multienzyme complexes. The function of these complexes requires the action of a sulfur-containing cofactor, lipoic acid (6,8-thioctic acid) (1, 2). Lipoic acid is covalently attached via an amide linkage to a specific lysine residue on the surface of the conserved lipoyl domain of the E2 subunits of pyruvate dehydrogenase (PDH),3 α-ketoglutarate dehydrogenase (α-KDH), the branched chain α-keto acid dehydrogenase complexes, and the H protein of the glycine cleavage (GC) enzyme (3). The lipoyl moiety serves as a swinging arm that shuttles reaction intermediates between active sites within the complexes (1). Despite the well characterized function of lipoic acid as a prosthetic group, the mechanisms of its synthesis and attachment to proteins are the subject of ongoing investigations (47).These reactions are best understood in Escherichia coli, which has two well defined pathways for lipoic acid synthesis and attachment: a de novo pathway and a salvage pathway (8). Octanoic acid, synthesized on the acyl carrier protein (ACP) (9), is the substrate for the de novo pathway. Lipoyl synthase (LipA) catalyzes the addition of two sulfur atoms to form lipoic acid from octanoic acid either before or after transfer to the target protein (10) by lipoyl(octanoyl)-ACP:protein transferase (LipB) (11, 12). The preferred order of these two reactions is attachment of octanoic acid by LipB, followed by addition of sulfur by LipA (13). By contrast, in the salvage pathway, lipoate-protein ligase (LplA) attaches free lipoic acid to proteins in a two-step reaction. Lipoic acid, which can be scavenged from the medium, is first activated to lipoyl-AMP and then the lipoyl group is transferred to the proteins (14).Lipoic acid synthesis and attachment to target proteins are less well understood in eukaryotes. Homologs of the E. coli enzymes have been found in fungi, plants, protists, and mammals, but many mechanistic details are unclear (1517). In Saccharomyces cerevisiae, the mitochondrial type II fatty acid biosynthetic pathway (FAS II) synthesizes octanoyl-ACP, which is the substrate for de novo lipoic acid synthesis (18). Lip2 and Lip5, the respective yeast homologs of E. coli LipB and LipA, were shown to be required for respiratory growth on glycerol medium, PDH activity (19), and lipoic acid synthesis (20), indicating functional roles in de novo lipoic acid synthesis and attachment. However, there has been no previous report of an LplA-like lipoate-protein ligase homolog in yeast. Furthermore, lip2 and lip5 mutant strains cannot grow on medium containing lipoic acid (19, 20), suggesting that yeast either cannot use exogenously supplied lipoic acid or there is no yeast equivalent of the E. coli LplA-driven salvage pathway.Here we report the involvement of two additional enzymes in protein lipoylation in yeast mitochondria. The first, Lip3, is a lipoate-protein ligase homolog and is required with Lip2 and Lip5 for lipoylation of the E2 subunits of PDH (Lat1) and α-KDH (Kgd2). The second enzyme, Gcv3, the H protein of the GC enzyme, is absolutely required for lipoylation of all proteins in yeast.  相似文献   

9.
Arbuscular mycorrhiza (AM) fungi establish symbiotic interactions with plants, providing the host plant with minerals, i.e. phosphate, in exchange for organic carbon. Arbuscular mycorrhiza fungi of the order Glomerales produce vesicles which store lipids as an energy and carbon source. Acyl‐acyl carrier protein (ACP) thioesterases (Fat) are essential components of the plant plastid‐localized fatty acid synthase and determine the chain length of de novo synthesized fatty acids. In addition to the ubiquitous FatA and FatB thioesterases, AM‐competent plants contain an additional, AM‐specific, FatM gene. Here, we characterize FatM from Lotus japonicus by phenotypically analyzing fatm mutant lines and by studying the biochemical function of the recombinant FatM protein. Reduced shoot phosphate content in fatm indicates compromised symbiotic phosphate uptake due to reduced arbuscule branching, and the fungus shows reduced lipid accumulation accompanied by the occurrence of smaller and less frequent vesicles. Lipid profiling reveals a decrease in mycorrhiza‐specific phospholipid forms, AM fungal signature fatty acids (e.g. 16:1ω5, 18:1ω7 and 20:3) and storage lipids. Recombinant FatM shows preference for palmitoyl (16:0)‐ACP, indicating that large amounts of 16:0 fatty acid are exported from the plastids of arbuscule‐containing cells. Stable isotope labeling with [13C2]acetate showed reduced incorporation into mycorrhiza‐specific fatty acids in the fatm mutant. Therefore, colonized cells reprogram plastidial de novo fatty acid synthesis towards the production of extra amounts of 16:0, which is in agreement with previous results that fatty acid‐containing lipids are transported from the plant to the fungus.  相似文献   

10.
Lipoic acid is an essential cofactor of multienzyme complexes that are integral to energy metabolism, amino acid degradation and folate metabolism. In recent years it has been shown that the malaria parasite Plasmodium falciparum possesses organelle-specific pathways that guarantee the lipoylation of their multienzyme complexes which occur in the mitochondrion (LA salvage) and in a plastid-like organelle, the apicoplast (LA biosynthesis). The unique distribution of the lipoylation machineries and the unique metabolic requirements of the parasites present a situation that is potentially exploitable for new ways to improve malaria control.  相似文献   

11.
The objective of this study was to identify the products and possible role of a putative pathway for de novo fatty acid synthesis in mammalian mitochondria. Bovine heart mitochondrial matrix preparations were prepared free from contamination by proteins from other subcellular components and, using a combination of radioisotopic labeling and mass spectrometry, were shown to contain all of the enzymes required for the extension of a 2-carbon precursor by malonyl moieties to saturated acyl-ACP thioesters containing up to 14 carbon atoms. A major product was octanoyl-ACP and, in the presence of the apo-H-protein of the glycine cleavage complex, the newly synthesized octanoyl moieties were translocated to the lipoylation site on the acceptor protein. These studies demonstrate that one of the functions of the de novo fatty acid biosynthetic pathway in mammalian mitochondria is to provide the octanoyl precursor required for the essential protein lipoylation pathway.  相似文献   

12.
The photorespiratory Arabidopsis (Arabidopsis thaliana) mutant gld1 (now designated mtkas-1) is deficient in glycine decarboxylase (GDC) activity, but the exact nature of the genetic defect was not known. We have identified the mtkas-1 locus as gene At2g04540, which encodes beta-ketoacyl-[acyl carrier protein (ACP)] synthase (mtKAS), a key enzyme of the mitochondrial fatty acid synthetic system. One of its major products, octanoyl-ACP, is regarded as essential for the intramitochondrial lipoylation of several proteins including the H-protein subunit of GDC and the dihydrolipoamide acyltransferase (E2) subunits of two other essential multienzyme complexes, pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase. This view is in conflict with the fact that the mtkas-1 mutant and two allelic T-DNA knockout mutants grow well under nonphotorespiratory conditions. Although on a very low level, the mutants show residual lipoylation of H protein, indicating that the mutation does not lead to a full functional knockout of GDC. Lipoylation of the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase E2 subunits is distinctly less reduced than that of H protein in leaves and remains unaffected from the mtKAS knockout in roots. These data suggest that mitochondrial protein lipoylation does not exclusively depend on the mtKAS pathway of lipoate biosynthesis in leaves and may occur independently of this pathway in roots.  相似文献   

13.
Metagenomic analyses have advanced our understanding of ecological microbial diversity, but to what extent can metagenomic data be used to predict the metabolic capacity of difficult-to-study organisms and their abiotic environmental interactions? We tackle this question, using a comparative genomic approach, by considering the molecular basis of aerobiosis within archaea. Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multienzyme complexes (OADHCs), is essential for metabolism in aerobic bacteria and eukarya. Lipoylation is catalysed either by lipoate protein ligase (LplA), which in archaea is typically encoded by two genes (LplA-N and LplA-C), or by a lipoyl(octanoyl) transferase (LipB or LipM) plus a lipoic acid synthetase (LipA). Does the genomic presence of lipoylation and OADHC genes across archaea from diverse habitats correlate with aerobiosis? First, analyses of 11,826 biotin protein ligase (BPL)-LplA-LipB transferase family members and 147 archaeal genomes identified 85 species with lipoylation capabilities and provided support for multiple ancestral acquisitions of lipoylation pathways during archaeal evolution. Second, with the exception of the Sulfolobales order, the majority of species possessing lipoylation systems exclusively retain LplA, or either LipB or LipM, consistent with archaeal genome streamlining. Third, obligate anaerobic archaea display widespread loss of lipoylation and OADHC genes. Conversely, a high level of correspondence is observed between aerobiosis and the presence of LplA/LipB/LipM, LipA and OADHC E2, consistent with the role of lipoylation in aerobic metabolism. This correspondence between OADHC lipoylation capacity and aerobiosis indicates that genomic pathway profiling in archaea is informative and that well characterized pathways may be predictive in relation to abiotic conditions in difficult-to-study extremophiles. Given the highly variable retention of gene repertoires across the archaea, the extension of comparative genomic pathway profiling to broader metabolic and homeostasis networks should be useful in revealing characteristics from metagenomic datasets related to adaptations to diverse environments.  相似文献   

14.
Lipoate is an essential cofactor for key enzymes of oxidative and one‐carbon metabolism. It is covalently attached to E2 subunits of dehydrogenase complexes and GcvH, the H subunit of the glycine cleavage system. Bacillus subtilis possess two protein lipoylation pathways: biosynthesis and scavenging. The former requires octanoylation of GcvH, insertion of sulfur atoms and amidotransfer of the lipoate to E2s, catalyzed by LipL. Lipoate scavenging is mediated by a lipoyl protein ligase (LplJ) that catalyzes a classical two‐step ATP‐dependent reaction. Although these pathways were thought to be redundant, a ?lipL mutant, in which the endogenous lipoylation pathway of E2 subunits is blocked, showed growth defects in minimal media even when supplemented with lipoate and despite the presence of a functional LplJ. In this study, we demonstrate that LipL is essential to modify E2 subunits of branched chain ketoacid and pyruvate dehydrogenases during lipoate scavenging. The crucial role of LipL during lipoate utilization relies on the strict substrate specificity of LplJ, determined by charge complementarity between the ligase and the lipoylable subunits. This new lipoyl‐relay required for lipoate scavenging highlights the relevance of the amidotransferase as a valid target for the design of new antimicrobial agents among Gram‐positive pathogens.  相似文献   

15.
Originally annotated as the initiator of fatty acid synthesis (FAS), β‐ketoacyl‐acyl carrier protein synthase III (KAS III) is a unique component of the bacterial FAS system. Novel variants of KAS III have been identified that promote the de novo use of additional extracellular fatty acids by FAS. These KAS III variants prefer longer acyl‐groups, notably octanoyl‐CoA. Acinetobacter baumannii, a clinically important nosocomial pathogen, contains such a multifunctional KAS III (AbKAS III). To characterize the structural basis of its substrate specificity, we determined the crystal structures of AbKAS III in the presence of different substrates. The acyl‐group binding cavity of AbKAS III and co‐crystal structure of AbKAS III and octanoyl‐CoA confirmed that the cavity can accommodate acyl groups with longer alkyl chains. Interestingly, Cys264 formed a disulfide bond with residual CoA used in the crystallization, which distorted helices at the putative interface with acyl‐carrier proteins. The crystal structure of KAS III in the alternate conformation can also be utilized for designing novel antibiotics.  相似文献   

16.
The multienzyme glycine cleavage system (GCS) converts glycine and tetrahydrofolate to the one‐carbon compound 5,10‐methylenetetrahydrofolate, which is of vital importance for most if not all organisms. Photorespiring plant mitochondria contain very high levels of GCS proteins organised as a fragile glycine decarboxylase complex (GDC). The aim of this study is to provide mass spectrometry‐based stoichiometric data for the plant leaf GDC and examine whether complex formation could be a general property of the GCS in photosynthesizing organisms. The molar ratios of the leaf GDC component proteins are 1L2‐4P2‐8T‐26H and 1L2‐4P2‐8T‐20H for pea and Arabidopsis, respectively, as determined by mass spectrometry. The minimum mass of the plant leaf GDC ranges from 1550 to 1650 kDa, which is larger than previously assumed. The Arabidopsis GDC contains four times more of the isoforms GCS‐P1 and GCS‐L1 in comparison with GCS‐P2 and GCS‐L2, respectively, whereas the H‐isoproteins GCS‐H1 and GCS‐H3 are fully redundant as indicated by their about equal amounts. Isoform GCS‐H2 is not present in leaf mitochondria. In the cyanobacterium Synechocystis sp. PCC 6803, GCS proteins concentrations are low but above the complex formation threshold reported for pea leaf GDC. Indeed, formation of a cyanobacterial GDC from the individual recombinant GCS proteins in vitro could be demonstrated. Presence and metabolic significance of a Synechocystis GDC in vivo remain to be examined but could involve multimers of the GCS H‐protein that dynamically crosslink the three GCS enzyme proteins, facilitating glycine metabolism by the formation of multienzyme metabolic complexes. Data are available via ProteomeXchange with identifier PXD018211.  相似文献   

17.
Phosphoglycerate kinase (PGK) is a highly conserved reversible enzyme that participates in both glycolysis and photosynthesis. In Arabidopsis thaliana, one cytosolic PGK (PGKc) and two plastidial PGKs (PGKp) are known. It remains debatable whether the two PGKp isozymes are functionally redundant or specialized in plastidial carbon metabolism and fixation. Here, using a pooled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9) strategy, we found that plants with single mutations in pgkp1 or pgkp2 were not significantly affected, whereas a pgkp1pgkp2 double mutation was lethal due to retarded carbon fixation, suggesting that PGKp isozymes play redundant functional roles. Metabolomic analysis demonstrated that the sugar‐deficient pgkp1pgkp2 double mutation was partially complemented by exogenous sugar, although respiration intermediates were not rescued. Chloroplast development was defective in pgkp1pgkp2, due to a deficiency in glycolysis‐dependent galactoglycerolipid biosynthesis. Ectopic expression of a plastid targeting PGKc did not reverse the pgkp1pgkp2 double‐mutant phenotypes. Therefore, PGKp1 and PGKp2 play redundant roles in carbon fixation and metabolism, whereas the molecular function of PGKc is more divergent. Our study demonstrated the functional conservation and divergence of glycolytic enzymes.  相似文献   

18.
19.
The Arabidopsis arc1 (accumulation and replication of chloroplasts 1) mutant has pale seedlings and smaller, more numerous chloroplasts than the wild type. Previous work has suggested that arc1 affects the timing of chloroplast division but does not function directly in the division process. We isolated ARC1 by map‐based cloning and discovered it encodes FtsHi1 (At4g23940), one of several FtsHi proteins in Arabidopsis. These poorly studied proteins resemble FtsH metalloproteases important for organelle biogenesis and protein quality control but are presumed to be proteolytically inactive. FtsHi1 bears a predicted chloroplast transit peptide and localizes to the chloroplast envelope membrane. Phenotypic studies showed that arc1 (hereafter ftsHi1‐1), which bears a missense mutation, is a weak allele of FtsHi1 that disrupts thylakoid development and reduces de‐etiolation efficiency in seedlings, suggesting that FtsHi1 is important for chloroplast biogenesis. Consistent with this finding, transgenic plants suppressed for accumulation of an FtsHi1 fusion protein were often variegated. A strong T‐DNA insertion allele, ftsHi1‐2, caused embryo‐lethality, indicating that FtsHi1 is an essential gene product. A wild‐type FtsHi1 transgene rescued both the chloroplast division and pale phenotypes of ftsHi1‐1 and the embryo‐lethal phenotype of ftsHi1‐2. FtsHi1 overexpression produced a subtle increase in chloroplast size and decrease in chloroplast number in wild‐type plants while suppression led to increased numbers of small chloroplasts, providing new evidence that FtsHi1 negatively influences chloroplast division. Taken together, our analyses reveal that FtsHi1 functions in an essential, envelope‐associated process that may couple plastid development with division.  相似文献   

20.
Genetic dissection of the lipid bilayer composition provides essential in vivo evidence for the role of individual lipid species in membrane function. To understand the in vivo role of the anionic phospholipid, phosphatidylglycerol, the loss-of-function mutation was identified and characterized in the Arabidopsis thaliana gene coding for phosphatidylglycerophosphate synthase 1, PGP1. This mutation resulted in pigment-deficient plants of the xantha type in which the biogenesis of thylakoid membranes was severely compromised. The PGP1 gene coded for a precursor polypeptide that was targeted in vivo to both plastids and mitochondria. The activity of the plastidial PGP1 isoform was essential for the biosynthesis of phosphatidylglycerol in chloroplasts, whereas the mitochondrial PGP1 isoform was redundant for the accumulation of phosphatidylglycerol and its derivative cardiolipin in plant mitochondrial membranes. Together with findings in cyanobacteria, these data demonstrated that anionic phospholipids play an important, evolutionarily conserved role in the biogenesis and function of the photosynthetic machinery. In addition, mutant analysis suggested that in higher plants, mitochondria, unlike plastids, could import phosphatidylglycerol from the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号