首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
The sterile insect technique (SIT) has been used successfully for the control of fruit flies. The efficiency of this technique can be significantly reduced when sterile released insects are exposed to adverse conditions and predators, as a great number of sterile insects die before reaching sexual maturity and thus fail to mate with wild females. Treatments with juvenile hormone (JH) analogues such as methoprene (M) significantly reduce the time to reach sexual maturity by sterile Anastrepha ludens (Loew) (Diptera: Tephritidae) males. In this study, we compared the sexual performance of non‐treated sexually mature males with young males that had been sexually accelerated with M. Furthermore, we compared the ability of M‐fed males in inhibiting female remating compared with sexually mature males. Results showed that at 5 days M‐fed males had lower mating success than mature males; however, 6‐day‐old (0.1%) M‐fed males had the same amount of matings as mature 13‐day‐old males. Young 5‐ to 10‐day‐old M‐fed males also had similar number of matings as mature non‐treated 12‐ to 17‐day‐old males. There were no differences in copula duration between treatments. Moreover, there were no differences between the fertility, fecundity or refractory period of females mated with either young male fed M or normal sexually mature males. These results indicated that young males that were sexually accelerated with M have the same sexual performance as non‐treated sexually mature males. Implications of using M as a pre‐release treatment for A. ludens controlled through SIT are discussed.  相似文献   

2.
Female remating is a widespread behaviour, reported in several insect species. This behaviour can affect the efficiency of sterile insect technique (SIT); however, little is known about the postcopulatory behaviour of some pest species considered as candidates to be controlled by this technique, such as Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae). In this study, we investigated the effects of male and female sterilization on mating and remating behaviour of D. suzukii. First, we tested the occurrence of multiple mating in different combinations between sterile and fertile males and females. Then, we tested the effects of male and female sterility on female propensity to mate and remate. We found an overall low remating rate by D. suzukii females. Male sterility did not influence mating and remating likelihood; however, copula duration of sterile males was shorter compared to fertile males. On the other hand, sterile females were less likely to mate. Our findings encourage further research regarding the use of SIT to control D. suzukii.  相似文献   

3.
In polyandrous species, male reproductive success will at least partly be determined by males' success in sperm competition. To understand the potential for post‐mating sexual selection, it is therefore important to assess the extent of female remating. In the lekking moth Achroia grisella, male mating success is strongly determined by female choice based on the attractiveness of male ultrasonic songs. Although observations have indicated that some females will remate, only little is known about the level of sperm competition. In many species, females are more likely to remate if their first mating involved an already mated male than if the first male was virgin. Potentially, this is because mated males are less well able to provide an adequate sperm supply, nutrients, or substances inhibiting female remating. This phenomenon will effectively reduce the strength of pre‐copulatory sexual selection because attractive males with high mating success will be more susceptible to sperm competition. We therefore performed an experiment designed both to provide a more precise estimate of female remating probability and simultaneously to test the hypothesis that female remating is influenced by male mating history. Overall, approximately one of five females remated with a second male. Yet, although females mated to non‐virgin males were somewhat more prone to remate, the effect of male mating history was not significant. The results revealed, however, that heavier females were more likely to remate. Furthermore, we found that females' second copulations were longer, suggesting that, in accordance with theory, males may invest more sperm in situations with an elevated risk of sperm competition.  相似文献   

4.
The occurrence of female remating has been widely reported in insects and the frequency at which it occurs and the factors driving females’ remating behavior have been shown to be both species specific and variable within species. Herein, we studied the remating behavior of females from a well established laboratory colony and a wild population of the South American fruit fly, Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae), under laboratory conditions. Latency to first mating (number of days from the onset of the experiment until the first copula) was shorter for remating females than for females that did not remate. Two‐day fecundity was higher for females that did remate than for monogamous females. Egg hatch was sustained after remating and was not affected by the number of times the female mated. However, when females willing to remate were prevented from doing so, percent egg hatch showed a significant drop. These results and the fact that remating occurred more often in more fecund females than in less fecund ones suggest that remating may be a response to sperm depletion. Remating frequency was similar in laboratory and wild flies, but 2‐day fecundity was higher for laboratory than for wild females of similar mating status. Also, the length of the refractory period (time between first and second copulation) was longer for wild than for laboratory females. Differences between strains could be the result of artificial selection. Results are discussed from a theoretical and applied perspective in the context of direct benefits to females.  相似文献   

5.
Ageing can reduce the probability that individuals reproduce. The present study investigates whether ageing influences the mating frequency of mass‐reared fertile and sterile Mexican fruit flies Anastrepha ludens (Loew). The ability of males of different ages to inhibit female remating is also determined, and the growth of male reproductive organs is measured as they age. Young males (6 days old) have a lower mating frequency than older males, and also have a lower capacity to inhibit female remating than older males. However, 7‐day‐old males are as likely to inhibit female remating as older males. Young males also have smaller reproductive organs than middle‐aged (21‐day‐old) or senescent males (57‐day‐old). These results have implications for the sterile insect technique because sterilized males of A. ludens are released in the field 6 days after emergence. The highest mating frequency, the lowest mating latency and the largest size of testes are observed at 21 days of age. Older males (57 days old) have more sperm in their seminal vesicles than young males (6 and 9 days old). Accessory glands take longer to grow to their complete size compared with testes, and mating frequency is more closely associated with accessory gland size than testes size. Furthermore, there are more sperm in the seminal vesicles during the afternoon period of peak sexual activity than during the morning when sexual activity is absent. These results indicate that, even at the onset of reproductive senescence, mass‐reared males of A. ludens are still capable of mating, as well as inhibiting remating in females.  相似文献   

6.
Male and female age are important factors that can influence mating and remating behavior. Females can discriminate against or prefer older males, but there have been relatively fewer studies on how female and male age influence female remating. Here we showed in wild flies of the Mexican fruit fly Anastrepha ludens (Loew), that when females were given a choice between males of different ages, younger females preferred to mate with younger males over older males, while older females were less selective. Also, when given a choice between males of different ages, older females had longer copulation durations than younger females. On the other hand, older males and females had lower mating success, compared with young and middle-aged flies under no choice conditions. However, middle-aged females mated faster compared to young females and young males mated faster compared to middle-aged males. Male age did not influence female remating, while female age strongly determined female remating, with no females remating when they were old. It is unclear if female receptivity mechanisms are switched off at older ages, or if females are reluctant to remate due to possible costs of mating. We discuss our results in terms of how male and female age can influence mating decisions.  相似文献   

7.
The objective of this study was to examine the relative contributions of copula duration and sperm transfer to the inhibition of sexual receptivity of female Mediterranean fruit flies (Ceratitis capitata, Diptera: Tephritidae). Females choosing to remate had significantly fewer sperm in their spermathecae than females who chose not to remate. Duration of a female's first copulation did not affect her subsequent receptivity. Furthermore, on the first day following copulation significantly more females whose first mate was sterile and from a laboratory strain (sterile males transfer fewer sperm than wild males) chose to copulate than did females whose mate was fertile and recently derived from wild stock. Finally, we offer a synthesis of the available information on remating in this species, and suggest that while females are facultatively polyandrous, copula duration, sperm transfer and male accessory gland secretions act in succession to inhibit female receptivity.  相似文献   

8.
Lepidopteran male mating success is recognized to be directly related to physical and behavioural traits such as ability, vigour, activity and persistence in courtship. In the tomato fruit borer Neoleucinodes elegantalis Guenée, the mating system is known to be monogamic and therefore males' sexual investment is apparently low. The hypothesis that recently mated males have a remating probability equal to that of virgin males is tested. The impact of body size in remating success and the cost of remating are also analyzed. Mated males show as much propensity to remate as naïve ones. Copula duration and the time taken to copulate are similar in mated and virgin males. However, spermatophore size is not related to male size. The results suggest the ability of N. elegantalis males to remate within 24 h between mating events and their propensity to remate are not affected by copula investment. © 2013 The Royal Entomological Society  相似文献   

9.
I investigated two possible reasons for remating in female Plodia interpunctella: i) females remate to obtain sufficient sperm to maintain fertility; and ii) male investment in non-sperm components increases female fecundity and longevity. The number of sperm and the mass of the spermatophore transferred by males decreases on successive matings. Sperm numbers and potential male investment were varied by allowing females to mate either once or twice with males either on their first or second mating. Females receiving a single small spermatophore containing few sperm (from a male on his second mating) had sufficient sperm to fertilize all their eggs. Females did not show increased fecundity or longevity as a result of obtaining more spermatophore material. I discuss why females remate when they already have sufficient sperm to fertilize all their eggs.  相似文献   

10.
Males of the green-veined white butterfly (Pieris napi L.) transfer large ejaculates that represent on average 15% of their body mass when mating for a first time. Shortly after mating a male is able to transfer only a small ejaculate when mating a second time. Male ejaculate production plays a crucial role in the mating system ofP. napi because females use male-derived nutrients for egg production and somatic maintenance. Here we study how timing of female rematings and copulation duration are influenced by the mating history of their mates and, also, study if females exert mate choice to minimize their mating costs. Mating with a recently mated male increased female mating costs by increasing time in copula and mating frequency. Virgin females that mated with virgin males remated after an average of 6 days, whereas virgin females that mated with recently mated males remated after an average of 2 days. Moreover, copulations involving recently mated males lasted on average almost 7 h, whereas copulations involving virgin males lasted on average 2 h. Recently mated males were eager to remate, in spite of the fact that the size of the ejaculate they transfer is small and that they remain in copula for a long time. Hence it seems that males are more successful in the sexual conflict over mating decisions and that females do not minimize mating costs by choosing to mate preferentially with virgin males.  相似文献   

11.
Sterile insect technique (SIT) is used, among other biological control tools, as a sustainable measure for the management of Ceratitis capitata Wiedemann (Diptera: Tephritidae) in many agricultural regions where this pest can trigger severe economic impacts. The tendency of wild females to remate multiple times has been deeply studied; it has been a common point of controversy when evaluating SIT programmes. Nevertheless, the remating potential of the released sterile males remains unknown. Here, under laboratory conditions, the remating capability of mass-reared sterile males was determined. Wild-type virgin females were offered to sterile males (Vienna-8 strain), which had the opportunity to mate up to four consecutive times. The remating assays were carried out at 24 hr, 48 hr, 4 days and 7 days after the first mating. At the end of each tested time period, males were divided according to their mating response, mated or unmated, and subsequently reused for the next round of mating assays. The frequency of successful remating in each tested time period was obtained. Insemination was confirmed by determining the sperm transfer in mated female spermathecae by quantitative real-time PCR. Our results demonstrate that 73% of the mass-reared sterile males were able to remate 24 hr after the first mating, 55% of which remated again the day after. Close to 25% of the V8 sterile males tended to copulate in all of the four mating opportunities. The qPCR analysis of the spermathecae contents verified an effective transfer of V8 sperm to wild females with every mating; 99% of copulations resulted in sperm transfer. These findings shed light on the remating potential of V8 sterile males, an aspect until now underestimated in many SIT programmes.  相似文献   

12.
Male reproductive success in the lesser wax moth Achroia grisella is strongly determined by pre‐copulatory mate choice, during which females choose among males aggregated in small leks based on the attractiveness of ultrasonic songs. Nothing is known about the potential of post‐copulatory mechanisms to affect male reproductive success. However, there is evidence that females at least occasionally remate with a second male and that males are unable to produce ejaculates quickly after a previous copulation. Here we investigated the effects of mating history on ejaculate size and demonstrate that the number of transferred sperm significantly decreased from first (i.e., virgin) to second (i.e., nonvirgin) copulation within individual males. For males of identical age, the number of sperm transferred was higher in virgin than in nonvirgin copulations, too, demonstrating that mating history, is responsible for the decrease in sperm numbers transferred and not the concomitant age difference. Furthermore, the number of transferred sperm was significantly repeatable within males. The demonstrated variation in ejaculate size both between subsequent copulations as well as among individuals suggests that there is allocation of a possibly limited amount of sperm. Because female fecundity is not limited by sperm availability in this system, post‐copulatory mechanisms, in particular sperm competition, may play a previously underappreciated role in the lesser wax moth mating system.  相似文献   

13.
Aging in all organisms is inevitable. Male age can have profound effects on mating success and female reproduction, yet relatively little is known on the effects of male age on different components of the ejaculate. Furthermore, in mass‐reared insects used for the Sterile Insect Technique, there are often behavioral differences between mass‐reared and wild males, while differences in the ejaculate have been less studied. The ejaculate in insects is composed mainly of sperm and accessory gland proteins. Here, we studied how male age and strain affected (i) protein quantity of testes and accessory glands, (ii) the biological activity of accessory gland products injected into females, (iii) sperm viability, and (iv) sperm quantity stored by females in wild and mass‐reared Anastrepha ludens (Diptera: Tephritidae). We found lower protein content in testes of old wild males and lower sperm viability in females mated with old wild males. Females stored more sperm when mated to young wild males than with young mass‐reared males. Accessory gland injections of old or young males did not inhibit female remating. Knowledge of how male age affects different ejaculate components will aid our understanding on investment of the ejaculate and possible postcopulatory consequences on female behavior.  相似文献   

14.
The sterile insect technique (SIT) is used to control Mediterranean fruit fly, Ceratitis capitata (Wiedemann), but its effectiveness is limited by low sexual competitiveness of mass‐reared males. This study investigated whether wild and mass‐reared [from a temperature sensitive lethal (tsl) genetic sexing strain] females display similar mate preferences and thus exert similar selective forces on the evolution of male courtship behaviour. Wild females preferred wild males over tsl males, whereas tsl females mated indiscriminately. The probability that mounting resulted in copulation was related to the duration of pre‐mount courtship for wild females, and wild males performed longer courtships than tsl males. Copulation occurred independently of courtship duration in tsl females. Counter to the aim of the SIT, female choice by tsl females appears to promote the evolution of male behaviour disfavoured by wild females.  相似文献   

15.
Female remating in target pest species can affect the efficacy of control methods such as the Sterile Insect Technique (SIT) but very little is known about the postcopulatory mating behavior of these pests. In this study, we investigated the remating behavior of female Anastrepha serpentina (Diptera: Tephritidae), an oligophagous pest of Sapotaceae. First, we tested how long the sexual refractory period of females lasted after an initial mating. Second, we tested the effect of male and female sterility, female ovipositing opportunities and male density on female propensity to remate. Lastly, we tested if the amount of sperm stored by females was correlated to the likelihood of females to remate. We found that receptivity of mass-reared A. serpentina females had a bimodal response, with up to 16% of mass-reared A. serpentina females remating five days after the initial copulation, decreasing to 2% at 10 and 15 days and increasing to 13% after 20 days. Compared to fertile males, sterile males were less likely to mate and less likely to inhibit females from remating. Copula duration of sterile males was shorter compared to fertile males. Remating females were less likely to mate with a sterile male as a second mate. Sterile females were less likely to mate or remate compared to fertile females. Opportunity to oviposit and male density had no effect on female remating probability. Sperm numbers were not correlated with female likelihood to remate. Information on the post-copulatory behavior of mass-reared A. serpentina will aid fruit fly managers in improving the quality of sterile males. We discuss our results in terms of the differences this species presents in female remating behavior compared to other tephritids.  相似文献   

16.
We compared the calling and mating behavior and volatile release of wild males Anastrepha ludens (Loew) with males from 4 mass‐reared strains: (i) a standard mass‐reared colony (control), (ii) a genetic sexing strain (Tap‐7), (iii) a colony started from males selected on their survival and mating competitiveness abilities (selected), and (iv) a hybrid colony started by crossing wild males with control females. Selected and wild males were more competitive, achieving more matings under field cage conditions. Mass‐reared strains showed higher percentages of pheromone calling males under field conditions except for Tap‐7 males, which showed the highest percentages of pheromone calling males under laboratory cage conditions. For mature males of all strains, field‐cage calling behavior increased during the last hour before sunset, with almost a 2 fold increase exhibited by wild males during the last half hour. The highest peak mating activity of the 4 mass‐reared strains occurred 30 min earlier than for wild males. By means of solid phase microextraction (SPME) plus gas chromatography‐mass spectrometry (GC‐MS), the composition of volatiles released by males was analyzed and quantified. Wild males emitted significantly less amounts of (E,E)‐α‐farnesene but emitted significantly more amounts of (E,E)‐suspensolide as they aged than mass‐reared males. Within the 4 mass‐reared strains, Tap‐7 released significantly more amounts of (E,E)‐α‐farnesene and hybrid more of (E,E)‐suspensolide. Differences in chemical composition could be explained by the intrinsic characteristics of the strains and the colony management regimes. Characterization of calling behavior and age changes of volatile composition between wild and mass‐reared strains could explain the differences in mating competitiveness and may be useful for optimizing the sterile insect technique in A. ludens.  相似文献   

17.
Selection for genetic adaptation might occur whenever an animal colony is maintained in the laboratory. The laboratory adaptation of behavior such as foraging, dispersal ability, and mating competitiveness often causes difficulties in the maintenance of biological control agents and other beneficial organisms used in procedures such as the sterile insect technique (SIT). Sweet potato weevil, Cylas formicarius (Summers) (Coleoptera: Brentidae), is an important pest in sub‐tropical and tropical regions. An eradication program targeting C. formicarius using SIT was initiated in Japan with weevils being mass‐reared for 95 generations to obtain sufficient sterile males. The mass‐reared strain of C. formicarius exhibits weaker female resistance to male mating attempts compared with the wild strain. This could affect the success of SIT programs because mating persistence of mass‐reared males might be expected to decrease in response to weak female resistance. We show that high success of sperm transfer to mass‐reared females was due to weak female resistance to male mating attempts. However, the mating behavior of mass‐reared males did not change. In C. formicarius, the trait of male persistence to mate was not correlated with the female resistance traits. Our results suggest that mass‐rearing conditions do not have negative effects on the mating ability of the sterile males of this species, and thus that the current mass‐rearing procedures are suitable for production of sterile males for the weevil eradication program.  相似文献   

18.
The evolution of female multiple mating is best understood by consideration of male and female reproductive perspectives. Females should usually be selected to remate at their optimum frequencies whereas males should be selected to manipulate female remating to their advantage. Female remating behavior may therefore be changed by variation of male and female traits. In this study, our objective was to separate the effects of female and male strains on female remating for the adzuki bean beetle, Callosobruchus chinensis, for which there is interstrain variation in female remating frequency. We found that interstrain variation in female remating is primarily attributable to female traits, suggesting genetic variation in female receptivity to remating in C. chinensis. Some interstrain variation in female remating propensity was attributable to an interaction between female and male strains, however, with the males of some strains being good at inducing nonreceptivity in females from one high-remating strain whereas others were good at inducing copulation in nonvirgin females from the high-remating strain. There is, therefore, interstrain variation in male ability to deter females from remating and in male ability to mate successfully with nonvirgin females. These results suggest that mating traits have evolved along different trajectories in different strains of C. chinensis.  相似文献   

19.
Methoprene (an analogue of juvenile hormone) application and feeding on a protein diet is known to enhance male melon fly, Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), mating success. In this study, we investigated the effect of these treatments on male B. cucurbitae's ability to inhibit female remating. While 14‐d‐old females were fed on protein diet, 6‐d‐old males were exposed to one of the following treatments: (i) topical application of methoprene and fed on a protein diet; (ii) no methoprene but fed on a protein diet; (iii) methoprene and sugar‐fed only; and (iv) sugar‐fed, 14‐d‐old males acted as controls. Treatments had no effect on a male's ability to depress the female remating receptivity in comparison to the control. Females mated with protein‐deprived males showed higher remating receptivity than females first mated with protein‐fed males. Methoprene and protein diet interaction had a positive effect on male mating success during the first and second mating of females. Significantly more females first mated with sugar‐fed males remated with protein‐fed males and females first mated with methoprene treated and protein‐fed males were more likely to remate with similarly treated males. Females mating latency (time to start mating) was significantly shorter with protein‐fed males, and mating duration was significantly longer with protein‐fed males compared with protein‐deprived males. These results are discussed in the context of methoprene and/or dietary protein as prerelease treatment of sterile males in area‐wide control of melon fly integrating the sterile insect technique (SIT).  相似文献   

20.
Mating speed and copulation duration respond rapidly to laboratory selection in Drosophila melanogaster Meigen (Diptera: Drosophilidae), but there is a lack of data on the evolutionary response to natural selection in the wild. Further, it is not clear whether body melanization and mating behavior are correlated traits. Accordingly, we tested whether variation in body color impacts on mating latency, copulation duration, and fecundity in latitudinal populations of D. melanogaster. We observed geographical variation (cline) for mating propensity, i.e., mating speed as well as copulation duration increased along latitude. Phenotypic plastic responses for body melanization at 17 and 25 °C also showed significant correlations with mating latency and copulation duration. Within‐population analysis based on assorted dark and light flies of five geographical populations showed significant positive correlations of copulation duration and fecundity with body melanization. To assess the role of males and/or females on mating speed and copulation duration, we used atypical body color strains (i.e., dark and light males of D. melanogaster) for no‐choice mating tests. Our data showed a major influence of males for copulation duration and of females for mating speed. Furthermore, a difference in impact of body melanization on mating speed and copulation duration was demonstrated between species, i.e., low melanization in Drosophila ananassae Doleschall is correlated with lower mating speed and shorter copulation duration than in D. melanogaster. Geographical changes in mating propensity were significantly correlated with body melanization at three levels, i.e., within and between populations and between species. Thus, we have shown that a relationship exists between body melanization and mating success. Further, we found seasonal changes in temperature and humidity to confer selection pressures on mating‐related traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号