首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
Leaf age alters the balance between the use of end‐product of plastidic isoprenoid synthesis pathway, dimethylallyl diphosphate (DMADP), in prenyltransferase reactions leading to synthesis of pigments of photosynthetic machinery and in isoprene synthesis, but the implications of such changes on environmental responses of isoprene emission have not been studied. Because under light‐limited conditions, isoprene emission rate is controlled by DMADP pool size (SDMADP), shifts in the share of different processes are expected to particularly strongly alter the light dependency of isoprene emission. We examined light responses of isoprene emission in young fully expanded, mature and old non‐senescent leaves of hybrid aspen (Populus tremula x P. tremuloides) and estimated in vivo SDMADP and isoprene synthase activity from post‐illumination isoprene release. Isoprene emission capacity was 1.5‐fold larger in mature than in young and old leaves. The initial quantum yield of isoprene emission (αI) increased by 2.5‐fold with increasing leaf age primarily as the result of increasing SDMADP. The saturating light intensity (QI90) decreased by 2.3‐fold with increasing leaf age, and this mainly reflected limited light‐dependent increase of SDMADP possibly due to feedback inhibition by DMADP. These major age‐dependent changes in the shape of the light response need consideration in modelling canopy isoprene emission.  相似文献   

2.
Controversial evidence of CO2‐responsiveness of isoprene emission has been reported in the literature with the response ranging from inhibition to enhancement, but the reasons for such differences are not understood. We studied isoprene emission characteristics of hybrid aspen (Populus tremula x P. tremuloides) grown under ambient (380 μmol mol?1) and elevated (780 μmol mol?1) [CO2] to test the hypothesis that growth [CO2] effects on isoprene emission are driven by modifications in substrate pool size, reflecting altered light use efficiency for isoprene synthesis. A novel in vivo method for estimation of the pool size of the immediate isoprene precursor, dimethylallyldiphosphate (DMADP) and the activity of isoprene synthase was used. Growth at elevated [CO2] resulted in greater leaf thickness, more advanced development of mesophyll and moderately increased photosynthetic capacity due to morphological “upregulation”, but isoprene emission rate under growth light and temperature was not significantly different among ambient‐ and elevated‐[CO2]‐grown plants independent of whether measured at 380 μmol mol?1 or 780 μmol mol?1 CO2. However, DMADP pool size was significantly less in elevated‐[CO2]‐grown plants, but this was compensated by increased isoprene synthase activity. Analysis of CO2 and light response curves of isoprene emission demonstrated that the [CO2] for maximum isoprene emission was shifted to lower [CO2] in elevated‐[CO2]‐grown plants. The light‐saturated isoprene emission rate (Imax,Q) was greater, but the quantum efficiency at given Imax,Q was less in elevated‐[CO2]‐grown plants, especially at higher CO2 measurement concentration, reflecting stronger DMADP limitation at lower light and higher [CO2]. These results collectively demonstrate important shifts in light and CO2‐responsiveness of isoprene emission in elevated‐[CO2]‐acclimated plants that need consideration in modeling isoprene emissions in future climates.  相似文献   

3.
4.
Oku  Hirosuke  Iwai  Shohei  Uehara  Misaki  Iqbal  Asif  Mutanda  Ishmael  Inafuku  Masashi 《Journal of plant research》2021,134(6):1225-1242

Despite its major role in global isoprene emission, information on the environmental control of isoprene emission from tropical trees has remained scarce. Thus, in this study, we examined the relationship between parameters of G-93 isoprene emission formula (CT1, CT2, and α), growth temperature and light intensity, photosynthesis (?, Pmax), isoprene synthase (IspS) level, and 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway metabolites using sunlit and shaded leaves of four tropical trees. The results showed that the temperature dependence of isoprene emission from shaded leaves did not differ significantly from sunlit leaves. In contrast, there was a lower saturation irradiance in shaded leaves than in sunlit leaves, the same as temperate plants. The photosynthesis rate of shaded leaves showed lower saturation irradiance, similar to the light dependence of isoprene emission. In most cases, the concentration of MEP pathway metabolites was of lower tendency in shaded leaves versus in sunlit leaves, whereas no significant difference was noted in IspS level between sunlit and shaded leaves. Correlation analysis between these parameters found that CT1 of the G-93 parameter was positively correlated with the concentration of DXP and DMADP, whereas CT2 correlated with the concentration of MEP and the average air temperature for the past 48 h. Similarly, α closely associated with the initial slope (?) of photosynthesis rate, and the basal emission factor is also linked to the photon flux of past days. These results suggest that growth conditions may control the temperature dependence of isoprene emission from tropical trees via the changes in the profiles of MEP pathway metabolites, causing alteration in the parameters of the isoprene emission formula.

  相似文献   

5.
We present a physiological model of isoprene (2-methyl-1,3-butadiene) emission which considers the cost for isoprene synthesis, and the production of reductive equivalents in reactions of photosynthetic electron transport for Liquidambar styraciflua L. and for North American and European deciduous temperate Quercus species. In the model, we differentiate between leaf morphology (leaf dry mass per area, MA, g m ? 2) altering the content of enzymes of isoprene synthesis pathway per unit leaf area, and biochemical potentials of average leaf cells determining their capacity for isoprene emission. Isoprene emission rate per unit leaf area ( μ mol m ? 2 s ? 1) is calculated as the product of MA, the fraction of total electron flow used for isoprene synthesis ( ? , mol mol ? 1), the rate of photosynthetic electron transport (J) per unit leaf dry mass (Jm, μ mol g ? 1 s ? 1), and the reciprocal of the electron cost of isoprene synthesis [mol isoprene (mol electrons ? 1)]. The initial estimate of electron cost of isoprene synthesis is calculated according to the 1-deoxy- D -xylulose-5-phosphate pathway recently discovered in the chloroplasts, and is further modified to account for extra electron requirements because of photorespiration. The rate of photosynthetic electron transport is calculated by a process-based leaf photosynthesis model. A satisfactory fit to the light-dependence of isoprene emission is obtained using the light response curve of J, and a single value of ? , that is dependent on the isoprene synthase activity in the leaves. Temperature dependence of isoprene emission is obtained by combining the temperature response curves of photosynthetic electron transport, the shape of which is related to long-term temperature during leaf growth and development, and the specific activity of isoprene synthase, which is considered as essentially constant for all plants. The results of simulations demonstrate that the variety of temperature responses of isoprene emission observed within and among the species in previous studies may be explained by different optimum temperatures of J and/or limited maximum fraction of electrons used for isoprene synthesis. The model provides good fits to diurnal courses of field measurements of isoprene emission, and is also able to describe the changes in isoprene emission under stress conditions, for example, the decline in isoprene emission in water-stressed leaves.  相似文献   

6.
Isopentenyl diphosphate (IDP) and its isomer dimethylallyl diphosphate (DMADP) are building units for all isoprenoids; thus, intracellular pool sizes of IDP and DMADP play important roles in living organisms. Several methods have been used to quantify the amount of DMADP or the combined amount of IDP plus DMADP, but measuring the DMADP/IDP ratio has been difficult. In this study, a method was developed to measure the ratio of DMADP/IDP. Catalyzed by a recombinant IDP isomerase (IDI) together with a recombinant isoprene synthase (IspS), IDP was converted to isoprene, which was then detected by chemiluminescence. With this method, the in vitro equilibrium ratio of DMADP/IDP was found to be 2.11:1. IDP and DMADP pools were significantly increased in Escherichia coli transformed with methylerythritol 4-phosphate pathway genes; the ratio of DMADP/IDP was 3.85. An E. coli strain transformed with IspS but no additional IDI had a lower DMADP level and a DMADP/IDP ratio of 1.05. Approximately 90% of the IDP and DMADP pools in light-adapted kudzu leaves were light dependent and so presumably were located in the chloroplasts; the DMADP/IDP ratios in chloroplasts and cytosol were the same as the in vitro ratio (2.04 in the light and 2.32 in the dark).  相似文献   

7.
Whereas for extra‐tropical regions model estimates of the emission of volatile organic compounds (VOC) predict strong responses to the strong annual cycles of foliar biomass, light intensity and temperature, the tropical regions stand out as a dominant source year round, with only little variability mainly due to the annual cycle of foliar biomass of drought‐deciduous trees. As part of the Large Scale Biosphere Atmosphere Experiment in Amazônia (LBA‐EUSTACH), a remote secondary tropical forest site was visited in the dry‐to‐wet season transition campaign, and the trace gas exchange of a strong isoprene emitter and a monoterpene emitter are compared to the wet‐to‐dry season transition investigations reported earlier. Strong seasonal differences of the emission capacity were observed. The standard emission factor for isoprene emission of young mature leaves of Hymenaea courbaril was about twofold in the end of the dry season (111.5 μgC g?1 h?1 or 41.2 nmol m?2 s?1) compared to old mature leaves investigated in the end of the wet season (45.4 μgC g?1 h?1 or 24.9 nmol m?2 s?1). Standardized monoterpene emission rate of Apeiba tibourbou were 2.1 and 3.6 μgC g?1 h?1 (or 0.3 and 0.8 nmol m?2 s‐1), respectively. This change in species‐specific VOC emission capacity was mirrored by a concurrent change in the ambient mixing ratios. The growth conditions vary less in tropical areas than in temperate regions of the world, and the seasonal differences in emission strength could not be reconciled solely with meteorological data of instantaneous light intensity and temperature. Hence the inadequacy of using a single standard emission factor to represent an entire seasonal cycle is apparent. Among a host of other potential factors, including the leaf developmental stage, water and nutrient status, and abiotic stresses like the oxidative capacity of the ambient air, predominantly the long‐term growth temperature may be applied to predict the seasonal variability of the isoprene emission capacity. The dry season isoprene emission rates of H. courbaril measured at the canopy top were also compared to isoprene emissions of the shade‐adapted species Sorocea guilleminiana growing in the understory. Despite the difference in VOC emission composition and canopy position, one common algorithm was able to predict the diel emission pattern of all three tree species.  相似文献   

8.
Isoprene is emitted from leaves of numerous plant species and has important implications for plant metabolism and atmospheric chemistry. The ability to use stored carbon (alternative carbon sources), as opposed to recently assimilated photosynthate, for isoprene production may be important as plants routinely experience photosynthetic depression in response to environmental stress. A CO2‐labelling study was performed and stable isotopes of carbon were used to examine the role of alternative carbon sources in isoprene production in Populus deltoides during conditions of water stress and high leaf temperature. Isotopic fractionation during isoprene production was higher in heat‐ and water‐stressed leaves (?8.5 and ?9.3‰, respectively) than in unstressed controls (?2.5 to ?3.2‰). In unstressed plants, 84–88% of the carbon in isoprene was derived from recently assimilated photosynthate. A significant shift in the isoprene carbon composition from photosynthate to alternative carbon sources was observed only under severe photosynthetic limitation (stomatal conductance < 0.05 mol m?2 s?1). The contribution of photosynthate to isoprene production decreased to 77 and 61% in heat‐ and water‐stressed leaves, respectively. Across water‐ and heat‐stress experiments, allocation of photosynthate was negatively correlated to the ratio of isoprene emission to photosynthesis. In water‐stressed plants, the use of alternative carbon was also related to stomatal conductance. It has been proposed that isoprene emission may be regulated by substrate availability. Thus, understanding carbon partitioning to isoprene production from multiple sources is essential for building predictive models of isoprene emission.  相似文献   

9.
10.
11.
We followed the diurnal cycles of isoprenoid emissions from Quercus ilex seedlings under drought and after re-watering. We found that Quercus ilex, generally considered a non-isoprene emitter, also emitted isoprene although at low rates. The emission rates of isoprene reached 0.37 ± 0.02 nmol m−2 s−1 in controls, 0.15 ± 0.03 nmol m−2 s−1 under drought and 0.35 ± 0.04 nmol m−2 s−1 after re-watering, while emission rates of monoterpenes reached 11.0 ± 3.0, 7.0 ± 1.0 and 23.0 ± 5.0 nmol m−2 s−1, respectively. Emission rates recovered faster after re-watering than photosynthetic rate and followed diurnal changes in irradiance in controls and under drought, but in leaf temperature after re-watering.  相似文献   

12.
Biochemical regulation of isoprene emission   总被引:10,自引:2,他引:8  
Isoprene (C5H8) is emitted from many plants and has a substantial effect on atmospheric chemistry. There are several models to estimate the rate of isoprene emission used to calculate the impact of isoprene on atmospheric processes. The rate of isoprene synthesis will depend either on the activity of isoprene synthase or the availability of its substrate dimethylallyl pyrophosphate (DMAPP). To investigate long‐term regulation of isoprene synthesis, the isoprene emission rate of 15 kudzu leaves was measured. The chloroplast DMAPP level of the five leaves with the highest emission rates and the five leaves with the lowest rates were determined by non‐aqueous fractionation of the bulked leaf samples. Leaves with high basal emission rates had low levels of DMAPP whereas leaves with low basal emission rates had high DMAPP levels in their chloroplasts indicating that the activity of isoprene synthase exerts primary control over the basal emission rate. To investigate short‐term regulation, isoprene precursors were fed to leaves. Feeding dideuterated deoxyxylulose (DOX‐d2) to Eucalyptus leaves resulted in the emission of dideuterated isoprene. Results from DOX‐d2 feeding experiments indicated that control of isoprene emission rate was shared between reactions upstream and downstream of the DOX entry into isoprene metabolism. In CO2‐free air DOX always increased isoprene emission indicating that carbon availability was an important control factor. In N2, isoprene emission stopped and could not be recovered by adding DOX‐d2. Taken together, these results indicate that the regulation of isoprene emission is shared among several steps and the relative importance of the different steps in controlling isoprene emission varies with conditions.  相似文献   

13.
In the present work a rapid and sensitive non-radioactive assay for the determination of cellular dimethylallyl diphosphate (DMADP) was developed and used for the analysis of the diurnal variation of DMADP levels in oak leaves. The method is based on the acid-catalysed hydrolysis of DMADP to isoprene, which subsequently is determined by gas chromatography. Diurnal variation of cellular DMADP levels in oak leaves of young saplings was measured on 6 days in 1998 and 1999, showing a 2 to 3-fold light-dependent increase from approximately 15 pmol mg−1 DW in the night to 31–75 pmol mg−1 DW around noon. The leaf DMADP contents showed a significant positive correlation with net assimilation and isoprene emission rates, indicating that the availability of cellular DMADP might be an important regulatory factor of leaf isoprene emission.  相似文献   

14.
Changes of the volatile organic compounds (VOC) emission capacity and composition of different developmental stages of the tropical tree species Hymenaea courbaril were investigated under field conditions at a remote Amazonian rainforest site. The basal emission capacity of isoprene changed considerably over the course of leaf development, from young to mature and to senescent leaves, ultimately spanning a wide range of observed isoprene basal emission capacities from 0.7 to 111.5 µg C g?1 h?1 during the course of the year. By adjusting the standard emission factors for individual days, the diel courses of instantaneous isoprene emission rates could nevertheless adequately be modelled by a current isoprene algorithm. The results demonstrate the inadequacy of using one single standard emission factor to represent the VOC emission capacity of tropical vegetation for an entire seasonal cycle. A strong linear correlation between the isoprene emission capacity and the gross photosynthetic capacity (GPmax) covering all developmental stages and seasons was observed. The present results provide evidence that leaf photosynthetic properties may confer a valuable basis to model the seasonal variation of isoprenoid emission capacity; especially in tropical regions where the environmental conditions vary less than in temperate regions. In addition to induction and variability of isoprene emission during early leaf development, considerable amounts of monoterpenes were emitted in a light‐dependent manner exclusively in the period between bud break and leaf maturity. The fundamental change in emission composition during this stage as a consequence of resource availability (supply side control) or as a plant's response to the higher defence demand of young emerging leaves (demand‐side control) is discussed. The finding of a temporary emergence of monoterpene emission may be of general interest in understanding both the ecological functions of isoprenoid production and the regulatory processes involved.  相似文献   

15.
Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, all physiological characteristics were similar when expressed per unit dry mass, indicating that the area‐based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area were primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications.  相似文献   

16.
Li Z  Ratliff EA  Sharkey TD 《Plant physiology》2011,155(2):1037-1046
Isoprene emission from broadleaf trees is highly temperature dependent, accounts for much of the hydrocarbon emission from plants, and has a profound effect on atmospheric chemistry. We studied the temperature response of postillumination isoprene emission in oak (Quercus robur) and poplar (Populus deltoides) leaves in order to understand the regulation of isoprene emission. Upon darkening a leaf, isoprene emission fell nearly to zero but then increased for several minutes before falling back to nearly zero. Time of appearance of this burst of isoprene was highly temperature dependent, occurring sooner at higher temperatures. We hypothesize that this burst represents an intermediate pool of metabolites, probably early metabolites in the methylerythritol 4-phosphate pathway, accumulated upstream of dimethylallyl diphosphate (DMADP). The amount of this early metabolite(s) averaged 2.9 times the amount of plastidic DMADP. DMADP increased with temperature up to 35°C before starting to decrease; in contrast, the isoprene synthase rate constant increased up to 40°C, the highest temperature at which it could be assessed. During a rapid temperature switch from 30°C to 40°C, isoprene emission increased transiently. It was found that an increase in isoprene synthase activity is primarily responsible for this transient increase in emission levels, while DMADP level stayed constant during the switch. One hour after switching to 40°C, the amount of DMADP fell but the rate constant for isoprene synthase remained constant, indicating that the high temperature falloff in isoprene emission results from a reduction in the supply of DMADP rather than from changes in isoprene synthase activity.  相似文献   

17.
The possible protective role of endogenous isoprene against oxidative stress caused by singlet oxygen (1O2) was studied in the isoprene‐emitting plant Phragmites australis. Leaves emitting isoprene and leaves in which isoprene synthesis was inhibited by fosmidomycin were exposed to increasing concentrations of 1O2 generated by Rose Bengal (RB) sensitizer at different light intensities. In isoprene‐emitting leaves, photosynthesis and H2O2 and malonyldialdehyde (MDA) contents were not affected by low to moderate 1O2 concentrations generated at light intensities of 800 and 1240 µmol m?2 s?1, but symptoms of damage and reactive oxygen accumulation started to be observed when high levels of 1O2 were generated by very high light intensity (1810 µmol m?2 s?1). A dramatic decrease in photosynthetic performance and an increase in H2O2 and MDA levels were measured in isoprene‐inhibited RB‐fed leaves, but photosynthesis was not significantly inhibited in leaves in which the isoprene leaf pool was reconstituted by fumigating exogenous isoprene. The inhibition of photosynthesis in isoprene‐inhibited leaves was linearly associated with the light intensity and with the consequently formed 1O2. Hence, physiological levels of endogenous isoprene may supply protection against 1O2. The protection mechanisms may involve a direct reaction of isoprene with 1O2. Moreover, as it is a small lipophilic molecule, it may assist hydrophobic interactions in membranes, resulting in their stabilization. The isoprene‐conjugated double bond structure may also quench 1O2 by facilitating energy transfer and heat dissipation. This action is typical of other isoprenoids, but we speculate that isoprene may provide a more dynamic protection mechanism as it is synthesized promptly when high light intensity produces 1O2.  相似文献   

18.
The tropical African tree species Acacia nigrescens Oliv. was grown in environmentally controlled growth chambers at three CO2 concentrations representative of the Last Glacial Maximum (~180 ppmv), the present day (~380 ppmv), and likely mid‐21st century (~600 ppmv) CO2 concentrations. Isoprene (C5H8) emissions, per unit leaf area, were greater at lower‐than‐current CO2 levels and lower at higher‐than‐current CO2 levels relative to controls grown at 380 ppmv CO2. Changes in substrate availability and isoprene synthase (IspS) activity were identified as the mechanisms behind the observed leaf‐level emission response. In contrast, canopy‐scale emissions remained unaltered between the treatments as changes in leaf‐level emissions were offset by changes in biomass and leaf area. Substrate concentration and IspS activity‐CO2 responses were used in a biochemical model, coupled to existing isoprene emission algorithms, to model isoprene emissions from A. nigrescens grown for over 2 years at three different CO2 concentrations. The addition of the biochemical model allowed for the use of emission factors measured under present day CO2 concentrations across all three CO2 treatments. When isoprene emissions were measured from A. nigrescens in response to instantaneous changes in CO2 concentration, the biochemical model satisfactorily represented the observed response. Therefore, the effect of changes in atmospheric CO2 concentration on isoprene emission at any timescale can be modelled and predicted.  相似文献   

19.
The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 μmol photons m?2 s?1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well‐ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near‐saturating light largely depend on the effects on photosynthetic electron transport capacity.  相似文献   

20.
The long‐term effect of elevated atmospheric CO2 on isoprenoid emissions from adult trees of two Mediterranean oak species (the monoterpene‐emitting Quercus ilex L. and the isoprene‐emitting Quercus pubescens Willd.) native to a high‐CO2 environment was investigated. During two consecutive years, isoprenoid emission was monitored both at branch level, measuring the actual emissions under natural conditions, and at leaf level, measuring the basal emissions under the standard conditions of 30 °C and at light intensity of 1000 µmol m?2 s?1. Long‐term exposure to high atmospheric levels of CO2 did not significantly affect the actual isoprenoid emissions. However, when leaves of plants grown in the control site were exposed for a short period to an elevated CO2 level by rapidly switching the CO2 concentration in the gas‐exchange cuvette, both isoprene and monoterpene basal emissions were clearly inhibited. These results generally confirm the inhibitory effect of elevated CO2 on isoprenoid emission. The absence of a CO2 effect on actual emissions might indicate higher leaf temperature at elevated CO2, or an interaction with multiple stresses some of which (e.g. recurrent droughts) may compensate for the CO2 effect in Mediterranean ecosystems. Under elevated CO2, isoprene emission by Q. pubescens was also uncoupled from the previous day's air temperature. In addition, pronounced daily and seasonal variations of basal emission were observed under elevated CO2 underlining that correction factors may be necessary to improve the realistic estimation of isoprene emissions with empirical algorithms in the future. A positive linear correlation of isoprenoid emission with the photosynthetic electron transport and in particular with its calculated fraction used for isoprenoid synthesis was found. The slope of this relationship was different for isoprene and monoterpenes, but did not change when plants were grown in either ambient or elevated CO2. This suggests that physiological algorithms may usefully predict isoprenoid emission also under rising CO2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号