首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   1篇
  2015年   2篇
  2014年   1篇
  2005年   2篇
  2004年   1篇
  1954年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, all physiological characteristics were similar when expressed per unit dry mass, indicating that the area‐based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area were primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications.  相似文献   
2.
Two silver birch (Betula pendula Roth) clones K1659 and V5952 were grown in open‐top chambers over 3 years (age 7–9 years). The treatments were increased CO2 concentration (+CO2, 72 Pa), increased O3 concentration (+O3, 2 × ambient O3 with seasonal AOT40 up to 28 p.p.m. h) and in combination (+CO2 + O3). Thirty‐seven photosynthetic parameters were measured in the laboratory immediately after excising leaves using a computer‐operated routine of gas exchange and optical measurements. In control leaves the photosynthetic parameters were close to the values widely used in a model (Farquhar, von Caemmerer and Berry, Planta 149, 78–90, 1980). The distribution of chlorophyll between photosystem II and photosystem I, intrinsic quantum yield of electron transport, uncoupled turnover rate of Cyt b6f, Rubisco specificity and Km (CO2) were not influenced by treatments. Net photosynthetic rate responded to +CO2 with a mean increase of 17% in both clones. Dry weight of leaves increased, whereas protein, especially Rubisco content and the related photosynthetic parameters decreased. Averaged over 3 years, eight and 17 mechanistically independent parameters were significantly influenced by the elevated CO2 in clones K1659 and V5952, respectively. The elevated O3 caused a significant decrease in the average photosynthetic rate of clone V5952, but not of clone K1659. The treatment caused changes in one parameter of clone K1659 and in 11 parameters of clone V5952. Results of the combined treatment indicated that +O3 had less effect in the presence of +CO2 than alone. Interestingly, changes in the same photosynthetic parameters were observed in chamberless grown trees of clone V5952 as under +O3 treatment in chambers, but this was not observed for clone K1659. These results suggest that during chronic fumigation, at concentrations below the threshold of visible leaf injuries, ozone influenced the photosynthetic parameters as a general stress factor, in a similar manner to weather conditions that were more stressful outside the chambers. According to this hypothesis, the sensitivity of a species or a clone to ozone is expected to depend on the growth conditions: the plant is less sensitive to ozone if the conditions are close to optimal and it is more sensitive to ozone under conditions of stress.  相似文献   
3.
4.
基于阿勒泰地区7个气象站1961—2012年的逐日气温、降水等气象资料,运用趋势分析法、M-K突变检验法、小波分析法并结合ArcGIS软件,探究了阿勒泰地区干旱的时空演变特征.结果表明: 综合气象干旱指数能较好地反映阿勒泰地区干旱状况.研究期间,阿勒泰地区虽然年和四季的干旱频次和不同等级干旱覆盖范围都呈减少趋势,但是旱情仍较为严重,年和季节的干旱发生频繁,且多年存在重旱和特旱发生在整个阿勒泰地区;秋季和冬季的干旱频次分别在1997和1983年发生减少突变,夏季的干旱频次首先在1962年发生增加突变,随后在1991年发生减少突变,年均和春季的干旱频次无突变发生;年和四季的干旱频次都存在明显的周期性.干旱频次和不同干旱等级在空间上的分布表明,东部清河县旱情较为严重,中部阿勒泰市、富蕴县、布尔津县、福海县旱情次之,西部地区的哈巴河和吉木乃县的旱情较轻.  相似文献   
5.
The present study was performed to investigate the adjustment of the rate parameters of the light and dark reactions of photosynthesis to the natural growth light in leaves of an overstorey species, Betula pendula Roth, a subcanopy species, Tilia cordata P. Mill., and a herb, Solidago virgaurea L., growing in a natural plant community in Järvselja, Estonia. Shoots were collected from the site and individual leaves were measured in a laboratory applying a standardized routine of kinetic gas exchange, Chl fluorescence and 820 nm transmittance measurements. These measurements enabled the calculations of the quantum yield of photosynthesis and rate constants of excitation capture by photochemical and non-photochemical quenchers, rate constant for P700+ reduction via the cytochrome b6f complex with and without photosynthetic control, actual maximum and potential (uncoupled) electron transport rate, stomatal and mesophyll resistances for CO2 transport, Km(CO2) and Vm of ribulose-bisphosphate carboxylase-oxygenase (Rubisco) in vivo. In parallel, N, Chl and Rubisco contents were measured from the same leaves. No adjustment toward higher quantum yield in shade compared with sun leaves was observed, although relatively more N was partitioned to the light-harvesting machinery in shade leaves ( H. Eichelmann et al., 2004 ). The electron transport rate through the Cyt b6f complex was strongly down-regulated under saturating light compared with darkness, and this was observed under atmospheric, as well as saturating CO2 concentration. In vivo Vm measurements of Rubisco were lower than corresponding reported measurements in vitro, and the kcat per reaction site varied widely between leaves and growth sites. The correlation between Rubisco Vm and the photosystem I density was stronger than between Vm and the density of Rubisco active sites. The results showed that the capacity of the photosynthetic machinery decreases in shade-adjusted leaves, but it still remains in excess of the actual photosynthetic rate. The photosynthetic control systems that are targeted to adjust the photosynthetic rate to meet the plant's needs and to balance the partial reactions of photosynthesis, down-regulate partial processes of photosynthesis: excess harvested light is quenched non-photochemically; excess electron transport capacity of Cyt b6f is down-regulated by ΔpH-dependent photosynthetic control; Rubisco is synthesized in excess, and the number of activated Rubisco molecules is controlled by photosystem I-related processes. Consequently, the nitrogen contained in the components of the photosynthetic machinery is not used at full efficiency. The strong correlation between leaf nitrogen and photosynthetic performance is not due to the nitrogen requirements of the photosynthetic apparatus, but because a certain amount of energy must be captured through photosynthesis to maintain this nitrogen within a leaf.  相似文献   
6.
The present study was performed to investigate the adjustment of the constituents of the light and dark reactions of photosynthesis to the natural growth irradiance in the leaves of an overstorey species, Betula pendula Roth, a subcanopy species Tilia cordata P. Mill., and a herb Solidago virgaurea L. growing in a natural plant community in Järvselja, Estonia. Shoots were collected from the site and properties of individual leaves were measured in a laboratory, by applying a routine of kinetic gas exchange and optical measurements that revealed photosystem II (PSII), photosystem I (PSI), and cytochrome b6f densities per leaf area and the distribution of excitation (or chlorophyll, Chl) between the two photosystems. In parallel, N, Chl and ribulose-bisphosphate carboxylase-oxygenase (Rubisco) content was measured from the same leaves. The amount of N in photosynthetic proteins was calculated from the measured contents of the components of the photosynthetic machinery. Non-photosynthetic N was found as the residual of the budget. Growth in shade resulted in the decrease of leaf dry mass to a half of the DW in sun leaves in each species, but the total variation, from the top to the bottom of the canopy, was larger. Through the whole cross-section of the canopy, leaf dry weight (DW) and Rubisco content per area decreased by a factor of four, N content by a factor of three, but Chl content only by a factor of 1.7. PSII density decreased by a factor of 1.9, but PSI density by a factor of 3.2. The density of PSI adjusted to shade to a greater extent than the density of PSII. In shade, the distribution of N between the components of the photosynthetic machinery was shifted toward light-harvesting proteins at the expense of Rubisco. Non-photosynthetic N decreased the most substantially, from 54% in the sun leaves of B. pendula to 11% in the shade leaves of T. cordata. It is concluded that the redistribution of N toward light-harvesting Chl proteins in shade is not sufficient to keep the excitation rate of a PSII centre invariant. Contrary to PSII, the density of PSI – the photosystem that is in immediate contact with the carbon assimilation system – shade-adjusts almost proportionally with the latter, whereas its Chl antenna correspondingly increases. Even under N deficiency, a likely condition in the natural plant community, a substantial part of N is stored in non-photosynthetic proteins under abundant irradiation, but much less under limiting irradiation. At least in trees the general sequence of down-regulation due to shade adjustment is the following: (1) non-protein cell structures and non-photosynthetic proteins; (2) carbon assimilation proteins; (3) light reaction centre proteins, first PSI; and (4) chlorophyll-binding proteins.  相似文献   
7.
In growing leaves, lack of isoprene synthase (IspS) is considered responsible for delayed isoprene emission, but competition for dimethylallyl diphosphate (DMADP), the substrate for both isoprene synthesis and prenyltransferase reactions in photosynthetic pigment and phytohormone synthesis, can also play a role. We used a kinetic approach based on post‐illumination isoprene decay and modelling DMADP consumption to estimate in vivo kinetic characteristics of IspS and prenyltransferase reactions, and to determine the share of DMADP use by different processes through leaf development in Populus tremula. Pigment synthesis rate was also estimated from pigment accumulation data and distribution of DMADP use from isoprene emission changes due to alendronate, a selective inhibitor of prenyltransferases. Development of photosynthetic activity and pigment synthesis occurred with the greatest rate in 1‐ to 5‐day‐old leaves when isoprene emission was absent. Isoprene emission commenced on days 5 and 6 and increased simultaneously with slowing down of pigment synthesis. In vivo Michaelis–Menten constant (Km) values obtained were 265 nmol m?2 (20 μm ) for DMADP‐consuming prenyltransferase reactions and 2560 nmol m?2 (190 μm ) for IspS. Thus, despite decelerating pigment synthesis reactions in maturing leaves, isoprene emission in young leaves was limited by both IspS activity and competition for DMADP by prenyltransferase reactions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号