首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied illegitimate recombination by transforming yeast with a single-stranded (ss) non-replicative plasmid. Plasmid pCW12, containing the ARG4gene, was used for transformation of yeast strains deleted for the ARG4, either in native (circular) form or after linearization within the vector sequence by the restriction enzyme ScaI. Both circular and linearized ss plasmids were shown to be much more efficient in illegitimate integration than their double-stranded (ds) counterparts and more than two-thirds of the transformants analysed contained multiple tandem integrations of the plasmid. Pulsed-field gel electrophoresis of genomic DNA revealed significant changes in the karyotype of some transformants. Plasmid DNA was frequently detected on more than one chromosome and on mitotically unstable, autonomously replicating elements. Our results show that the introduction of nonhomologous ss DNA into yeast cells can lead to different types of alterations in the yeast genome.  相似文献   

2.
Summary Hybrid plasmids containing the bacterial resistance-transfer factor pBR322 and the yeast leu2 +gene have been used to isolate DNA fragments of Physarum that are capable of initiating DNA replication in a yeast host. Five of forty hybrid plasmids containing Physarum sequences transform leu2 -yeast to Leu+ at high frequency. The resulting Leu+ transformants are characterized by phenotypic instability. Supercoiled plasmid molecules containing pBR322 sequences can be detected in the transformed yeast, indicating that the transforming DNA replicates autonomously. Plasmid DNA isolated from Leu+ yeast can transform leuB bacteria. The hybrid plasmid recovered from the Leu+ bacterial transformants is identical to the original plasmid, indicating structural integrity is maintained during passage through the yeast host. These hybrid plasmids containing Physarum sequences have the same characteristics as those containing autonomously replicating yeast chromosomal sequences. As the temporal sequence of DNA replication is particularly accessible to study in Physarum plasmodia, the functional significance of these segments should be amenable to study.  相似文献   

3.
Insertion of a genetic marker into the ribosomal DNA of yeast   总被引:38,自引:0,他引:38  
Jack W. Szostak  Ray Wu 《Plasmid》1979,2(4):536-554
Plasmid pBR322 carrying the yeast LEU2+ gene transforms leu yeast into LEU+ at a low frequency by integration at homologous chromosomal DNA. When one-half of the yeast rDNA repeat unit (BglII-A) is inserted into the plasmid, the frequency of yeast transformation increases 100- to 200-fold, in proportion to the increased amount of homologous repetitive rDNA available for integration. When the other half of the repeat unit (BglII-B) is inserted into the plasmid, the transformation frequency increases by a factor of 104, and the transformants are very unstable. It is likely that this fragment of rDNA contains a yeast origin of replication. This plasmid is a useful vector for cloning fragments of yeast DNA in yeast. We have used the LEU2+ gene, inserted into the rDNA locus, as a genetic marker for mapping the rDNA, in a procedure analogous to the use of antibiotic resistance transposons in the mapping of bacterial genes. Yeast ribosomal DNA is on chromosome XII between asp5 and ura4 as determined by mitotic linkage. Genetic analysis of markers inserted at the rDNA locus should be a useful tool for studying the conservation of sequence homology and the conservation of copy number of repeated genes.  相似文献   

4.
Summary Two plasmids from group B streptococcus were introduced into pneumococcus (Streptococcus pneumoniae) and examined for copy number, stability, and some features of the process by which they transform pneumococcal recipients. The 3.6 Mdal pMV158 (tet) was present at a minimum of 12 to 16 copies per chromosome and was never observed to be cured. The 20 Mdal pIP501 (cat erm) had a minimum copy number of 3 to 4 per chromosome and was lost spontaneously at a frequency near 0.03 per division. The presence of novobiocin increased this frequency 2 to 3-fold. Competence for chromosomal transformation and the membrane endonuclease needed for normal DNA entry were required for plasmid transformation. Plasmid transformants segregated transformed cells one generation ahead of chromosomal transformants. Both single and multiple hit components of the transformation reaction kinetics were observed, but the latter could not be seen in the presence of competing chromosomal DNA. The majority of the transforming activity behaved as covalently closed circular DNA in dye-buoyancy gradients. Although most of the activity for both plasmids sedimented in sucrose gradients more rapidly than did monomeric closed circular DNA, a significant fraction was found at a position suggesting that it may have been due to monomeric plasmids.  相似文献   

5.
Hybrid plasmid pSP97 carrying the entire genome of polyoma virus (PY), inserted into bacterial vector psV3, transforms yeast cells with the frequency 1 x 10(-2). Plasmid pSP97 is capable of autonomous replication in S. cerevisiae, while its structure remains unaltered, the stability of hybrid plasmid in transformants is 44%--100%. Plasmid pSP155 consisting of Ori-containing DNA segment from polyoma, pBR322 and yeast gene arg4, transforms yeast cells with the frequency 5 x 10(-3), the stability of plasmid in transformants is 23%--29%. Two types of plasmids were isolated from transformants: one was identical to SP155, while the another differed structurally and phenotypically from SP155. Plasmids pSP113 and pSP114, in addition to pBR322 and yeast gene arg4, contain a viral DNA segment that encodes genes from small and middle T-antigens. These plasmids transform yeast cells with low frequency (2 x 10(-4), 3 x 10(-5)), the stability of plasmids in yeast transformants is 100%. However, hybrid plasmids identical to pSP113 were isolated from transformants. Structural rearrangements have been observed in pSP114, which carries the arg4 gene in reversed orientation compared to pSP113.  相似文献   

6.
Plasmid pBR313 carrying a 1.4 kb EcoRI fragment from the yeast TRP1 region (designated pLC544) is capable of transforming yeast trp1 mutants to Trp+ at high frequency (10(3)--10(4) transformants/micrograms DNA). Transformation can be achieved either by using purified plasmid DNA or by fusion of yeast spheroplasts with partially lysed Escherichia coli [pLC544] protoplast preparations. The Trp+ yeast transformants are highly unstable, segregating Trp- cells at frequencies of 0.18 per cell per generation (haploids) and 0.056 per cell per generation (diploids) in media containing tryptophan. Plasmid pLC544 replicates autonomously in the nucleus of yeast cells and segregation of Trp-cells is associated with the complete loss of plasmid sequences. In genetic crosses, pLC544 is randomly assorted during meiosis and is carried unchanged through the mating process into haploid recombinants.  相似文献   

7.
We have constructed two plasmid vectors (pMR95 and pMR96) with selectable markers for the marine yeast Debaryomyces hansenii. Plasmid pMR95 contains an autonomously replicating sequence previously isolated from Debaryomyces and a hygromycin B resistance gene from the plasmid pLG90 under the control of the isocytochrome C1 promoter and terminator sequences, while pMR96 has, in addition, the Saccharomyces URA3 gene. Transformation in Debaryomyces was accomplished by electroporation. Plasmid pMR95 was capable of transforming both Saccharomyces cerevisiae and D. hansenii to hygromycin resistance at low frequencies; pMR96 transformed both yeasts at low frequencies when selected for hygromycin B resistance and at very high efficiencies when selected for uracil prototrophy. The presence of the plasmids in the transformed yeast was confirmed by polymerase chain reaction. The plasmids could be recovered back in Escherichia coli when transformed with total DNA from the yeast transformants, indicating at least a partial autonomous existence of the plasmids in the marine yeast. To our knowledge this is the first successful attempt to transform D. hansenii. Received April 16, 1998; accepted June 30, 1998.  相似文献   

8.
Plasmid YEp(ADE1)1a, containing a 2.7-kb Sau3A fragment of Saccharomyces cerevisiae DNA inserted at the BamHI site of the yeast shuttle vector pBTI-1 (Morris et al., 1981), results in high frequency, unstable transformation of ade1 yeast strains. A second plasmid, YRp(ADE1)2, containing adjacent 0.5-kb and 3.0-kb BamHI fragments in pBR322 gave three types of yeast transformants: (1) transformants carrying extrachromosomal copies of the plasmid which indicate the presence of a functional ars sequence, (2) transformants indistinguishable from ade1 strains by hybridization analyis, and (3) a transformant carrying a multimeric form of YRp(ADE1)2. Cells transformed with either of the plasmids are free of the red pigment characteristic of ade1 mutants and indicate potential for direct colour-based selection of yeast transformants using ADE1 plasmids.  相似文献   

9.
A simple and reproducible method for transferring low copy-number episomal plasmids from yeast toEscherichia coli has been developed. Although slightly more time-consuming than direct transfer methods, which are effective with high copy number plasmids, the method is significantly faster than methods that require purification of yeast DNA. Plasmid DNA is released from yeast cells during brief treatments involving grinding with glass beads and heating. The treated yeast are cooled, electrocompetentE. coli is added, the mixture is electroporated, and transformants are selected using standard conditions forE. coli electrotransformation. The procedure typically yields sufficient transformants for most applications.  相似文献   

10.
Spheroplasts of Hansenula polymorpha strain deficient in 2-isopropylmalate dehydrogenase have been shown to be transformed by the DNA of a hybrid plasmid pHRI, carrying the LEU2 gene from S. cerevisiae and 2.0 kilobase HindIII fragment of H. polymorpha genomic DNA. The frequency of transformants has reached 10(3) per 1 microgram of transforming DNA. Plasmid pHRI is maintained in transformants as an autonomous circular DNA molecule and is inherited by 1-2% fraction of cells from the population growing under the selective conditions. Transformation takes place under the same conditions that are required for spheroplast fusion. Thus, H. polymorpha becomes one more species of yeast susceptible to hybrid plasmid-mediated gene transfer in the process of DNA transformation.  相似文献   

11.
Summary Three different Schizosaccharomyces pombe strains have been transformed with a circular or linearized non-ars plasmid carrying the ura4 + gene as a selectable marker. The first strain shows full homology between the genomic ura4-294 gene (point mutation) and the marker gene on the plasmid. The second strain carries a 600 bp deletion (ura4-D6) that decreases homology between plasmid and chromosome. No homology remains in the third strain which has a complete deletion of the ura4 gene on the chromosome (ura4-D18). When sequence homology exists between transforming DNA and the chromosomal ura4 region, gene conversion is strongly preferred over integration of the circular plasmid. Reduction of the length of homology leads to a decrease of transformation frequencies, and homology dependent as well as a minority of homology independent integrations are observed. In the complete absence of homology two rate types of transformants are encountered: either the circular plasmid replicates autonomously, although it is devoid of an ars sequence, or alternatively the plasmid integrates into the genome at various positions. Transformation with plasmid cut within the coding region of ura4 can lead to tandemly arranged multiple integrations, when no homology exists between the free ends and the chromosome. The integrations occur at the ura4 locus, when homology is retained between plasmid and chromosome, and at various sites in the genome of the strain with a complete deletion of the ura4 gene. The results suggest that homology dependent events (conversion, integration) are strongly preferred in transformation of S. pombe with non-ars plasmids. In addition low frequency integration by illegitimate recombination is observed. Linearized plasmid can be ligated in vivo to form monomers or multimers in the absence of homology between the free plasmid ends and the chromosomal genome.  相似文献   

12.
Lithium treated cells of the yeastPachysolen tannophilus have been transformed with a plasmid carrying the gene encoding for the hexokinase PII enzyme fromSaccharomyces cerevisiae. The gene was expressed and the presence of the enzyme within the cell was demonstrated by DEAE-cellulose chromatography of cell-free extracts. Plasmid DNA from the transformants was used to transformE. coli HB101. Plasmid DNA from the bacterial transformants had the same mobility on an agarose gel as the original plasmid.  相似文献   

13.
Polyethylene glycol (PEG)-induced protoplast transformation by plasmid pTP4 DNA encoded chloramphenicol resistance determinant was developed for Bacillus subtilis, B. amyloliquefaciens, B. licheniformis, B. megaterium and B. pumilus. Protoplasts were formed by treatment of cells with lysozyme and the transformation frequencies (transformants per regenerants) were in the range of 1.3 × 10?2 to 7.1 × 10?1. Reisolated plasmid DNA prepared from transformants exhibited covalently closed and open circular forms similar to those of the donor DNA. These results indicate that PEG-induced protoplast transformation is an adequate method for plasmid transformation and pTP4 is a useful plasmid as a cloning vector in a wide range of varieties of the genus Bacillus.  相似文献   

14.
Summary Stable transformants were obtained after microprojectile particle bombardment of tomato cell suspensions (Lycopersicon esculentum cv VFNT Cherry and L. pennellii). The suspensions were bombarded with tungsten particles coated with either plasmid (6.3 kb) or yeast artificial chromosome (YAC) (80 kb) DNA containing the ß-glucuronidase (GUS) and neomycin phosphotransferase II (nptII) genes. The YAC DNA contained an insert of approximately 50 kb of DNA from VFNT Cherry. L. pennellii suspensions were more amenable to transformation than VFNT Cherry; more kanamycin-resistant calli were recovered from L. pennelli after bombardment with plasmid DNA, and only L. pennellii cells produced transformants after bombardment with YAC DNA. DNA gel blot analysis confirmed the presence of the nptll and GUS genes. This analysis also confirmed the integration of YAC DNA into the genome of the kanamycin-resistant calli and suggested that the level of intactness of the integrated YAC DNA was fairly high in four of the five transformants examined. Microprojectile bombardment of regenerable cultures with YACs may ultimately aid in map-based cloning of agriculturally-important genes.Abbreviations YAC yeast artificial chromosome - MS Murashige and Skoog - 2,4-D 2,4-dichlorophenoxy-acetic acid - IAA indole-3-acetic acid - GUS ß-glucuronidase - nptII neomycin phosphotransferase II  相似文献   

15.
A set of YEp Saccharomyces cerevisiae-based, integrative Hansenula polymorpha plasmids was constructed to express lacZ gene under yeast gene promoters. The HpLEU2 and HpURA3 genes were used both as markers and to target the integration of plasmids into the corresponding H. polymorpha genome locus. The frequency of transformation reached with these plasmids linearised either in HpLEU2 or HpURA3 was around 100 transformants per microgram of plasmid DNA; in all transformants checked by Southern blotting the plasmid was integrated into the genome locus corresponding to the gene plasmid marker. PCR showed that about 50% of the transformants contained more than one plasmid copy per genome. Experiments carried out using the developed plasmids to determine the strength of the gene promoters involved in nitrate assimilation in H. polymorpha revealed that, in the presence of nitrate, the nitrate reductase gene promoter (YNR1) was the strongest, followed by nitrite reductase (YNI1) and nitrate transporter (YNT1). Received: 5 February 1999 / Received revision: 31 May 1999 / Accepted: 4 June 1999  相似文献   

16.
An efficient transformation system for the astaxanthin-producing yeast Phaffia rhodozyma was developed based on electroporation that routinely yields approximately 1000 transformants per g of plasmid DNA. The high transformation efficiency depends on vector integration in the ribosomal DNA (rDNA) and the presence of the homologous glycolytic glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter and terminator to drive the expression of the transposon Tn5 encoded kanamycin resistance gene (KmR) as a selective marker. Using this system stable transformants were obtained, carrying multiple plasmid copies. Plasmid copy number could be markedly increased by deletion of the gpd terminator from the transforming plasmid.  相似文献   

17.
The separation of DNA replication origin licensing and activation in the cell cycle is essential for genome stability across generations in eukaryotic cells. Pre‐replicative complexes (pre‐RCs) license origins by loading Mcm2‐7 complexes in inactive form around DNA. During origin firing in S phase, replisomes assemble around the activated Mcm2‐7 DNA helicase. Budding yeast pre‐RCs have previously been reconstituted in vitro with purified proteins. Here, we show that reconstituted pre‐RCs support replication of plasmid DNA in yeast cell extracts in a reaction that exhibits hallmarks of cellular replication initiation. Plasmid replication in vitro results in the generation of covalently closed circular daughter molecules, indicating that the system recapitulates the initiation, elongation, and termination stages of DNA replication. Unexpectedly, yeast origin DNA is not strictly required for DNA replication in vitro, as heterologous DNA sequences could support replication of plasmid molecules. Our findings support the notion that epigenetic mechanisms are important for determining replication origin sites in budding yeast, highlighting mechanistic principles of replication origin specification that are common among eukaryotes.  相似文献   

18.
A library of random yeast genomic DNA:lacZ fusions has been constructed using an episomal yeast-Escherichia coli shuttle vector (pCS1). Plasmid pCS1 requires insertion of a promoter and an in frame ATG codon upstream of its resident truncated lacZ gene to regulate expression in yeast. Yeast genomic DNA fragments of 4-6 kb were generated by partial digestion with Sau3A and ligated into the unique BamHI site of plasmid pCS1 to generate a library of 5 x 10(4) individual E. coli transformants. This library was screened to identify promoter-lacZ fusions that were expressed uniquely during sporulation. Of 342 yeast transformants that exhibited beta-galactosidase activity, two were found to express the lacZ gene in a sporulation-specific manner. This paper presents the characterization of two genomic yeast DNA fragments containing promoters that control lacZ expression during the sporulation process. Expression from the promoter present in plasmid pJC18 occurred from 11-21 hours into the sporulation process, while the promoter in plasmid pJC217 was active from 4-14 hours. Staining of nuclear DNA to correlate nuclear morphology with timing of gene expression showed when each of these promoters was active in terms of the morphological stages of sporulation.  相似文献   

19.
TheSRM12/ADA1 gene sequence inserted into a recombinant circular plasmid improves its maintenance in budding yeast (Saccharomyces cerevisiae) cells. Plasmid stabilization caused by the integrated SRM12 sequence does not require the SRM12 function complementing the srm12 mutation and depends on the orientation of the inserted sequence in the vector. This stabilization is mainly due to a decrease in spontaneous plasmid underreplication/copy loss rather than an increase in the fidelity of mitotic plasmid segregation.  相似文献   

20.
Plasmid DNA was introduced into noncompetent cells ofStreptococcus sanguis Challis by an electrotransformation technique. The procedure was simple and rapid, did not require elaborate pretreatment of cells, and yielded transformant colonies in 24 h. The maximum transformation efficiency attained was 2.1×104 transformants per g of pVA736. Molecular rearrangements and deletions were not detected in plasmid DNA isolated from transformants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号