首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang S  Zhang H  Mao H  Yan D  Lu S  Lian L  Zhao G  Yan Y  Deng W  Shi X  Han S  Li S  Wang X  Gou X 《PloS one》2011,6(12):e28215

Background

The domestic pig currently indigenous to the Tibetan highlands is supposed to have been introduced during a continuous period of colonization by the ancestors of modern Tibetans. However, there is no direct genetic evidence of either the local origin or exotic migration of the Tibetan pig.

Methods and Findings

We analyzed mtDNA hypervariable segment I (HVI) variation of 218 individuals from seven Tibetan pig populations and 1,737 reported mtDNA sequences from domestic pigs and wild boars across Asia. The Bayesian consensus tree revealed a main haplogroup M and twelve minor haplogroups, which suggested a large number of small scale in situ domestication episodes. In particular, haplogroups D1 and D6 represented two highly divergent lineages in the Tibetan highlands and Island Southeastern Asia, respectively. Network analysis of haplogroup M further revealed one main subhaplogroup M1 and two minor subhaplogroups M2 and M3. Intriguingly, M2 was mainly distributed in Southeastern Asia, suggesting for a local origin. Similar with haplogroup D6, M3 was mainly restricted in Island Southeastern Asia. This pattern suggested that Island Southeastern Asia, but not Southeastern Asia, might be the center of domestication of the so-called Pacific clade (M3 and D6 here) described in previous studies. Diversity gradient analysis of major subhaplogroup M1 suggested three local origins in Southeastern Asia, the middle and downstream regions of the Yangtze River, and the Tibetan highlands, respectively.

Conclusions

We identified two new origin centers for domestic pigs in the Tibetan highlands and in the Island Southeastern Asian region.  相似文献   

2.

Aim

Brown bear populations in Scandinavia show a strong mitochondrial DNA (mtDNA) phylogeographic structure and low diversity relative to other parts of Europe. Identifying the timing and origins of this mtDNA structure is important for conservation programs aimed at restoring populations to a natural state. Therefore, it is essential to identify whether contemporary genetic structure is linked to post‐glacial recolonisation from divergent source populations or an artefact of demographic impacts during recent population bottlenecks. We employed ancient DNA techniques to investigate the timing and potential causes of these patterns.

Location

Scandinavia and Europe.

Methods

Ancient mtDNA sequences from 20 post‐glacial Scandinavian bears were used to investigate phylogeographic structure and genetic diversity over the last 6000 years. MtDNA from 19 Holocene Norwegian bears was compared with 499 sequences from proximate extant populations in Sweden, Finland, Estonia and western Russia. A single mtDNA sequence from a Holocene Denmark sample was compared with 149 ancient and modern bears from Western Europe.

Results

All nineteen Holocene Norwegian samples are identical to or closely related to the most common mtDNA haplotype found in northern Europe today. MtDNA diversity was low and not significantly different from extant populations in northern Europe. In Denmark, we identified a single mtDNA haplotype that is previously unrecorded from Scandinavia.

Main conclusions

The current discrete phylogeographic structure and lack of mtDNA diversity in Scandinavia is attributed to serial founder effects during post‐glacial recolonisation from divergent source populations rather than an artefact of recent anthropogenic impacts. In contrast to previous interpretations, the recolonisation of southern Scandinavia may not have been limited to bears from a single glacial refugium. Results highlight the importance of conserving the long‐term evolutionary separation between northern and southern populations and identify southern Scandinavia as an important reservoir of mtDNA diversity that is under threat in other parts of Europe.
  相似文献   

3.

Background

When domestic taurine cattle diffused from the Fertile Crescent, local wild aurochsen (Bos primigenius) were still numerous. Moreover, aurochsen and introduced cattle often coexisted for millennia, thus providing potential conditions not only for spontaneous interbreeding, but also for pastoralists to create secondary domestication centers involving local aurochs populations. Recent mitochondrial genomes analyses revealed that not all modern taurine mtDNAs belong to the shallow macro-haplogroup T of Near Eastern origin, as demonstrated by the detection of three branches (P, Q and R) radiating prior to the T node in the bovine phylogeny. These uncommon haplogroups represent excellent tools to evaluate if sporadic interbreeding or even additional events of cattle domestication occurred.

Methodology

The survey of the mitochondrial DNA (mtDNA) control-region variation of 1,747 bovine samples (1,128 new and 619 from previous studies) belonging to 37 European breeds allowed the identification of 16 novel non-T mtDNAs, which after complete genome sequencing were confirmed as members of haplogroups Q and R. These mtDNAs were then integrated in a phylogenetic tree encompassing all available P, Q and R complete mtDNA sequences.

Conclusions

Phylogenetic analyses of 28 mitochondrial genomes belonging to haplogroups P (N = 2), Q (N = 16) and R (N = 10) together with an extensive survey of all previously published mtDNA datasets revealed major similarities between haplogroups Q and T. Therefore, Q most likely represents an additional minor lineage domesticated in the Near East together with the founders of the T subhaplogroups. Whereas, haplogroup R is found, at least for the moment, only in Italy and nowhere else, either in modern or ancient samples, thus supporting an origin from European aurochsen. Haplogroup R could have been acquired through sporadic interbreeding of wild and domestic animals, but our data do not rule out the possibility of a local and secondary event of B. primigenius domestication in Italy.  相似文献   

4.
To obtain more knowledge of the origin and genetic diversity of domestic horses in China, this study provides a comprehensive analysis of mitochondrial DNA (mtDNA) D-loop sequence diversity from nine horse breeds in China in conjunction with ancient DNA data and evidence from archaeological and historical records. A 247-bp mitochondrial D-loop sequence from 182 modern samples revealed a total of 70 haplotypes with a high level of genetic diversity. Seven major mtDNA haplogroups (A–G) and 16 clusters were identified for the 182 Chinese modern horses. In the present study, nine 247-bp mitochondrial D-loop sequences of ancient remains of Bronze Age horse from the Chifeng region of Inner Mongolia in China ( c. 4000–2000a bp ) were used to explore the origin and diversity of Chinese modern horses and the phylogenetic relationship between ancient and modern horses. The nine ancient horses carried seven haplotypes with rich genetic diversity, which were clustered together with modern individuals among haplogroups A, E and F. Modern domestic horse and ancient horse data support the multiple origins of domestic horses in China. This study supports the argument that multiple successful events of horse domestication, including separate introductions of wild mares into the domestic herds, may have occurred in antiquity, and that China cannot be excluded from these events. Indeed, the association of Far Eastern mtDNA types to haplogroup F was highly significant using Fisher's exact test of independence ( P  = 0.00002), lending support for Chinese domestication of this haplogroup. High diversity and all seven mtDNA haplogroups (A–G) with 16 clusters also suggest that further work is necessary to shed more light on horse domestication in China.  相似文献   

5.

Background

It is customary, in population genetics studies, to consider Basques as the direct descendants of the Paleolithic Europeans. However, until now there has been no irrefutable genetic proof to support this supposition. Even studies based on mitochondrial DNA (mtDNA), an ideal molecule for constructing datable maternal genealogies, have failed to achieve this. It could be that incoming gene flow has replaced the Basque ancient lineages but it could also be that these lineages have not been detected due to a lack of resolution of the Basque mtDNA genealogies. To assess this possibility we analyzed here the mtDNA of a large sample of autochthonous Basques using mtDNA genomic sequencing for those lineages that could not be unequivocally classified by diagnostic RFLP analysis and control region (HVSI and HVSII) sequencing.

Results

We show that Basques have the most ancestral phylogeny in Europe for the rare mitochondrial subhaplogroup U8a. Divergence times situate the Basque origin of this lineage in the Upper Palaeolithic. Most probably, their primitive founders came from West Asia. The lack of U8a lineages in Africa points to an European and not a North African route of entrance. Phylogeographic analysis suggest that U8a had two expansion periods in Europe, the first, from a south-western area including the Iberian peninsula and Mediterranean France before 30,000 years ago, and the second, from Central Europe around 15,000–10,000 years ago.

Conclusion

It has been demonstrated, for the first time, that Basques show the oldest lineages in Europe for subhaplogroup U8a. Coalescence times for these lineages suggest their presence in the Basque country since the Upper Paleolithic. The European U8 phylogeography is congruent with the supposition that Basques could have participated in demographic re-expansions to repopulate central Europe in the last interglacial periods.  相似文献   

6.

Background

Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India) and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia.

Results

Four new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades.

Conclusions

Since the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent.  相似文献   

7.

Background

Previous genetic studies of modern and ancient mitochondrial DNA have confirmed the Near Eastern origin of early European domestic cattle. However, these studies were not able to test whether hybridisation with male aurochs occurred post-domestication. To address this issue, Götherström and colleagues (2005) investigated the frequencies of two Y-chromosomal haplotypes in extant bulls. They found a significant influence of wild aurochs males on domestic populations thus challenging the common view on early domestication and Neolithic stock-rearing. To test their hypothesis, we applied these Y-markers on Neolithic bone specimens from various European archaeological sites.

Methods and Findings

Here, we have analysed the ancient DNA of 59 Neolithic skeletal samples. After initial molecular sexing, two segregating Y-SNPs were identified in 13 bulls. Strikingly, our results do not support the hypothesis that these markers distinguish European aurochs from domesticated cattle.

Conclusions

The model of a rapid introduction of domestic cattle into Central Europe without significant crossbreeding with local wild cattle remains unchallenged.  相似文献   

8.

Background

The Tarim Basin, located on the ancient Silk Road, played a very important role in the history of human migration and cultural communications between the West and the East. However, both the exact period at which the relevant events occurred and the origins of the people in the area remain very obscure. In this paper, we present data from the analyses of both Y chromosomal and mitochondrial DNA (mtDNA) derived from human remains excavated from the Xiaohe cemetery, the oldest archeological site with human remains discovered in the Tarim Basin thus far.

Results

Mitochondrial DNA analysis showed that the Xiaohe people carried both the East Eurasian haplogroup (C) and the West Eurasian haplogroups (H and K), whereas Y chromosomal DNA analysis revealed only the West Eurasian haplogroup R1a1a in the male individuals.

Conclusion

Our results demonstrated that the Xiaohe people were an admixture from populations originating from both the West and the East, implying that the Tarim Basin had been occupied by an admixed population since the early Bronze Age. To our knowledge, this is the earliest genetic evidence of an admixed population settled in the Tarim Basin.  相似文献   

9.
Domesticated cattle were one of the cornerstones of European Neolithisation and are thought to have been introduced to Europe from areas of aurochs domestication in the Near East. This is consistent with mitochondrial DNA (mtDNA) data, where a clear separation exists between modern European cattle and ancient specimens of British aurochsen. However, we show that Y chromosome haplotypes of north European cattle breeds are more similar to haplotypes from ancient specimens of European aurochsen, than to contemporary cattle breeds from southern Europe and the Near East. There is a sharp north-south gradient across Europe among modern cattle breeds in the frequencies of two distinct Y chromosome haplotypes; the northern haplotype is found in 20 out of 21 European aurochsen or early domestic cattle dated 9500-1000 BC. This indicates that local hybridization with male aurochsen has left a paternal imprint on the genetic composition of modern central and north European breeds. Surreptitious mating between aurochs bulls and domestic cows may have been hard to avoid, or may have occurred intentionally to improve the breeding stock. Rather than originating from a few geographical areas only, as indicated by mtDNA, our data suggest that the origin of domestic cattle may be far more complex than previously thought.  相似文献   

10.

Background

The modern human colonization of Eurasia and Australia is mostly explained by a single-out-of-Africa exit following a southern coastal route throughout Arabia and India. However, dispersal across the Levant would better explain the introgression with Neanderthals, and more than one exit would fit better with the different ancient genomic components discovered in indigenous Australians and in ancient Europeans. The existence of an additional Northern route used by modern humans to reach Australia was previously deduced from the phylogeography of mtDNA macrohaplogroup N. Here, we present new mtDNA data and new multidisciplinary information that add more support to this northern route.

Methods

MtDNA hypervariable segments and haplogroup diagnostic coding positions were analyzed in 2,278 Saudi Arabs, from which 1,725 are new samples. Besides, we used 623 published mtDNA genomes belonging to macrohaplogroup N, but not R, to build updated phylogenetic trees to calculate their coalescence ages, and more than 70,000 partial mtDNA sequences were screened to establish their respective geographic ranges.

Results

The Saudi mtDNA profile confirms the absence of autochthonous mtDNA lineages in Arabia with coalescence ages deep enough to support population continuity in the region since the out-of-Africa episode. In contrast to Australia, where N(xR) haplogroups are found in high frequency and with deep coalescence ages, there are not autochthonous N(xR) lineages in India nor N(xR) branches with coalescence ages as deep as those found in Australia. These patterns are at odds with the supposition that Australian colonizers harboring N(xR) lineages used a route involving India as a stage. The most ancient N(xR) lineages in Eurasia are found in China, and inconsistently with the coastal route, N(xR) haplogroups with the southernmost geographical range have all more recent radiations than the Australians.

Conclusions

Apart from a single migration event via a southern route, phylogeny and phylogeography of N(xR) lineages support that people carrying mtDNA N lineages could have reach Australia following a northern route through Asia. Data from other disciplines also support this scenario.  相似文献   

11.

Background

We used a PCR-based approach to study the prevalence of genetic sequences related to a gammaretrovirus, xenotropic murine leukemia virus-related virus, XMRV, in human prostate cancer. This virus has been identified in the US in prostate cancer patients and in those with chronic fatigue syndrome. However, with the exception of two patients in Germany, XMRV has not been identified in prostate cancer tissue in Europe. Most putative associations of new or old human retroviruses with diseases have turned out to be due to contamination. We have looked for XMRV sequences in DNA extracted from formalin-fixed paraffin- embedded prostate tissues. To control for contamination, PCR assays to detect either mouse mitochondrial DNA (mtDNA) or intracisternal A particle (IAP) long terminal repeat DNA were run on all samples, owing to their very high copy number in mouse cells.

Results

In general agreement with the US prevalence, XMRV-like sequences were found in 4.8% of prostate cancers. However, these were also positive, as were 21.5% of XMRV-negative cases, for IAP sequences, and many, but not all were positive for mtDNA sequences.

Conclusions

These results show that contamination with mouse DNA is widespread and detectable by the highly sensitive IAP assay, but not always with less sensitive assays, such as murine mtDNA PCR. This study highlights the ubiquitous presence of mouse DNA in laboratory specimens and offers a means of rigorous validation for future studies of murine retroviruses in human disease.  相似文献   

12.

Background

The Koreans are generally considered a northeast Asian group because of their geographical location. However, recent findings from Y chromosome studies showed that the Korean population contains lineages from both southern and northern parts of East Asia. To understand the genetic history and relationships of Korea more fully, additional data and analyses are necessary.

Methodology and Results

We analyzed mitochondrial DNA (mtDNA) sequence variation in the hypervariable segments I and II (HVS-I and HVS-II) and haplogroup-specific mutations in coding regions in 445 individuals from seven east Asian populations (Korean, Korean-Chinese, Mongolian, Manchurian, Han (Beijing), Vietnamese and Thais). In addition, published mtDNA haplogroup data (N = 3307), mtDNA HVS-I sequences (N = 2313), Y chromosome haplogroup data (N = 1697) and Y chromosome STR data (N = 2713) were analyzed to elucidate the genetic structure of East Asian populations. All the mtDNA profiles studied here were classified into subsets of haplogroups common in East Asia, with just two exceptions. In general, the Korean mtDNA profiles revealed similarities to other northeastern Asian populations through analysis of individual haplogroup distributions, genetic distances between populations or an analysis of molecular variance, although a minor southern contribution was also suggested. Reanalysis of Y-chromosomal data confirmed both the overall similarity to other northeastern populations, and also a larger paternal contribution from southeastern populations.

Conclusion

The present work provides evidence that peopling of Korea can be seen as a complex process, interpreted as an early northern Asian settlement with at least one subsequent male-biased southern-to-northern migration, possibly associated with the spread of rice agriculture.  相似文献   

13.
The mitochondrial genetic variability in European rabbit (Oryctolagus cuniculus) populations present in Europe and North Africa from 11,000 years ago to the present day has been analyzed using ancient DNA techniques. DNA was extracted from 90 rabbit bones found in 22 archaeological sites dated between the Mesolithic and recent times. Nucleotide sequences present in a variable 233-bp domain of the cytochrome b gene were compared to those present in modern-day rabbits. The results show that the structure of ancient populations of wild rabbit exhibited remarkable stability over time until the Middle Ages. At this time, a novel type of mtDNA molecule abruptly appears into most wild populations studied from France. This mtDNA type corresponds to that currently present in the domestic breeds of rabbit examined so far. The relative rapidity by which this mtDNA type established and its absence in all sites examined before 1,700 years ago lend support to the hypothesis that between 2,000 and 1,000 years ago, man may have favored the development, into all regions of France, of animals carrying this particular mtDNA molecule. The origin of such animals has still to be found: animals previously living outside of France or within France but in very restricted areas? This event was concomitant with the documented establishment of warrens after the tenth century a.d. in Europe.  相似文献   

14.

Background

Mitochondrial DNA (mtDNA) hypervariable region (HVR) sequences of prehistoric Polynesian chicken samples reflect dispersal of two haplogroups—D and E—by the settlers of the Pacific. The distribution of these chicken haplogroups has been used as an indicator of human movement. Recent analyses suggested similarities between prehistoric Pacific and South American chicken samples, perhaps reflecting prehistoric Polynesian introduction of the chicken into South America. These analyses have been heavily debated. The current distribution of the D and E lineages among contemporary chicken populations in the Western Pacific is unclear, but might ultimately help to inform debates about the movements of humans that carried them.

Objectives

We sought to characterize contemporary mtDNA diversity among chickens in two of the earliest settled archipelagoes of Remote Oceania, the Marianas and Vanuatu.

Methods

We generated HVR sequences for 43 chickens from four islands in Vanuatu, and for 5 chickens from Guam in the Marianas.

Results

Forty samples from Vanuatu and three from Guam were assigned to haplogroup D, supporting this as a Pacific chicken haplogroup that persists in the Western Pacific. Two haplogroup E lineages were observed in Guam and two in Vanuatu. Of the E lineages in Vanuatu, one was identical to prehistoric Vanuatu and Polynesian samples and the other differed by one polymorphism. Contrary to our expectations, we observed few globally distributed domesticate lineages not associated with Pacific chicken dispersal. This might suggest less European introgression of chickens into Vanuatu than expected. If so, the E lineages might represent lineages maintained from ancient Pacific chicken introductions. The Vanuatu sample might thus provide an opportunity to distinguish between maintained ancestral Pacific chicken lineages and replacement by global domesticates through genomic analyses, which could resolve questions of contemporary haplogroup E chicken relationships and inform interpretations of debated sequences from archaeological samples.  相似文献   

15.
Mitochondrial DNA has been the traditional marker for the study of animal domestication, as its high mutation rate allows for the accumulation of molecular diversity within the time frame of domestic history. Additionally, it is exclusively maternally inherited and haplotypes become part of the domestic gene pool via actual capture of a female animal rather than by interbreeding with wild populations. Initial studies of British aurochs identified a haplogroup, designated P, which was found to be highly divergent from all known domestic haplotypes over the most variable portion of the D-loop. Additional analysis of a large and geographically representative sample of aurochs from northern and central Europe found an additional, separate aurochs haplotype, E. Until recently, the European aurochs appeared to have no matrilinear descendants among the publicly available modern cattle control regions sequenced; if aurochs mtDNA was incorporated into the domestic population, aurochs either formed a very small proportion of modern diversity or had been subsequently lost. However, a haplogroup P sequence has recently been found in a modern sample, along with a new divergent haplogroup called Q. Here we confirm the outlying status of the novel Q and E haplogroups and the modern P haplogroup sequence as a descendent of European aurochs, by retrieval and analysis of cytochrome b sequence data from twenty ancient wild and domesticated cattle archaeological samples.  相似文献   

16.

Background

Originally believed to be a rare phenomenon, heteroplasmy - the presence of more than one mitochondrial DNA (mtDNA) variant within a cell, tissue, or individual - is emerging as an important component of eukaryotic genetic diversity. Heteroplasmies can be used as genetic markers in applications ranging from forensics to cancer diagnostics. Yet the frequency of heteroplasmic alleles may vary from generation to generation due to the bottleneck occurring during oogenesis. Therefore, to understand the alterations in allele frequencies at heteroplasmic sites, it is of critical importance to investigate the dynamics of maternal mtDNA transmission.

Results

Here we sequenced, at high coverage, mtDNA from blood and buccal tissues of nine individuals from three families with a total of six maternal transmission events. Using simulations and re-sequencing of clonal DNA, we devised a set of criteria for detecting polymorphic sites in heterogeneous genetic samples that is resistant to the noise originating from massively parallel sequencing technologies. Application of these criteria to nine human mtDNA samples revealed four heteroplasmic sites.

Conclusions

Our results suggest that the incidence of heteroplasmy may be lower than estimated in some other recent re-sequencing studies, and that mtDNA allelic frequencies differ significantly both between tissues of the same individual and between a mother and her offspring. We designed our study in such a way that the complete analysis described here can be repeated by anyone either at our site or directly on the Amazon Cloud. Our computational pipeline can be easily modified to accommodate other applications, such as viral re-sequencing.  相似文献   

17.

Background

Genetic studies support the scenario that Bos taurus domestication occurred in the Near East during the Neolithic transition about 10 thousand years (ky) ago, with the likely exception of a minor secondary event in Italy. However, despite the proven effectiveness of whole mitochondrial genome data in providing valuable information concerning the origin of taurine cattle, until now no population surveys have been carried out at the level of mitogenomes in local breeds from the Near East or surrounding areas. Egypt is in close geographic and cultural proximity to the Near East, in particular the Nile Delta region, and was one of the first neighboring areas to adopt the Neolithic package. Thus, a survey of mitogenome variation of autochthonous taurine breeds from the Nile Delta region might provide new insights on the early spread of cattle rearing outside the Near East.

Methodology

Using Illumina high-throughput sequencing we characterized the mitogenomes from two cattle breeds, Menofi (N = 17) and Domiaty (N = 14), from the Nile Delta region. Phylogenetic and Bayesian analyses were subsequently performed.

Conclusions

Phylogenetic analyses of the 31 mitogenomes confirmed the prevalence of haplogroup T1, similar to most African cattle breeds, but showed also high frequencies for haplogroups T2, T3 and Q1, and an extremely high haplotype diversity, while Bayesian skyline plots pointed to a main episode of population growth ~12.5 ky ago. Comparisons of Nile Delta mitogenomes with those from other geographic areas revealed that (i) most Egyptian mtDNAs are probably direct local derivatives from the founder domestic herds which first arrived from the Near East and the extent of gene flow from and towards the Nile Delta region was limited after the initial founding event(s); (ii) haplogroup Q1 was among these founders, thus proving that it underwent domestication in the Near East together with the founders of the T clades.  相似文献   

18.

Background

Epidemiological case-control studies have revealed associations between mitochondrial haplogroups and the onset and/or progression of various multifactorial diseases. For instance, mitochondrial haplogroup T was previously shown to be associated with vascular diseases, including coronary artery disease and diabetic retinopathy. In contrast, haplogroup H, the most frequent haplogroup in Europe, is often found to be more prevalent in healthy control subjects than in patient study groups. However, justifications for the assumption that haplogroups are functionally distinct are rare. Therefore, we attempted to compare differences in mitochondrial function between haplogroup H and T cybrids.

Methodology/Principal Findings

Mitochondrial haplogroup H and T cybrids were generated by fusion of HEK293 cells devoid of mitochondrial DNA with isolated thrombocytes of individuals with the respective haplogroups. These cybrid cells were analyzed for oxidative phosphorylation (OXPHOS) enzyme activities, mitochondrial DNA (mtDNA) copy number, growth rate and susceptibility to reactive oxygen species (ROS). We observed that haplogroup T cybrids have higher survival rate when challenged with hydrogen peroxide, indicating a higher capability to cope with oxidative stress.

Conclusions/Significance

The results of this study show that functional differences exist between HEK293 cybrid cells which differ in mitochondrial genomic background.  相似文献   

19.
The mtDNA of most Native Americans has been shown to cluster into four lineages, or haplogroups. This study provides data on the haplogroup affiliation of nearly 500 Native North Americans including members of many tribal groups not previously studied. Phenetic cluster analysis shows a fundamental difference among 1) Eskimos and northern Na-Dene groups, which are almost exclusively mtDNA haplogroup A, 2) tribes of the Southwest and adjacent regions, predominantly Hokan and Uto-Aztecan speakers, which lack haplogroup A but exhibit high frequencies of haplogroup B, 3) tribes of the Southwest and Mexico lacking only haplogroup D, and 4) a geographically heterogeneous group of tribes which exhibit varying frequencies of all four haplogroups. There is some correspondence between language group affiliations and the frequencies of the mtDNA haplogroups in certain tribes, while geographic proximity appears responsible for the genetic similarity among other tribes. Other instances of similarity among tribes suggest hypotheses for testing with more detailed studies. This study also provides a context for understanding the relationships between ancient and modern populations of Native Americans. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Wang JX  Gao TG  Knapp S 《Annals of botany》2008,102(6):891-897

Background and Aims

Changes in key traits occurring during the processes of plant domestication have long been subjects of debate. Only in the case of genetic analysis or with extensive plant remains can specific sets of changes be documented. Historical details of the plant domestication processes are rare and other evidence of morphological change can be difficult to obtain, especially for those vegetables that lack a substantial body of archaeological data. Botanical records chronicled in the ancient literature of established ancient civilizations, such as that of China, are invaluable resources for the study and understanding of the process of plant domestication. Here, the considerable body of ancient Chinese literature is used to explore the domestication process that has occurred with the eggplant (Solanum melongena), an important vegetable in Old World.

Methods

Information about eggplant domestication in the ancient Chinese literature was retrieved using a variety of methods. The information obtained was then sorted by taxon, examined and taxonomic identifications verified.

Key Results

It was found that the earliest record of the eggplant documented in ancient Chinese literature was in a work from 59 bc. As far as is known, this is the earliest reliable and accurately dated record of eggplant in cultivation. The analysis reveals that the process of domestication of the eggplant in China involved three principal aspects of fruit quality: size, shape and taste. These traits were actively and gradually selected; fruit size changed from small to large, taste changed from not palatable to what was termed at the time sweetish, and that over time, a wider variety of fruit shapes was cultivated.

Conclusions

The results indicate that, in addition to data gleaned from archaeology and genetics, evidence as to changes in key traits occurring during the process of plant domestication and selective forces responsible for these changes can be traced through the ancient literature in some civilizations.Key words: Solanum melongena, ancient Chinese literature, domestication process, domestication traits, selective forces  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号