首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ISSR分子标记及其在植物遗传学研究中的应用   总被引:186,自引:2,他引:184  
王建波 《遗传》2002,24(5):613-616
ISSR分子标记是在SSR标记基础上发展起来的一种新技术,其基本原理是在SSR的5′或3′端加锚1~4个嘌呤或嘧啶碱基,然后以此为引物,对两侧具有反向排列SSR的一段基因组DNA序列进行扩增。重复序列和锚定碱基是随机选择的,扩增产物经聚丙烯酰胺或琼脂糖凝胶电泳分离后,每个引物可以产生比RAPD方法更多的扩增片段,因此,ISSR标记是一种快速、可靠、可以提供有关基因组丰富信息的DNA指纹技术。ISSR标记呈孟德尔式遗传,在多数物种中是显性的,目前已广泛用于植物品种鉴定、遗传作图、基因定位、遗传多样性、进化及分子生态学研究中。 ISSR Markers and Their Applications in Plant Genetics WANG Jian-bo Key Laboratory of MOE for Plant Developmental Biology,Wuhan University,Wuhan 430072,China Abstract:Recently,inter-simple sequence repeat (ISSR) markers have emerged as an alternative system with reliability and advantages of microsatellites (SSR).The technique involves amplification of genomic segments flanked by inversely oriented and closely spaced microsatellite sequences by a single primer or a pair of primers based on SSRs anchored 5′ or 3′ with 1-4 purine or pyramidine residues.The sequences of repeats and anchor nucleates are arbitrarily selected.Coupled with the separation of amplification products on a polyacrylamide or agarose gels,ISSR amplification can reveal a much larger number of fragments per primer than RAPD.It is concluded that ISSR technique provides a quick,reliable and highly informative system for DNA fingerprinting.ISSR markers are inherited in Mendelin mode and segregated as dominant markers.This technique has been widely used in the studies of cultivar identification,genetic mapping,gene tagging,genetic diversity,evolution and molecular ecology. Key words:molecular markers; ISSR; plant;applications  相似文献   

2.
Arthrocnemum macrostachyum, is a perennial halophytic shrub typical of Mediterranean salt marshes. The present study aims to investigate some combinations of inter simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) primers applied in real PCR. Thereby, the potential of R-ISSR markers to detect new genomic loci in 3 genotypes of A. macrostachyum grown in the Western coast of Syria was examined. Different combinations of RAPD and ISSR primers produced bands that were absent when single ISSR or RAPD primers were used. The results have demonstrated that ISSR primer (AG)8TC gave more informative pattern when combined with different RAPD primers comparing to other tested primers. In contrast, the tested ISSR primer (GACA)4 gave less informative pattern when used alone. These combinations were successfully applied in real PCR to detect new genomic variability in A. macrostachyum genotypes.  相似文献   

3.
Inter-simple sequence repeat (ISSR) analysis was evaluated for its usefulness in generating markers to extend the genetic linkage map of Citrus using a backcross population previously mapped with restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD) and isozyme markers. ISSR markers were obtained through the simple technique of PCR followed by analysis on agarose gels, using simple sequence repeat (SSR) primers. Optimization of reaction conditions was achieved for 50% of the SSR primers screened, and the primers amplified reproducible polymorphic bands in the parents and progeny of the backcross population. Mendelian segregation of the polymorphic bands was demonstrated, with an insignificant number of skewed loci. Most of the SSR primers produced dominant loci; however co-dominance was observed with loci derived from three primers. A new genetic map was produced by combining the segregation data for the ISSR markers and data for the RFLP, RAPD and isozyme markers from the previous map and creating genetic linkages among all the markers using JoinMap 2.0 mapping software. The new map has an improved distribution of markers along the linkage groups with fewer gaps, and marker order showed partial or complete conservation in the linkage groups. The incorporation of ISSR markers into the genetic linkage map demonstrates that ISSR markers are suitable for genetic mapping in Citrus. Received: 3 February 2000 / Accepted: 12 May 2000  相似文献   

4.
The results of the research confirming the possibility of applying various combinations of RAPD and ISSR primers in one multiplex PCR and the generation of a new type of R-ISSR products for the rye genome were presented in this work. The following was applied in the research: five rye genotypes including two inbred lines (153/79-1 and Ot1-3), hybrid F1 and two bulks (tolerant and susceptible) formed from recombinant inbred lines—RILs (F9) varying in the response to abiotic stress caused by nutrient deficiencies at the seedling stage. While evaluating the possibility of applying R-ISSR to the assessment of the rye variability, five of its genotypes were amplified separately with the RAPD and ISSR primers in each PCR reaction. These primers were combined in R-ISSR amplifications. The products of RAPD, ISSR and R-ISSR amplification were separated in 1.5% agarose gel. 32 R-ISSR combinations were examined, combining 20 and 8 selected RAPD and ISSR primers, respectively. 658 loci were amplified, including 230 RAPD, 180 ISSR and 271 R-ISSR, including 157 new loci. Over 91 loci were found, with an identical electrophoretic mobility for three methods. It was shown that R-ISSR products with electrophoretic mobility on agarose gels, identical to the co-migrating RAPD or ISSR, are not products of RAPD or ISSR, but they possess sequences of heteroamplicons—R-ISSR. The occurrence of sequences of primers used to R-ISSR was demonstrated while sequencing seven selected products of the above type. The ISSR primers with a low T m were proven to generate repeatable fingerprints in the thermal profile of the reaction specific for RAPD and combined with the RAPD primer—repeatable R-ISSR profiles. A similar range of variability as described in RAPD or ISSR was observed in the R-ISSR profiles. The correlation coefficient between genetic similarity matrices for five rye genotypes, calculated with the Mantel test, amounted to r AB.C = 0.870.  相似文献   

5.
An efficient micropropagation protocol produced large number of plants of the three elite banana (Musa spp.) cultivars Robusta (AAA), Giant Governor (AAA) and Martaman (AAB) from shoot tip meristem. The genetic relationships and fidelity among the cultivars and micropropagated plants as assessed by random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers, revealed three somaclonal variants from Robusta and three from Giant Governor. A total of 5330 RAPD and 2741 ISSR fragments were generated with 21 RAPD and 12 ISSR primers in micropropagated plants. The percentage of polymorphic loci by RAPD and ISSR were found to be 1.75, 5.08 in Robusta and 0.83, 5.0 in Giant Governor respectively. Among the two marker systems used, ISSR fingerprinting detected more polymorphism than RAPD in Robusta and Giant Governor with most of the primers showing similar fingerprinting profile, whereas Martaman revealed complete genetic stability.  相似文献   

6.
综合SCoT和ISSR分子标记技术开发了一种既能将标记位点与表达序列紧密联系,又具有相对较高的多态性的新的分子标记技术——起始密码子一微卫星扩增多态性(start codon-simple sequence repeat, SC-SSR)。SC—SSR标记是基于PCR的目的基因标记系统.上游引物用SCoT标记引物,瞄准基因区域,下游引物用ISSR标记引物,上下游引物间可自由组配。引物设计原则同SCoT标记和ISSR标记。使用50℃的退火温度,保证了扩增结果的稳定性。PCR结果采用琼脂糖凝胶电冰和聚丙烯酰胺凝胶电泳检测。SC—SSR分子标记结合了ISSR标记和SCoT标记的优点,具有操作简单、成本低廉、多态性丰富、重复性好、引物设计简单且通用性良好、同时与表达序列紧密连锁等诸多优点,可用于种质资源的鉴定评价、遗传图谱的构建、重要性状基因标记、gDNA与cDNA指纹分析乃至图位克隆等方面。  相似文献   

7.
An efficient in vitro propagation method using enhanced axillary branching cultures produced plants from nodal explants of three mature, elite tea clones: diploid UPASI 26 and UPASI 27 (2n=2x=30) representing Camellia sinensis (China type) and triploid UPASI 3 (2n=3x=45) representing C. assamica ssp. assamica (Assam-India type). The genetic fidelity of the micropropagated plants of these three tea clones was assessed by analysing their nuclear, mitochondrial (mt), and chloroplast (cp) genomes using multiple molecular DNA markers. A total of 465, 446 and 462 genetic loci were produced with RFLP, RAPD and ISSR fingerprinting in the micropropagated plants and the corresponding mother plant of C. sinensis clone U (UPASI) 26, and C. assamica ssp. assamica clones U3 and U27, respectively. RFLP fingerprinting was performed using six restriction endonuclease digests and 14 mt and cp gene probes in 84 enzyme-probe combinations. For PCR fingerprinting, 50 RAPD and SSR primers were used for amplifications. The micropropagated plants of both the U3 and U27 clones revealed complete stability in the 462 and 446 genetic loci analysed. In comparison, 36 (7.7%) of the 465 loci were polymorphic among micropropagated plants of the U26 clone. The observed polymorphic loci were not restricted to a particular genome (nuclear or organellar), although a relatively low (7.43%) level of polymorphism was observed in the nuclear as compared to the mt genome (16.3%). ISSR fingerprinting (12.8%) detected more polymorphic loci than RAPD fingerprinting (4.28%). No polymorphism was observed in the cp genome of the micropropagated plants of the three tea clones. The rigorous screening of nuclear and two organellar genomes has demonstrated, for the first time, subtle genetic variation at the DNA sequence level in organized meristem-derived micropropagated plants of tea. Clearly, this is another example demonstrating that organized meristem cultures are not always genetically true-to-type. The genomic changes in tea clones are genotype dependent rather than culture condition dependent.  相似文献   

8.
Xiong F  Jiang J  Han Z  Zhong R  He L  Zhuang W  Tang R 《Biochemical genetics》2011,49(5-6):352-363
A novel method is introduced for producing molecular markers in plants using single 15- to 18-mer PCR primers designed from the short conserved consensus branch point signal sequences and standard agarose gel electrophoresis. This method was tested on cultivated peanut and verified to give good fingerprinting results in other plant species (mango, banana, and longan). These single primers, designed from relatively conserved branch point signal sequences within gene introns, should be universal across other plant species. The method is rapid, simple, and efficient, and it requires no sequence information of the plant genome of interest. It could be used in conjunction with, or as a substitute for, conventional RAPD or ISSR techniques for applications including genetic diversity analysis, phylogenetic tree construction, and quantitative trait locus mapping. This technique provides a new way to develop molecular markers for assessing genetic diversity of germplasm in diverse species based on conserved branch point signal sequences.  相似文献   

9.
Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to investigate the genetic structure of four subpopulations of Mystus nemurus in Thailand. The 7 RAPD and 7 ISSR primers were selected. Of 83 total RAPD fragments, 80 (96.39%) were polymorphic loci, and of 81 total ISSR fragments, 75 (92.59%) were polymorphic loci. Genetic variation and genetic differentiation obtained from RAPD fragments or ISSR fragments showed similar results. Percentage of polymorphic loci (%P), observed number of alleles, effective number of alleles, Nei’s gene diversity (H) and Shannon’s information index revealed moderate to high level of genetic variations within each M. nemurus subpopulation and overall population. High levels of genetic differentiations were received from pairwise unbiased genetic distance (D) and coefficient of differentiation. Mantel test between D or gene flow and geographical distance showed a low to moderate correlation. Analysis of molecular variance indicated that variations among subpopulations were higher than those within subpopulations. The UPGMA dendrograms, based on RAPD and ISSR, showing the genetic relationship among subpopulations are grouped into three clusters; Songkhla (SK) subpopulation was separated from the other subpopulations. The candidate species-specific and subpopulation-specific RAPD fragments were sequenced and used to design sequence-characterized amplified region primers which distinguished M. nemurus from other species and divided SK subpopulation from the other subpopulations. The markers used in this study should be useful for breeding programs and future aquacultural development of this species in Thailand.  相似文献   

10.
To accelerate the breeding of Agaricus bisporus, quick and reliable methods to identify the infrequent homokaryons are necessary. A new marker, inter simple sequence repeat (ISSR) fingerprinting, is described for differentiation of homo- and hetero-karyotic protoclones. Nine slow growing protoclones, two strandy and seven appressed, were analyzed for the first time with ISSR amplifications. The patterns were highly polymorphic and very reproducible. Among 40 primers tested, 7 ISSR primers were selected for the analysis of genomic DNA and generated a total of 68 ISSR fragments. ISSR fingerprinting detected 44.12% polymorphic loci. All appressed homokaryons carried a subset of ISSR markers found in the heterokaryons, and clustered separately in dendrogram. These were not able to produce a fruiting body. A test of cross-fertility and the following fruiting trial proved that 7 of the 9 protoclones with different ISSR fingerprints were homokaryons. These results demonstrated that ISSR markers provide an efficient alternate for identification of homokaryons and suggest these markers be considered as new tools for the survey of Agaricus species.  相似文献   

11.
12.
Three polymerase chain reaction (PCR) techniques were compared to analyse the genetic diversity of Clinacanthus nutans eight populations in the northern region of Peninsular Malaysia. The PCR techniques were random amplified polymorphic deoxyribonucleic acids (RAPD), inter-simple sequence repeats (ISSR) and random amplified microsatellite polymorphisms (RAMP). Leaf genomic DNA was PCR amplified using 17 RAPD, 8 ISSR and 136 RAMP primers . However, only 10 RAPD primers, 5 ISSR primers and 37 RAMP primers produced reproducible bands. The results were evaluated for polymorphic information content (PIC), marker index (MI) and resolving power (RP). The RAMP marker was the most useful marker compared to RAPD and ISSR markers because it showed the highest average value of PIC (0.25), MI (11.36) and RP (2.86). The genetic diversity showed a high percentage of polymorphism at the species level compared to the population level. Furthermore, analysis of molecular variance revealed that the genetic diversity was higher within populations, as compared to among populations of C. nutans. From the results, the RAMP technique was recommended for the analysis of genetic diversity of C. nutans.  相似文献   

13.
Summary Sequence characterized amplified regions (SCARs) were derived from eight random amplified polymorphic DNA (RAPD) markers linked to disease resistance genes in lettuce. SCARs are PCR-based markers that represent single, genetically defined loci that are identified by PCR amplification of genomic DNA with pairs of specific oligonucleotide primers; they may contain high-copy, dispersed genomic sequences within the amplified region. Amplified RAPD products were cloned and sequenced. The sequence was used to design 24-mer oligonucleotide primers for each end. All pairs of SCAR primers resulted in the amplification of single major bands the same size as the RAPD fragment cloned. Polymorphism was either retained as the presence or absence of amplification of the band or appeared as length polymorphisms that converted dominant RAPD loci into codominant SCAR markers. This study provided information on the molecular basis of RAPD markers. The amplified fragment contained no obvious repeated sequences beyond the primer sequence. Five out of eight pairs of SCAR primers amplified an alternate allele from both parents of the mapping population; therefore, the original RAPD polymorphism was likely due to mismatch at the primer sites.  相似文献   

14.
Random amplified polymorphic DNA (RAPD) markers are used widely to develop high resolution genetic maps and for genome fingerprinting. Typically, single oligomers of approximately 10 nucleotides are used to PCR amplify characteristic RAPD marker fragments. We describe an efficient method for the direct end-sequencing of gel-purified RAPD fragments using one primer from a set of four 3'-terminal extended (A, T, C or G) oligonucleotides, identical to the RAPD primer but for the single nucleotide extension. Strand-specific DNA sequence could be independently read from each of the RAPD fragments without recourse to strand separation or fragment cloning. Informative RAPD fragments could be readily converted into mapped STS or SCAR loci using this technology. The 3'-extended primers may also be used to amplify independent genomic RAPD markers.  相似文献   

15.
 We describe a simple and new approach, based on inter-simple sequence repeats (ISSRs), for finding markers linked to clusters of disease resistance genes. In this approach, simple sequence repeats (SSR) are used directly in PCR reactions, and markers found to be linked to disease resistance genes provide important information for the selection of other sequences which can be used with PCR to find other linked markers. Based on an ISSR marker linked to a gene of interest, many new markers can be identified in the same region. We previously demonstrated that ISSR markers are useful in gene tagging and identified a marker, UBC-855500, linked to the gene for resistance to fusarium wilt race 4 in chickpea. This ISSR marker provided the information used in the present study for selecting other primers which amplified a region linked to the gene for resistance to fusarium wilt race 4. The primers were based on homology with the (AC)n sequence and were used for PCR amplifications. Changes in the sequence were at the anchor region of the primers. The repeat (AC)8T amplified a marker, UBC-8251200, which was located 5.0 cM from the gene for resistance to fusarium wilt race 4 and was closer than other markers. These results indicated that ISSR markers can provide important information for the design of other primers and that by making changes at the 3′ and 5′ anchors close linkage to the desired gene can be found. The approach allows rapid scanning of the targeted region and may provide important information for genome analysis of plant species. Received: 20 January 1998 / Accepted: 19 March 1998  相似文献   

16.
Pleurotus pulmonarius is one of the most widely cultivated and popular edible fungi in the genus Pleurotus. Three molecular markers were used to analyze the genetic diversity of 15 Chinese P. pulmonarius cultivars. In total, 21 random amplified polymorphic DNA (RAPD), 20 inter-simple sequence repeat (ISSR), and 20 sequence-related amplified polymorphism (SRAP) primers or primer pairs were selected for generating data based on their clear banding profiles produced. With the use of these RAPD, ISSR, and SRAP primers or primer pairs, a total of 361 RAPD, 283 ISSR, and 131 SRAP fragments were detected, of which 287 (79.5 %) RAPD, 211 (74.6 %) ISSR, and 98 (74.8 %) SRAP fragments were polymorphic. Unweighted Pair-Group Method with Arithmetic Mean (UPGMA) trees of these three methods were structured similarly, grouping the 15 tested strains into four clades. Subsequently, visual DNA fingerprinting and cluster analysis were performed to evaluate the resolving power of the combined RAPD, ISSR, and SRAP markers in the differentiation among these strains. The results of this study demonstrated that each method above could efficiently differentiate P. pulmonarius cultivars and could thus be considered an efficient tool for surveying genetic diversity of P. pulmonarius.  相似文献   

17.
The potential of bulk analyses of RAPD and ISSR-PCR markers for fingerprinting purposes was evaluated using ten RAPD and ten ISSR primers. The phylogenetic relationships of 16 barley cultivars from different countries, and all having a known pedigree, were analysed using 353 PCR markers (125 RAPDs and 228 ISSRs). The band profiles generated were reproducible in spite of the different DNA extractions, PCR techniques, electrophoretic methods and gel scorings used. The RAPD primer S10 and four ISSR primers (811, 820, 835 and 881) were both able to distinguish all cultivars. A strong and quite linear relationship was observed between Resolving Power (Rp) of a primer and its ability to distinguish genotypes. The dendrograms obtained using these two molecular markers are in agreement with their known origin, showing clusters that separate very well the spring/winter and six-rows/two-rows cultivars. Thus, bulk analyses of RAPD and ISSR PCR markers provides a quick, reliable and highly informative system for DNA fingerprinting and also permit to establish genetic relationships which agree with, by other means, known origin of the cultivars.  相似文献   

18.
Hybrid cotton H ‘6’ and its parents G.Cot.10 (male) and G.Cot.100 (female) were studied for identification with three PCR based molecular markers, RAPD, ISSR and microsatellite. Twenty RAPD primers, nineteen ISSR primers and twenty-five JESPR cotton microsatellite loci were used. RAPD primer OPA 11 was found to be useful in differentiating parents and hybrid. Two ISSR primers, IS4 and IS7 showed polymorphism in the parents. IS4 identified a female-specific amplicon of about 500bp and IS7 identified two female-specific amplicons of about 500 and 1200bp in the hybrid H ‘6’. Microsatellite loci JESPR-2 and JESPR-17 were found to be heteroallelic for parents. JESPR-2 identified one male-specific repeat of about 850bp, while JESPR-17 detected two male-specific repeats of about 800bp and 700bp in the hybrid H ‘6’. Results indicated that using all three markers - RAPD, ISSR and SSR - in combination is faster and more reliable than using the three in isolation, for the identification of cotton hybrid.  相似文献   

19.
RAPD identification of microsatellites in Daphnia   总被引:10,自引:0,他引:10  
Simple sequence repeats (SSRs, or microsatellites) have been constantly gaining importance as single-locus DNA markers in population genetics and behavioural ecology. We tested a PCR-based strategy for finding microsatellite loci in anonymous genomes, which avoids genomic library construction and screening, and the need for larger amounts of DNA. In the first step, parts of a genome are randomly amplified with arbitrary 10mer primers using RAPD fingerprinting. Labelled SSR-oligonucleotides serve as probes to detect complementary sequences in RAPD products by means of Southern analyses. Subsequently, positive RAPD fragments of suitable size are cloned and sequenced. Using GA and GT probes, we applied this approach to waterfleas ( Daphnia ) and revealed 37 hybridization signals in 20 RAPD profiles. Thirteen positive RAPD fragments from three Daphnia species and two hybrid 'species' were cloned and sequenced. In all cases simple sequence repeats were detected. We characterized seven perfect repeat loci, which were found to be polymorphic within and between species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号