首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The geometry of interactions of planar residues is nonrandom in protein tertiary structures and gives rise to conventional, as well as nonconventional (X--H...pi, X--H...O, where X = C, N, or O) hydrogen bonds. Whether a similar geometry is maintained when the interaction is across the protein-protein interface is addressed here. The relative geometries of interactions involving planar residues, and the percentage of contacts giving rise to different types of hydrogen bonds are quite similar in protein structures and the biological interfaces formed by protein chains in homodimers and protein-protein heterocomplexes--thus pointing to the similarity of chemical interactions that occurs during protein folding and binding. However, the percentage is considerably smaller in the nonspecific and nonphysiological interfaces that are formed in crystal lattices of monomeric proteins. The C--H...O interaction linking the aromatic and the peptide groups is quite common in protein structures as well as the three types of interfaces. However, as the interfaces formed by crystal contacts are depleted in aromatic residues, the weaker hydrogen bond interactions would contribute less toward their stability.  相似文献   

2.
Panigrahi SK  Desiraju GR 《Proteins》2007,67(1):128-141
The characteristics of N--H...O, O--H...O, and C--H...O hydrogen bonds and other weak intermolecular interactions are analyzed in a large and diverse group of 251 protein-ligand complexes using a new computer program that was developed in-house for this purpose. The interactions examined in the present study are those which occur in the active sites, defined here as a sphere of 10 A radius around the ligand. Notably, N--H...O and O--H...O bonds tend towards linearity. Multifurcated interactions are especially common, especially multifurcated acceptors, and the average degree of furcation is 2.6 hydrogen bonds per furcated acceptor. A significant aspect of this study is that we have been able to assess the reliability of hydrogen bond geometry as a function of crystallographic resolution. Thresholds of 2.3 and 2.0 A are established for strong and weak hydrogen bonds, below which hydrogen bond geometries may be safely considered for detailed analysis. Interactions involving water as donor or acceptor, and C--H...O bonds with Gly and Tyr as donors are ubiquitous in the active site. A similar trend was observed in an external test set of 233 protein-ligand complexes belonging to the kinase family. Weaker interactions like X--H...pi (X = C, N, O) and those involving halogen atoms as electrophiles or nucleophiles have also been studied. We conclude that the strong and weak hydrogen bonds are ubiquitous in protein-ligand recognition, and that with suitable computational tools very large numbers of strong and weak intermolecular interactions in the ligand-protein interface may be analyzed reliably. Results confirm earlier trends reported previously by us but the extended nature of the present data set mean that the observed trends are more reliable.  相似文献   

3.
Manikandan K  Ramakumar S 《Proteins》2004,56(4):768-781
A comprehensive database analysis of C--H...O hydrogen bonds in 3124 alpha-helices and their corresponding helix termini has been carried out from a nonredundant data set of high-resolution globular protein structures resolved at better than 2.0 A in order to investigate their role in the helix, the important protein secondary structural element. The possible occurrence of 5 --> 1 C--H...O hydrogen bond between the ith residue CH group and (i - 4)th residue C==O with C...O < or = 3.8 A is studied, considering as potential donors the main-chain Calpha and the side-chain carbon atoms Cbeta, Cgamma, Cdelta and Cepsilon. Similar analysis has been carried out for 4 --> 1 C--H...O hydrogen bonds, since the C--H...O hydrogen bonds found in helices are predominantly of type 5 --> 1 or 4 --> 1. A total of 17,367 (9310 of type 5 --> 1 and 8057 of type 4 --> 1) C--H...O hydrogen bonds are found to satisfy the selected criteria. The average stereochemical parameters for the data set suggest that the observed C--H...O hydrogen bonds are attractive interactions. Our analysis reveals that the Cgamma and Cbeta hydrogen atom(s) are frequently involved in such hydrogen bonds. A marked preference is noticed for aliphatic beta-branched residue Ile to participate in 5 --> 1 C--H...O hydrogen bonds involving methylene Cgamma 1 atom as donor in alpha-helices. This may be an enthalpic compensation for the greater loss of side-chain conformational entropy for beta-branched amino acids due to the constraint on side-chain torsion angle, namely, chi1, when they occur in helices. The preference of amino acids for 4 --> 1 C--H...O hydrogen bonds is found to be more for Asp, Cys, and for aromatic residues Trp, Phe, and His. Interestingly, overall propensity for C--H...O hydrogen bonds shows that a majority of the helix favoring residues such as Met, Glu, Arg, Lys, Leu, and Gln, which also have large side-chains, prefer to be involved in such types of weak attractive interactions in helices. The amino acid side-chains that participate in C--H...O interactions are found to shield the acceptor carbonyl oxygen atom from the solvent. In addition, C--H...O hydrogen bonds are present along with helix stabilizing salt bridges. A novel helix terminating interaction motif, X-Gly with Gly at C(cap) position having 5 --> 1 Calpha--H...O, and a chain reversal structural motif having 1 --> 5 Calpha-H...O have been identified and discussed. Our analysis highlights that a multitude of local C--H...O hydrogen bonds formed by a variety of amino acid side-chains and Calpha hydrogen atoms occur in helices and more so at the helix termini. It may be surmised that the main-chain Calpha and the side-chain CH that participate in C--H...O hydrogen bonds collectively augment the cohesive energy and thereby contribute together with the classical N--H...O hydrogen bonds and other interactions to the overall stability of helix and therefore of proteins.  相似文献   

4.
Molecular dynamics simulations of ion channel peptides alamethicin and melittin, solvated in methanol at 27 degrees C, were run with either regular alpha-helical starting structures (alamethicin, 1 ns; melittin 500 ps either with or without chloride counterions), or with the x-ray crystal coordinates of alamethicin as a starting structure (1 ns). The hydrogen bond patterns and stabilities were characterized by analysis of the dynamics trajectories with specified hydrogen bond angle and distance criteria, and were compared with hydrogen bond patterns and stabilities previously determined from high-resolution NMR structural analysis and amide hydrogen exchange measurements in methanol. The two alamethicin simulations rapidly converged to a persistent hydrogen bond pattern with a high level of 3(10) hydrogen bonding involving the amide NH's of residues 3, 4, 9, 15, and 18. The 3(10) hydrogen bonds stabilizing amide NH's of residues C-terminal to P2 and P14 were previously proposed to explain their high amide exchange stabilities. The absence, or low levels of 3(10) hydrogen bonds at the N-terminus or for A15 NH, respectively, in the melittin simulations, is also consistent with interpretations from amide exchange analysis. Perturbation of helical hydrogen bonding in the residues before P14 (Aib10-P14, alamethicin; T11-P14, melittin) was characterized in both peptides by variable hydrogen bond patterns that included pi and gamma hydrogen bonds. The general agreement in hydrogen bond patterns determined in the simulations and from spectroscopic analysis indicates that with suitable conditions (including solvent composition and counterions where required), local hydrogen-bonded secondary structure in helical peptides may be predicted from dynamics simulations from alpha-helical starting structures. Each peptide, particularly alamethicin, underwent some large amplitude structural fluctuations in which several hydrogen bonds were cooperatively broken. The recovery of the persistent hydrogen bonding patterns after these fluctuations demonstrates the stability of intramolecular hydrogen-bonded secondary structure in methanol (consistent with spectroscopic observations), and is promising for simulations on extended timescales to characterize the nature of the backbone fluctuations that underlie amide exchange from isolated helical polypeptides.  相似文献   

5.
The constrained backbone torsion angle of a proline (Pro) residue has usually been invoked to explain its three-dimensional context in proteins. Here we show that specific interactions involving the pyrrolidine ring atoms also contribute to its location in a given secondary structure and its binding to another molecule. It is adept at participating in two rather non-conventional interactions, C-H...pi and C-H...O. The geometry of interaction between the pyrrolidine and aromatic rings, vis-à-vis the occurrence of the C-H...pi interactions has been elucidated. Some of the secondary structural elements stabilized by Pro-aromatic interactions are beta-turns, where a Pro can interact with an adjacent aromatic residue, and in antiparallel beta-sheet, where a Pro in an edge strand can interact with an aromatic residue in the adjacent strand at a non-hydrogen-bonded site. The C-H groups at the Calpha and Cdelta positions can form strong C-H...O interactions (as seen from the clustering of points) and such interactions involving a Pro residue at C' position relative to an alpha-helix can cap the hydrogen bond forming potentials of the free carbonyl groups at the helix C terminus. Functionally important Pro residues occurring at the binding site of a protein almost invariably engage aromatic residues (with one of them being held by C-H...pi interaction) from the partner molecule in the complex, and such aromatic residues are highly conserved during evolution.  相似文献   

6.
A model is proposed for the structure of stereospecific sites in regulatory proteins. On its basis a possible code is suggested that governs the binding of regulatory proteins at specific control sites on DNA. Stereospecific sites of regulatory proteins are assumed to contain pairs of antiparallel polypeptide chain segments which form a right-hand twisted antiparallel beta-sheet, with single-stranded regions at the ends of the beta-structure. The model predicts that binding reaction between a regulatory protein and double-helical DNA is a cooperative phenomenon and is accompanied by significant structural alteration at the stereospecific site of the protein. Half of hydrogen bonds normally existing in beta-structure are broken upon complex formation with DNA and a new set of hydrogen bonds is formed between polypeptide amide groups and DNA base pairs. In a stereospecific site, one chain (t-chain) is attached through hydrogen bonds to the carbonyl oxygens of pyramides and N3 adenines lying in one DNA strand, while the second polypeptide chain (g chain) is hydrogen bonded to the 2-amino groups of guanine residues lying in the opposite DNA strand. The amide groups serve as specific reaction sites being hydrogen bond acceptors in g-chain and hydrogen bond donors in t-chain. The single-stranded portions of t- and g-chains lying in neighbouring subunits of regulatory protein interact with each other forming deformed beta-sheets. The recognition of regulatory sequences by proteins is based on the structural complementarity between stereospecific sites of regulatory proteins and base pairs sequences at the control sites. An essential feature of these sequences is the asymmetrical distribution of guanine residues between the two DNA strands. The code predicts that there are six fundamental amino acid residues (serine, threonine, asparagine, histidine, glutamine and cysteine) whose sequence in stereospecific site determines the base pair sequence to which a given regulatory protein would bind preferentially. The code states a correspondence between four amino acid residues at the stereospecific site of regulatory protein with the two residues being in t- and g-segments, respectively, and AT(GC) base pair at the control site. It is thus possible to determine which amino acid residues in the repressor and which base pairs in the operator DNA are involved in specific interactions with each other, as exemplified by lac repressor binding to lac operator.  相似文献   

7.
Among the aromatic residues in protein structures, histidine (His) is unique, as it can exist in the neutral or positively charged form at the physiological pH. As such, it can interact with other aromatic residues as well as form hydrogen bonds with polar and charged (both negative and positive) residues. We have analyzed the geometry of interaction of His residues with nine other planar side chains containing aromatic (residues Phe, Tyr, Trp, and His), carboxylate (Asp and Glu), carboxamide (Asn and Gln) and guanidinium (Arg) groups in 432 polypeptide chains. With the exception of the aspartic (Asp) and glutamic (Glu) acid side-chains, all other residues prefer to interact in a face-to-face or offset-face-stacked orientation with the His ring. Such a geometry is different from the edge-to-face relative orientation normally associated with the aromatic-aromatic interaction. His-His pair prefers to interact in a face-to-face orientation; however, when both the residues bind the same metal ion, the interplanar angle is close to 90 degrees. The occurrence of different interactions (including the nonconventional N-H...pi and C-H...pi hydrogen bonds) have been correlated with the relative orientations between the interacting residues. Several structural motifs, mostly involved in binding metal ions, have been identified by considering the cases where His residues are in contact with four other planar moieties. About 10% of His residues used here are also found in sequence patterns in PROSITE database. There are examples of the amino end of the Lys side chain interacting with His residues in such a way that it is located on an arc around a ring nitrogen atom.  相似文献   

8.
Park S  Saven JG 《Proteins》2005,60(3):450-463
Buried solvent molecules are common in the core of globular proteins and contribute to structural stability. Folding necessitates the burial of polar backbone atoms in the protein core, whose hydrogen-bonding capacities should be satisfied on average. Whereas the residues in alpha-helices and beta-sheets form systematic main-chain hydrogen bonds, the residues in turns, coils and loops often contain polar atoms that fail to form intramolecular hydrogen bonds. The statistical analysis of 842 high resolution protein structures shows that well-resolved, internal water molecules preferentially reside near residues without alpha-helical and beta-sheet secondary structures. These buried waters most often form primary hydrogen bonds to main-chain atoms not involved in intramolecular hydrogen bonds, providing strong evidence that hydrating main-chain atoms is a key structural role of buried water molecules. Additionally, the average B-factor of protein atoms hydrogen-bonded to waters is smaller than that of protein atoms forming intramolecular hydrogen bonds, and the average B-factor of water molecules involved in primary hydrogen bonds with main-chain atoms is smaller than the average B-factor of water molecules involved in secondary hydrogen bonds to protein atoms that form concurrent intramolecular hydrogen bonds. To study the structural coupling between internal waters and buried polar atoms in detail we simulated the dynamics of wild-type FKBP12, in which a buried water, Wat137, forms one side-chain and multiple main-chain hydrogen bonds. We mutated E60, whose side-chain hydrogen bonds with Wat137, to Q, N, S or A, to modulate the multiplicity and geometry of hydrogen bonds to the water. Mutating E60 to a residue that is unable to form a hydrogen bond with Wat137 results in reorientation of the water molecule and leads to a structural readjustment of residues that are both near and distant to the water. We predict that the E60A mutation will result in a significantly reduced affinity of FKBP12 for its ligand FK506. The propensity of internal waters to hydrogen bond to buried polar atoms suggests that ordered water molecules may constitute fundamental structural components of proteins, particularly in regions where alpha-helical or beta-sheet secondary structure is not present.  相似文献   

9.
Structural features of double helices formed by polypeptides with alternating L- and D-amino acid residues were analysed. It was found that the map of short distances (less than 4 A) between protons of the two backbones is unique for each double helix type and even its fragment implies unambiguously parameters of the helix (i.e. parallel or antiparallel, handedness, pitch of helix, relative shift of polypeptide chains). By analysis of two-dimensional 1H-NMR spectra (COSY, RELSY, HOHAHA, NOESY), proton resonances of [Val1]gramicidin A (GA) in the ethanol solution were assigned. The results obtained show that the solution contains five stable conformations of GA in comparable concentrations. Monomer of GA is in a random coil conformation. Specific maps of short interproton distances for the other four species (1-4) were obtained by means of two dimensional nuclear Overhauser effect spectroscopy. The maps as well as spin-spin couplings of the H-NC alpha-H protons and solvent accessibilities of the individual amide groups correspond to four types of double helices pi pi LD 5,6 with 5.6 residues per turn. The double helices are related to the Veatch species 1-4 of GA. Species 1 and 2 are left-handed parallel double helices increase increase pi pi LD 5,6 with different relative shift of polypeptide chains. Species 3 is a left-handed antiparallel double helix increase decrease pi pi LD 5,6 and species 4 is a right-handed parallel double helix increase increase LD 5,6. In the dimers helices are fixed by the maximum number (28) of interbackbone hydrogen bonds NH...O = C possible for these structures. Species 1, 3 and 4 have C2 symmetry axes. Relationship between gramicidin A spatial structures induced by various media is discussed.  相似文献   

10.
The SH3 domain, comprised of approximately 60 residues, is found within a wide variety of proteins, and is a mediator of protein-protein interactions. Due to the large number of SH3 domain sequences and structures in the databases, this domain provides one of the best available systems for the examination of sequence and structural conservation within a protein family. In this study, a large and diverse alignment of SH3 domain sequences was constructed, and the pattern of conservation within this alignment was compared to conserved structural features, as deduced from analysis of eighteen different SH3 domain structures. Seventeen SH3 domain structures solved in the presence of bound peptide were also examined to identify positions that are consistently most important in mediating the peptide-binding function of this domain. Although residues at the two most conserved positions in the alignment are directly involved in peptide binding, residues at most other conserved positions play structural roles, such as stabilizing turns or comprising the hydrophobic core. Surprisingly, several highly conserved side-chain to main-chain hydrogen bonds were observed in the functionally crucial RT-Src loop between residues with little direct involvement in peptide binding. These hydrogen bonds may be important for maintaining this region in the precise conformation necessary for specific peptide recognition. In addition, a previously unrecognized yet highly conserved beta-bulge was identified in the second beta-strand of the domain, which appears to provide a necessary kink in this strand, allowing it to hydrogen bond to both sheets comprising the fold.  相似文献   

11.
Crystal structure of a novel cobalt(III) complex with antiulcer drug famotidine and ethylenediamine was determined. This is the second structure of a transition metal complex with famotidine resolved by a single crystal X-ray analysis, in which famotidine shows different mode of coordination than that observed in the other cases. Drug molecule is coordinated to metal ion as a tetradentate ligand through guanidine N6, thiazole N4, thioether S2 and terminal N3 atom. Two NH(2) groups (N3H(2) and N6H(2)) are deprotonated and drug coordinates as dianion. In the asymmetric unit, one chloride anion and one water molecule were found to complete the complex stoichiometry. The structure of the complex is abundant in atoms, which can be involved in hydrogen bond formation either as hydrogen acceptors or hydrogen donors. Because of that, a great number of hydrogen bonds dominates the crystal packing. Beside the hydrogen bonds, there are two interesting noncovalent interactions: CH(...)pi and NH(...)pi within the famotidine anion, which stabilize the complex structure. The pi(...)pi stacking interactions between neighboring complex cations are also observed. Antibacterial and antifungal activity of famotidine and its newly synthesized complex against representative bacteria: Escherichia coli, Staphilococcus aureus and Micrococcus lysodeikticus and fungi: Aspergillus niger and Candida albicans were examined. The results indicate a higher selectivity of the famotidine-Co(III) complex, as well as better growth inhibitory activity (lower MIC values (MIC, minimal inhibitory concentration)) in comparison with the drug alone.  相似文献   

12.
Structure-based differences of residual properties between 20 pairs of thermophilic and mesophilic proteins were statistically analyzed to elucidate the factors governing protein thermostability. This study analyzed the distributions of outer residues, inner residues, flexible residues, rigid residues, hydrogen bonds, salt bridges, cation–pi interactions, and disulfide bonds in each protein in terms of residual structural states, which were determined as five kinds of states under residual packing value. Their structural patterns found in thermophilic protein groups were compared with those of mesophilic protein groups for showing distinctive difference of residual properties. The results of statistical tests (t-test) revealed that flexible residues in fully-exposed state and boundary state, salt bridges in exposed state, and hydrogen bonds in well-buried state could be critical factors related with protein thermostability. Such structure-based differences of residual properties would help to develop a strategy for enhancing protein thermostability.  相似文献   

13.
Sarkhel S  Desiraju GR 《Proteins》2004,54(2):247-259
The characteristics of N-H...O, O-H...O, and C-H...O hydrogen bonds are examined in a group of 28 high-resolution crystal structures of protein-ligand complexes from the Protein Data Bank and compared with interactions found in small-molecule crystal structures from the Cambridge Structural Database. It is found that both strong and weak hydrogen bonds are involved in ligand binding. Because of the prevalence of multifurcation, the restrictive geometrical criteria set up for hydrogen bonds in small-molecule crystal structures may need to be relaxed in macromolecular structures. For example, there are definite deviations from linearity for the hydrogen bonds in protein-ligand complexes. The formation of C-H...O hydrogen bonds is influenced by the activation of the C(alpha)-H atoms and by the flexibility of the side-chain atoms. In contrast to small-molecule structures, anticooperative geometries are common in the macromolecular structures studied here, and there is a gradual lengthening as the extent of furcation increases. C-H...O bonds formed by Gly, Phe, and Tyr residues are noteworthy. The numbers of hydrogen bond donors and acceptors agree with Lipinski's "rule of five" that predicts drug-like properties. Hydrogen bonds formed by water are also seen to be relevant in ligand binding. Ligand C-H...O(w) interactions are abundant when compared to N-H...O(w) and O-H...O(w). This suggests that ligands prefer to use their stronger hydrogen bond capabilities for use with the protein residues, leaving the weaker interactions to bind with water. In summary, the interplay between strong and weak interactions in ligand binding possibly leads to a satisfactory enthalpy-entropy balance. The implications of these results to crystallographic refinement and molecular dynamics software are discussed.  相似文献   

14.
Although hydrophobic interaction is the main contributing factor to the stability of the protein fold, the specificity of the folding process depends on many directional interactions. An analysis has been carried out on the geometry of interaction between planar moieties of ten side chains (Phe, Tyr, Trp, His, Arg, Pro, Asp, Glu, Asn and Gln), the aromatic residues and the sulfide planes (of Met and cystine), and the aromatic residues and the peptide planes within the protein tertiary structures available in the Protein Data Bank. The occurrence of hydrogen bonds and other nonconventional interactions such as C-H...pi, C-H...O, electrophile-nucleophile interactions involving the planar moieties has been elucidated. The specific nature of the interactions constraints many of the residue pairs to occur with a fixed sequence difference, maintaining a sequential order, when located in secondary structural elements, such as alpha-helices and beta-turns. The importance of many of these interactions (for example, aromatic residues interacting with Pro or cystine sulfur atom) is revealed by the higher degree of conservation observed for them in protein structures and binding regions. The planar residues are well represented in the active sites, and the geometry of their interactions does not deviate from the general distribution. The geometrical relationship between interacting residues provides valuable insights into the process of protein folding and would be useful for the design of protein molecules and modulation of their binding properties.  相似文献   

15.
Here we present a systematic analysis of accessible surface areas and hydrogen bonds of 2554 globular proteins from four structural classes (all-α, all-β, α/β and α+β proteins) that is aimed to learn in which structural class the accessible surface area increases with increasing protein molecular mass more rapidly than in other classes, and what structural peculiarities are responsible for this effect. The beta structural class of proteins was found to be the leader, with the following possible explanations of this fact. First, in beta structural proteins, the fraction of residues not included in the regular secondary structure is the largest, and second, the accessible surface area of packaged elements of the beta-structure increases more rapidly with increasing molecular mass in comparison with the alpha-structure. Moreover, in the beta structure, the probability of formation of backbone hydrogen bonds is higher than that in the alpha helix for all residues of α+β proteins (the average probability is 0.73±0.01 for the beta-structure and 0.60±0.01 for the alpha-structure without proline) and α/β proteins, except for asparagine, aspartic acid, glycine, threonine, and serine (0.70±0.01 for the beta-structure and 0.60±0.01 for the alpha-structure without the proline residue). There is a linear relationship between the number of hydrogen bonds and the number of amino acid residues in the protein (Number of hydrogen bonds=0.678·number of residues-3.350).  相似文献   

16.
Panigrahi SK 《Amino acids》2008,34(4):617-633
Strong and weak hydrogen bonds between protein and ligand are analyzed in a group of 233 X-ray crystal structures of the kinase family. These kinases are from both eukaryotic and prokaryotic organisms. The dataset comprises of 44 sub-families, out of which 35 are of human origin and the rest belong to other organisms. Interaction analysis was carried out in the active sites, defined here as a sphere of 10 A radius around the ligand. A majority of the interactions are observed between the main chain of the protein and the ligand atoms. As a donor, the ligand frequently interacts with amino acid residues like Leu, Glu and His. As an acceptor, the ligand interacts often with Gly, and Leu. Strong hydrogen bonds N-H...O, O-H...O, N-H...N and weak bonds C-H...O, C-H...N are common between the protein and ligand. The hydrogen bond donor capacity of Gly in N-H...O and C-H...O interactions is noteworthy. Similarly, the acceptor capacity of main chain Glu is ubiquitous in several kinase sub-families. Hydrogen bonds between protein and ligand form characteristic hydrogen bond patterns (supramolecular synthons). These synthon patterns are unique to each sub-family. The synthon locations are conserved across sub-families due to a higher percentage of conserved sequences in the active sites. The nature of active site water molecules was studied through a novel classification scheme, based on the extent of exposure of water molecules. Water which is least exposed usually participates in hydrogen bond formation with the ligand. These findings will help structural biologists, crystallographers and medicinal chemists to design better kinase inhibitors.  相似文献   

17.
A systematic analysis has been carried out to examine all the stereochemically possible bifurcated hydrogen bonds including those of cross strand type between propeller twisted base pairs in DNA double helices by stereochemical considerations involving base pairs alone and by molecular mechanics studies on dimer and trimer duplexes. The results show that there are limited number of combinations of adjacent base pairs that would facilitate bifurcated cross-strand hydrogen bond (CSH). B-type helices concomitant with negative propeller twist seem to be more favored for the occurrence of CSH than canonical A-type helices because of slide in the latter. The results also demonstrate that helices with appropriate sequences may possess continuous run of these propeller twist driven cross strand hydrogen bonds indicating that they may in fact be considered as yet another general structural feature of DNA helices.  相似文献   

18.
The peptide Boc-Val1-deltaPhe2-Leu3-Ala4-deltaPhe5-Ala6-OMe has been examined for the structural consequence of placing a two-residue segment between the deltaPhe residues. The peptide is stabilized by four consecutive beta-turns. The overall conformation of the molecule is a right-handed 3(10)-helix, with average (phi, psi) values (-67.7 degrees, -22.7 degrees), unwound at the C-terminus. The 1H NMR results also suggest that the peptide maintains its 3(10)-helical structure in solution as observed in the crystal state. The crystal structure is stabilized through head-to-tail hydrogen bonds and a repertoire of aromatic interactions laterally directed between adjacent helices, which are antiparallel to each other. The aromatic ring of deltaPhe5 forms the hub of multicentred interactions, namely as a donor in aromatic C-H...pi and aromatic C-H...O=C interactions and as an acceptor in a CH3...pi interaction. The present structure uniquely illustrates the unusual capability of a deltaPhe ring to host such concerted interactions and suggests its exploitation in introducing long-range interactions in the folding of supersecondary structures.  相似文献   

19.
Petrella RJ  Karplus M 《Proteins》2004,54(4):716-726
Although most side-chain torsion angles correspond to low-energy rotameric positions, deviations occur with significant frequency. One striking example arises in Trp residues, which have an important role in stabilizing protein structures because of their size and mixed hydrophobic/hydrophilic character. Ten percent of Trp side-chains have unexplained conformations with chi(2) near 0 degrees instead of the expected 90 degrees. The current work is a structural and energetic analysis of these conformations. It is shown that many Trp residues with these orientations are stabilized by three-center carbon-donor hydrogen bonds of the form C-H...X...H-C, where X is a polar hydrogen-bond acceptor in the environment of the side-chain. The bridging hydrogen bonds occur both within the Trp side-chain and between the side-chain and the local protein backbone. Free energy maps of an isolated Trp residue in an explicit water environment show a minimum corresponding to the off-rotamer peak observed in the crystallographic data. Bridging carbon-donor hydrogen bonds are also shown to stabilize on-rotamer Trp conformations, and similar bridging hydrogen bonds also stabilize some off-rotamer Asp conformations. The present results suggest a previously unrecognized role for three-center carbon-donor hydrogen bonds in protein structures and support the view that the off-rotamer Trp side-chain orientations are real rather than artifacts of crystallographic refinements. Certain of the off-rotamer Trp conformations appear to have a functional role.  相似文献   

20.
MOTIVATION: Hydrogen bonds are one of the most important inter-atomic interactions in biology. Previous experimental, theoretical and bioinformatics analyses have shown that the hydrogen bonding potential of amino acids is generally satisfied and that buried unsatisfied hydrogen-bond-capable residues are destabilizing. When studying mutant proteins, or introducing mutations to residues involved in hydrogen bonding, one needs to know whether a hydrogen bond can be maintained. Our aim, therefore, was to develop a rapid method to evaluate whether a sidechain can form a hydrogen-bond. RESULTS: A novel knowledge-based approach was developed in which the conformations accessible to the residues involved are taken into account. Residues involved in hydrogen bonds in a set of high resolution crystal structures were analyzed and this analysis is then applied to a given protein. The program was applied to assess mutations in the tumour-suppressor protein, p53. This raised the number of distinct mutations identified as disrupting sidechain-sidechain hydrogen bonding from 181 in our previous analysis to 202 in this analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号