首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.) is a hulled wheat of Germanic origin that survives at marginal areas in Asturias (Spain). The HMW glutenin subunit composition of 403 accessions of spelt wheat from Spain has been analysed by SDS-PAGE. Three allelic variants were detected for Glu-A1. For the Glu-B1 locus, two of seven alleles detected have not been found before; while four of nine alleles detected for the Glu-D1 are not previously described. Considering the three loci, twenty five combinations were found among all the evaluated lines. This wide polymorphism could be used to transfer new quality genes to wheat, and widen the genetic basis of them. Received: 19 September 2000 / Accepted: 20 October 2000  相似文献   

2.
Synthetic hexaploid wheats (2n=6x=42, AABBDD) involving genomes from Triticum turgidum (2n= 4x=28, AABB) and Aegilops tauschii (2n=2x=14, DD) have been produced as a means for introducing desirable characteristics into bread wheat. In the present work we describe the genetic variability present at the Glu-D t 1 and Glu-D t 3 loci, encoding high- (HMW) and low-molecular-weight (LMW) glutenin subunits respectively, derived from Ae. tauschii, using electrophoretic and chromatographic methods, in a collection of synthetic hexaploid wheats. A wide variation both in mobility and surface hydrophobicity of HMW glutenin subunits was observed between different accessions of Ae. tauschii used in the production of the synthetic hexaploids. A combination of electrophoretic and chromatographic methods improves the identification of HMW glutenin subunits; in fact subunits with identical apparent mobility were revealed to have a different surface hydrophobicity by reversed-phase high performance liquid chromatography. None of the Dx5t subunits present in Ae. tauschii showed the presence of the extra cysteine residue found in the HMW glutenin subunit Dx5 of Triticum aestivum, as revealed by selective amplification with polymerase chain reaction (PCR). The wide variability and the high number of subunits encoded by the Glu-D t 3 locus suggests that Ae. tauschii may be a rich source for enhancing the genetic variability of glutenin subunits in bread wheat and improving bread-making properties. Received: 3 March 2001 / Accepted: 23 March 2001  相似文献   

3.
The protein named T1, present in Triticum tauschii, was previously characterized as a high-molecular-weight (HMW) glutenin subunit with a molecular size similar to that of the y-type glutenin subunit-10 of Triticum aestivum. This protein was present along with other HMW glutenin subunits named 2t and T2, and was considered as part of the same allele at the Glu-D t 1 locus of T. tauschii. This paper describes a re-evaluation of this protein, involving analyses of a collection of 173 accessions of T. tauschii, by SDS-PAGE of glutenin subunits after the extraction of monomeric protein. No accessions were found containing the three HMW glutenin subunits. On the other hand, 17 lines with HMW glutenin subunits having electrophoretic mobilities similar to subunits 2t and T2 were identified. The absence of T1 protein in these gel patterns has shown that protein T1 is not a component of the polymeric protein. Rather, the T1 protein is an ω-gliadin with an unusually high-molecular-weight. This conclusion is based on acidic polyacrylamide gel electrophoresis (A-PAGE), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and two-dimensional gel electrophoresis (A-PAGE+ SDS-PAGE), together with analysis of its N-terminal amino-acids sequence. The inheritance of ω-gliadin T1 was studied through analyses of gliadins and HMW glutenins in 106 F2 grains of a cross between synthetic wheat, L/18913, and the wheat cv Egret. HMW glutenin subunits and gliadins derived from T. tauschii (Glu-D t 1 and Gli-D t 1) segregated as alleles of the Glu-D1 and Gli-D1 loci of bread wheat. A new locus encoding the ω-gliadin T1 was identified and named Gli-DT1. The genetic distance between this new locus and those of endosperm proteins encoded at the 1D chromosome were calculated. The Gli-DT1 locus is located on the short arm of chromosome 1D and the map distance between this locus and the Gli-D1 and Glu-D1 loci was calculated as 13.18 cM and 40.20 cM, respectively. Received: 13 October 2000 / Accepted: 18 April 2001  相似文献   

4.
The diversity of high-molecular-weight (HMW) and low-molecular-weight (LMW) glutenin subunits in the tetraploid wild progenitor of wheat, Triticum dicoccoides, was studied at the DNA level by the polymerase chain reaction (PCR). The DNA diversity of HMW and LMW glutenins was shown to be correlated to environmental physical and biotic factors (climate, soil and pathogen resistance) and to allozyme variation. We conclude that glutenin DNA diversity is nonrandomly distributed and could be more optimally sampled in nature for future breeding programmes to improve bread quality.  相似文献   

5.
The low-molecular-weight (LMW) glutenin subunits are components of the highly cross-linked glutenin polymers that confer viscoelastic properties to gluten and dough. They have both quantitative and qualitative effects on dough quality that may relate to differences in their ability to form the inter-chain disulphide bonds that stabilise the polymers. In order to determine the relationship between dough quality and the amounts and properties of the LMW subunits, we have transformed the pasta wheat cultivars Svevo and Ofanto with three genes encoding proteins, which differ in their numbers or positions of cysteine residues. The transgenes were delivered under control of the high-molecular-weight (HMW) subunit 1Dx5 gene promoter and terminator regions, and the encoded proteins were C-terminally tagged by the introduction of the c-myc epitope. Stable transformants were obtained with both cultivars, and the use of a specific antibody to the c-myc epitope tag allowed the transgene products to be readily detected in the complex mixture of LMW subunits. A range of transgene expression levels was observed. The addition of the epitope tag did not compromise the correct folding of the trangenic subunits and their incorporation into the glutenin polymers. Our results demonstrate that the ability to specifically epitope-tag LMW glutenin transgenes can greatly assist in the elucidation of their individual contributions to the functionality of the complex gluten system.Communicated by J. W. Snape  相似文献   

6.
While quality in hexaploid wheat (Triticum aestivum L. em Thell.) is a very complex trait, it is known that the water-insoluble gluten proteins are responsible for the elasticity and chohesiveness (strength) of dough and are therefore important determinants of breadmaking quality. High-molecular-weight (HMW) glutenin subunits encoded by genes on the long arm of group 1 chromosomes have been associated with gluten strength, and a portion of the variability between cultivars can be attributed to glutenin subunit composition. Good or poor wheat breadmaking quality is associated with two allelic pairs at the Glu-D1 complex locus, designated 1Dx5–1Dy10 and 1Dx2–1Dy12, respectively. Among the HMW glutenin subunits encoded at Glu-B1, Bx7 is quite common, being associated with either of two subunits, By8 or By9. Both allelic pairs contribute moderately well to good breadmaking quality by increasing dough elasticity. Glutenin subunit screening is accomplished using electrophoresis (SDS-PAGE). In this paper, I report the development of an alternative screening method based on glutenin genes themselves using the polymerase chain reaction (PCR). This easy, quick and non-destructive PCR-based approach is an efficient alternative to standard procedures for selecting bread-wheat genotypes with good breadmaking characteristics. Received: 14 August 1999 / Accepted: 21 March 2000  相似文献   

7.
Considerable progress has been made in understanding the structure, function and genetic regulation of high-molecular-weight (HMW) glutenin subunits in hexaploid wheat. In contrast, less is known about these types of proteins in wheat related species. In this paper, we report the analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species, Aegilops umbellulata (UU) and Aegilops caudata (CC). SDS-PAGE analysis demonstrated that, for each of the four Ae. umbellulata accessions, there were two HMW glutenin subunits (designated here as 1Ux and 1Uy) with electrophoretic mobilities comparable to those of the x- and y-type subunits encoded by the Glu-D1 locus, respectively. In our previous study involving multiple accessions of Ae. caudata, two HMW glutenin subunits (designated as 1Cx and 1Cy) with electrophoretic mobilities similar to those of the subunits controlled by the Glu-D1 locus were also detected. These results indicate that the U genome of Ae. umbellulata and the C genome of Ae. caudata encode HMW glutenin subunits that may be structurally similar to those specified by the D genome. The complete open reading frames (ORFs) coding for x- and y-type HMW glutenin subunits in the two diploid species were cloned and sequenced. Analysis of deduced amino acid sequences revealed that the primary structures of the x- and y-type HMW glutenin subunits of the two Aegilops species were similar to those of previously published HMW glutenin subunits. Bacterial expression of modified ORFs, in which the coding sequence for the signal peptide was removed, gave rise to proteins with electrophoretic mobilities identical to those of HMW glutenin subunits extracted from seeds, indicating that upon seed maturation the signal peptide is removed from the HMW glutenin subunit in the two species. Phylogenetic analysis showed that 1Ux and 1Cx subunits were most closely related to the 1Dx type subunit encoded by the Glu-D1 locus. The 1Uy subunit possessed a higher level of homology to the 1Dy-type subunit compared with the 1Cy subunit. In conclusion, our study suggests that the Glu-U1 locus of Ae. umbellulata and the Glu-C1 locus of Ae. caudata specify the expression of HMW glutenin subunits in a manner similar to the Glu-D1 locus. Consequently, HMW glutenin subunits from the two diploid species may have potential value in improving the processing properties of hexaploid wheat varieties.  相似文献   

8.
High-molecular-weight (HMW) glutenin subunits are a particular class of wheat endosperm proteins containing a large repetitive domain flanked by two short N- and C-terminal non-repetitive regions. Deletions and insertions within the central repetitive domain has been suggested to be mainly responsible for the length variations observed for this class of proteins. Nucleotide sequence comparison of a number of HMW glutenin genes allowed the identification of small insertions or deletions within the repetitive domain. However, only indirect evidence has been produced which suggests the occurrence of substantial insertions or deletions within this region when a large variation in molecular size is present between different HMW glutenin subunits. This paper represents the first report on the molecular characterization of an unusually large insertion within the repetitive domain of a functional HMW glutenin gene. This gene is located at the Glu-D1 locus of a hexaploid wheat genotype and contains an insertion of 561 base pairs that codes for 187 amino acids corresponding to the repetitive domain of a HMW glutenin subunit encoded at the same locus. The precise location of the insertion has been identified and the molecular processes underlying such mutational events are discussed.  相似文献   

9.
 The B low-molecular-weight (LMW) glutenin subunit composition of a collection of 88 durum wheat cultivars was analyzed. Extensive variation has been found and 18 different patterns were detected. Each cultivar exhibited 4–8 subunits, and altogether 20 subunits of different mobility were identified. The genetic control of all these subunits was determined through the analysis of nine F2 populations and one backcross. Five subunits were controlled at the Glu-A3 locus, 14 at Glu-B3 and 1 at Glu-B2. At the Glu-A3 locus each cultivar possessed from zero to three bands and eight alleles were identified. At the Glu-B3 locus each cultivar showed four or five bands and nine alleles were detected. Only one band was encoded by the Glu-B2 locus. A nomenclature for these alleles is proposed and the relationship between them and the commonly used LMW-model nomenclature is discussed. Received: 10 February 1997 / Accepted: 25 April 1997  相似文献   

10.
Characterization of two HMW glutenin subunit genes from Taenitherum Nevski   总被引:1,自引:0,他引:1  
Yan ZH  Wei YM  Wang JR  Liu DC  Dai SF  Zheng YL 《Genetica》2006,127(1-3):267-276
The compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta. asperum, were investigated by SDS-PAGE analysis. The electrophoresis mobility of the x-type HMW glutenin subunits were slower or equal to that of wheat HMW glutenin subunit Dx2, and the electrophoresis mobility of the y-type subunits were faster than that of wheat HMW glutenin subunit Dy12. Two HMW glutenin genes, designated as Tax and Tay, were isolated from Ta. crinitum, and their complete nucleotide coding sequences were determined. Sequencing and multiple sequences alignment suggested that the HMW glutenin subunits derived from Ta. crinitum had the similar structures to the HMW glutenin subunits from wheat and related species with a signal peptide, and N- and C-conservative domains flanking by a repetitive domain consisted of the repeated short peptide motifs. However, the encoding sequences of Tax and Tay had some novel modification compared with the HMW glutenin genes reported so far: (1) A short peptide with the consensus sequences of KGGSFYP, which was observed in the N-terminal of all known HMW glutenin genes, was absent in Tax; (2) There is a specified short peptide tandem of tripeptide, hexapeptide and nonapeptide and three tandem of tripeptide in the repetitive domain of Tax; (3) The amino acid residues number is 105 (an extra Q presented) but not 104 in the N-terminal of Tay, which was similar to most of y-type HMW glutenin genes from Elytrigia elongata and Crithopsis delileana. Phylogenetic analysis indicated that Tax subunit was mostly related to Ax1, Cx, Ux and Dx5, and Tay was more related to Ay, Cy and Ry.  相似文献   

11.
Acetic-acid-soluble storage proteins from gluten of the bread wheat cv. Sprint 3 were fractionated by adsorption chromatography on 2000 Å controlled-pore glass (CPG) beads, and glutenin polymers with molecular mass higher than 107 Da and free from monomeric gliadins were recovered. The glutenin polymers were found to consist of high-molecular-weight (HMW) and low-molecular-weight (LMW) glutenin subunits. Peptic-tryptic (PT) digests of glutenins were examined for their agglutination activity on human myelogenous leukemia K 562(S) cells, agglutination being strongly correlated with toxicity for the celiac intestine. The peptide fraction at a concentration of 1 g/L of culture medium was able to agglutinate 30% of K 562(S) cells, suggesting a moderate toxic effect. This toxicity may be accounted for by homologies in amino acid sequences between glutenin subunits and α/β-and γ-gliadins. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
Summary Polymorphism of high molecular weight (HMW) glutenin subunits in 466 accessions of the wild tetraploid wheat Triticum turgidum var. dicoccoides in Israel was characterized with regard to the ecogeographical distribution of the HMW glutenin alleles, both between and within 22 populations, and along transects in a single population. While some populations were monomorphic for all the HMW glutenin loci, namely, Glu-A1-1, Glu-A1-2, Glu-B1-1 and Glu-B1-2, others contained up to four alleles per locus. Intrapopulation variability could be predicted by the geographical distribution: marginal populations tended to be more uniform than those at the center of distribution. The various HMW glutenin alleles tended to be clustered, both at a regional level and within a single population along transects of collection. It is suggested that this clustering is due to selection pressures acting both at a regional and at a microenvironmental level. This was confirmed by the significant correlations found between the MW of subunits encoded by Glu-A1-1 and the populations' altitude, average temperature and rainfall. The possible selective values of seed storage proteins are discussed.  相似文献   

13.
The low molecular weight (LMW) glutenln subunlts account for 40% of wheat gluten protein content by mass and these proteins are considered to significantly affect dough quality characteristics. Five new full-length LMW glutenln genes (designated LMW-5, LMW-7, LMW-42, LMW-58, and LMW-34) were isolated from the Chinese elite wheat cultivar "Xlaoyan 54" by PCR amplification of genomlc DNA using a pair of degenerate primers designed from the conserved sequences of the N- and C-terminal regions of published LMW glutenln genes. Deduced amino acid sequence analysis showed that LMW-5 belongs to the LMW-i type genes and that the other four belong to LMW-m type genes. Sequence comparisons revealed that point mutations occasionally occurred in signal peptide and N-terminus domains and often existed in domain III and domain V. Small insertions and deletions are represented in the repetitive domain. There is a stop codon after amino acid position 110 In the repetitive domain of LMW.34, indicating that It is a pseudogene. The other four genes have complete open reading frames and the putative mature regions of these genes were subcloned Into pET-30a expression vector and successfully expressed in Escherlchla coll. Protein sodium dodecyl sulfate-polyacrylamlde gel electro- phoresls analysis showed that all proteins expressed in E. coil by the four genes could be related to B-group LMW glutenln subunits of wheat.  相似文献   

14.
Summary The diversity of HMW glutenin subunits in the tetraploid wild progenitor of wheat, Triticum turgidum var. dicoccoides was studied electrophoretically in 231 individuals representing 11 populations of wild emmer from Israel. The results show that (a) The two HMW glutenin loci, Glu-A1 and Glu-B1, are rich in variation, having 11 and 15 alleles, respectively, (b) Genetic variation in HMW glutenin subunits is often severely restricted in individual populations, supporting an island population genetic model, (c) Significant correlations were found between glutenin diversity and the frequencies of specific glutenin alleles and physical (climate and soil) and biotic (vegetation) variables. Our results suggest that: (a) at least part of the glutenin polymorphisms in wild emmer can be accounted for by environmental factors and (b) the endosperm of wild emmer contains many allelic variants of glutenin storage proteins that are not present in bread wheat and could be utilized in breeding varieties with improved bread-making qualities.  相似文献   

15.
卢萍  周嫦 《植物研究》1996,16(1):96-99
用PEG—高Ca高PH法诱导抗卡那霉素的烟草(Nicotianatabacum)品系N364+Km+花粉原生质体和黄花烟草(Nicotiarustica)叶肉原生质体融合。幼嫩花粉原生质体和叶肉原生质体之间的融合体培养启动胚胎发生分裂,经卡那霉素筛选后,少数多细胞团存活并形成小愈伤组织。成熟花粉原生质体与叶肉原生质体之间的融合体则仅产生管状结构。这一结果表明,作为融合一方的花粉原生质体的发育时期对融合产物的发育途径有重要影响。  相似文献   

16.
High molecular weight (HMW) glutenin subunits are conserved seed storage proteins in wheat and related species. Here we describe a more detailed characterization of the HMW glutenin subunits from Aegilops searsii, which is diploid and contains the Ss genome related to the S genome of Aegilops speltoides and the A, B and D genomes of hexaploid wheat. SDS-PAGE experiments revealed two subunits (one x and one y) for each of the nine Ae. searsii accessions analyzed, indicating that the HMW glutenin subunit gene locus of Ae. searsii is similar to the Glu-1 locus found in wheat in containing both x and y genes. The primary structure of the four molecularly cloned subunits (from two Ae. searsii accessions) was highly similar to that of the previously reported x and y subunits. However, in one accession (IG49077), the last 159 residues of the x subunit (1Ssx49077), which contained the sequence element GHCPTSPQQ, were identical to those of the y subunit (1Ssy49077) from the same accession. Consequently, 1Ssx49077 contains an extra cysteine residue located at the C-terminal part of its repetitive domain, which is novel compared to the x-type subunits reported so far. Based on this and previous studies, the structure and expression of the Glu-1 locus in Ae. searsii is discussed. A hypothesis on the genetic mechanism generating the coding sequence for the novel 1Ssx49077 subunit is presented.  相似文献   

17.
New DNA markers for high molecular weight glutenin subunits in wheat   总被引:2,自引:0,他引:2  
End-use quality is one of the priorities of modern wheat (Triticum aestivum L.) breeding. Even though quality is a complex trait, high molecular weight (HMW) glutenins play a major role in determining the bread making quality of wheat. DNA markers developed from the sequences of HMW glutenin genes were reported in several previous studies to facilitate marker-assisted selection (MAS). However, most of the previously available markers are dominant and amplify large DNA fragments, and thus are not ideal for high throughput genotyping using modern equipment. The objective of this study was to develop and validate co-dominant markers suitable for high throughput MAS for HMW glutenin subunits encoded at the Glu-A1 and Glu-D1 loci. Indels were identified by sequence alignment of allelic HMW glutenin genes, and were targeted to develop locus-specific co-dominant markers. Marker UMN19 was developed by targeting an 18-bp deletion in the coding sequence of subunit Ax2* of Glu-A1. A single DNA fragment was amplified by marker UMN19, and was placed onto chromosome 1AL. Sixteen wheat cultivars with known HMW glutenin subunits were used to validate marker UMN19. The cultivars with subunit Ax2* amplified the 362-bp fragment as expected, and a 344-bp fragment was observed for cultivars with subunit Ax1 or the Ax-null allele. Two co-dominant markers, UMN25 and UMN26, were developed for Glu-D1 by targeting the fragment size polymorphic sites between subunits Dx2 and Dx5, and between Dy10 and Dy12, respectively. The 16 wheat cultivars with known HMW glutenin subunit composition were genotyped with markers UMN25 and UMN26, and the genotypes perfectly matched their subunit types. Using an Applied Biosystems 3130xl Genetic Analyzer, four F2 populations segregating for the Glu-A1 or Glu-D1 locus were successfully genotyped with primers UMN19, UMN25 and UMN26 labeled with fluorescent dyes.  相似文献   

18.
Hordeum chilense Roem. et Schult. is a native South American diploid wild barley included in the section Anisolepis Nevski. H. chilense occurs exclusively in Chile and Argentina and has been used in the synthesis of a new amphiploid named tritordeum (×Tritordeum Ascherson et Graebner). The HMW glutenin subunits of H. chilense have a great influence on gluten strength of tritordeum. The variability of these proteins has been analysed electrophoretically, and up to ten allelic variants have been detected in a world collection of this species. This genetic variability has been included in 121 lines of tritordeum and could be used for widening the genetic basis of tritordeum and wheat. Received: 22 March 2000 / Accepted: 14 April 2000  相似文献   

19.
小麦新品种(系)Glu-1位点等位基因变异研究   总被引:3,自引:1,他引:2  
应用SDS-PAGE技术分析了40份小麦新品种(系)的高分子量麦谷蛋白亚基等位基因变异。在Glu-1位点共检测到10种变异类型,其中Glu-Al位点有3种类型:Null、1、26 ,Glu-B1位点有5种类型:7 8、7 9、14 15、7、17 18,Glu-D1位点有2种类型:2 12、5 10;Null(54.3%)、7 8(51.4%)和2 12(62.9%)分别是Glu-Al、Glu-B1和Glu-D1位点上的主要亚基变异类型。另外,在2份材料的Glu-B1和Glu-D1位点各检测到1个新的亚基,分别命名为1By8.1和1Dx5^ 。Glu-1位点的Nei‘s遗传变异指数平均为0,5648,Glu-B1的遗传多样性最高,Glu-D1最低。供试小麦材料Glu-1位点的HMW-GS组合共有17种类型,以(Null,7 8,2 12)组合为主要类型,占31.4%;有9种亚基组合类型分别只在1份材料中出现,占26.1%。结果表明,这些小麦新品种(系)存在着丰富的亚基组合类型。  相似文献   

20.
Five wheat (Triticum aestivum) varieties differing in chapati quality characteristics viz. C-306, K-68, HD-2745 and HD-2735 with good and Sonalika with poor chapati quality characteristics, were selected for the characterization or distribution of glutenin genes. Polymorphism was observed when genomic DNA of wheat varieties was hybridized with a HMW glutenin probe [glutenin subunit 10 (Dy10)]. No hybridization was observed in Sonalika. PCR amplification of genomic DNA with the LMW glutenin gene-specific primers did not show any polymorphism. However, with HMW glutenin gene-specific primers a single band of ~ 650 by was obtained in all the good chapati characteristic wheat varieties.The amplified fragment was sequenced and found to have sequence homology with HMW glutenin subunit Dx5.The deduced protein structure analysis showed that the peptide was made up of N-terminally placed (x-helices and centrally placed repetitive β-turns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号