首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
A G-protein coupled receptor to niacin (nicotinic acid) was identified recently but the physiological/pharmacological role of the receptor remains poorly defined. We present our studies to demonstrate that HM74A, but not HM74, binds niacin at high affinities and effectively mediates Gi signaling events in human embryonic kidney HEK293 cells as well as in 3T3L1 adipocytes expressing HM74A. Furthermore, HM74A, but not HM74, expressed in differentiated 3T3L1 adipocytes effectively mediated inhibition of lipolysis by niacin. Our results provided direct evidence indicating that HM74A, but not HM74, was sufficient to mediate anti-lipolytic effect of niacin in adipose tissue.  相似文献   

2.
HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A(2) (PLA(2))/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca(2+)-mobilization and enhanced bradykinin-promoted Ca(2+)-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARgamma agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.  相似文献   

3.
Nicotinic acid (niacin) has been widely used as a lipid-lowering drug for several decades, and recently, orphan G protein-coupled receptor GPR109A has been identified as a receptor for niacin. Mechanistic investigations have shown that, upon niacin activation, GPR109A couples to a Gi protein and inhibits adenylate cyclase activity, leading to inhibition of liberation of free fatty acid. However, the underlying molecular mechanisms for GPR109A signaling remain largely unknown. Using CHO-K1 cells stably expressing GPR109A and A431 cells, which are a human epidermoid cell line with high levels of endogenous expression of functional GPR109A receptors, we found that activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by niacin was rapid, peaking at 5 min, and was significantly blocked by pertussis toxin. Furthermore, time course experiments with different kinase inhibitors demonstrated that GPR109A induced ERK1/2 activation via the matrix metalloproteinase/epidermal growth factor receptor transactivation pathway at both early and later time points (2–5 min); this pathway was distinct from the PKC pathway-mediated ERK1/2 phosphorylation that occurs at early time points (≤2 min) in response to niacin. Overexpression of Gβγ subunit scavengers βARK1-CT and the Gα subunit of transducin led to a significant reduction of ERK1/2 phosphorylation, suggesting a critical role for βγ subunits in GPR109A-activated ERK1/2 phosphorylation. Using arrestin-2/3-specific siRNA and an internalization-deficient GPR109A mutant, we found that arrestin-2 and arrestin-3 were not involved in GPR109A-mediated ERK1/2 activation. In conclusion, our findings demonstrate that upon binding to niacin GPR109A receptors initially activate Gi, leading to dissociation of the Gβγ subunit from activated Gi, and subsequently induce ERK1/2 activation via two distinct pathways, one PKC-dependent pathway occurring at a peak time of ≤2 min and the other matrix metalloproteinase-dependent growth factor receptor transactivation occurring at both early and later time points (2–5 min).  相似文献   

4.
Pyrido pyrimidinones are selective agonists of the human high affinity niacin receptor GPR109A (HM74A). They show no activity on the highly homologous low affinity receptor GPR109B (HM74). Starting from a high throughput screening hit the in vitro activity of the pyrido pyrimidinones was significantly improved providing lead compounds suitable for further optimization.  相似文献   

5.
G protein-coupled receptors (GPCRs) have the potential to play a role as molecular sensors responsive to luminal dietary contents. Although such a role for GPCRs has been implicated in the intestinal response to protein hydrolysate, no GPCR directly involved in this process has been previously identified. In the present study, for the first time, we identified GPR93 expression in enterocytes and demonstrated its activation in these cells by protein hydrolysate with EC50 of 10.6 mg/ml as determined by the induction of intracellular free Ca2+. In enterocytes, GPR93 was synergistically activated by protein hydrolysate in combination with an agonist, oleoyl-l-alpha-lysophosphatidic acid (LPA), which activated the receptor in these enterocytes with EC50 of 7.9 nM. The increased intracellular Ca2+ by GPR93 activation was observed without the addition of a promiscuous Galpha protein and was pertussis toxin sensitive, which suggests Galpha(q)- and Galpha(i)-mediated pathways. Activated GPR93 also induced pertussis toxin-sensitive ERK1/2 phosphorylation. Both nuclear factor of activated T cells and 12-O-tetradecanoylphorbol 13-acetate responsive elements reporter activities were induced by protein hydrolysate in cells exogenously expressing GPR93. The peptidomimetic cefaclor by itself did not activate GPR93 but potentiated the protein hydrolysate response and further amplified the synergistic enhancement of GPR93 activation by protein hydrolysate and LPA. These data suggest that, physiologically, the composition of stimuli might determine GPR93 activity or its sensitivity toward a given activator and suggest a new mechanism of the regulation of mucosal cell proliferation and differentiation and hormonal secretion by dietary products in the lumen.  相似文献   

6.
A series of 5-N,N-disubstituted-5-aminopyrazole-3-carboxylic acids were prepared and found to act as highly potent and selective agonists of the G-Protein Coupled Receptor (GPCR) GPR109b, a low affinity receptor for niacin and some aromatic d-amino acids. Little activity was observed at the highly homologous higher affinity niacin receptor, GPR109a.  相似文献   

7.
Nicotinic acid (niacin), a vitamin of the B complex, has been used for almost 50 years as a lipid-lowering drug. The pharmacological effect of nicotinic acid requires doses that are much higher than those provided by a normal diet. Its primary action is to decrease lipolysis in adipose tissue by inhibiting hormone-sensitive triglyceride lipase. This anti-lipolytic effect of nicotinic acid involves the inhibition of cyclic adenosine monophosphate (cAMP) accumulation in adipose tissue through a G(i)-protein-mediated inhibition of adenylyl cyclase. A G-protein-coupled receptor for nicotinic acid has been proposed in adipocytes. Here, we show that the orphan G-protein-coupled receptor, 'protein upregulated in macrophages by interferon-gamma' (mouse PUMA-G, human HM74), is highly expressed in adipose tissue and is a nicotinic acid receptor. Binding of nicotinic acid to PUMA-G or HM74 results in a G(i)-mediated decrease in cAMP levels. In mice lacking PUMA-G, the nicotinic acid-induced decrease in free fatty acid (FFA) and triglyceride plasma levels was abrogated, indicating that PUMA-G mediates the anti-lipolytic and lipid-lowering effects of nicotinic acid in vivo. The identification of the nicotinic acid receptor may be useful in the development of new drugs to treat dyslipidemia.  相似文献   

8.
The special glycerophospholipids plasmalogens (Pls) are enriched in the brain and reported to prevent neuronal cell death by enhancing phosphorylation of Akt and ERK signaling in neuronal cells. Though the activation of Akt and ERK was found to be necessary for the neuronal cells survival, it was not known how Pls enhanced cellular signaling. To answer this question, we searched for neuronal specific orphan GPCR (G-protein coupled receptor) proteins, since these proteins were believed to play a role in cellular signal transduction through the lipid rafts, where both Pls and some GPCRs were found to be enriched. In the present study, pan GPCR inhibitor significantly reduced Pls-induced ERK signaling in neuronal cells, suggesting that Pls could activate GPCRs to induce signaling. We then checked mRNA expression of 19 orphan GPCRs and 10 of them were found to be highly expressed in neuronal cells. The knockdown of these 10 neuronal specific GPCRs by short hairpin (sh)-RNA lentiviral particles revealed that the Pls-mediated phosphorylation of ERK was inhibited in GPR1, GPR19, GPR21, GPR27 and GPR61 knockdown cells. We further found that the overexpression of these GPCRs enhanced Pls-mediated phosphorylation of ERK and Akt in cells. Most interestingly, the GPCRs-mediated cellular signaling was reduced significantly when the endogenous Pls were reduced. Our cumulative data, for the first time, suggest a possible mechanism for Pls-induced cellular signaling in the nervous system.  相似文献   

9.
10.
Nicotinic acid has been used for several decades to treat dyslipidemia. In mice, the lipid-lowing effect of nicotinic acid is mediated by the Gi coupled receptor PUMA-G. In humans, high (GPR109A) and low (GPR109B) affinity nicotinic acid receptors have been characterized. Here we identify monomethylfumarate as a GPR109A agonist. Monomethylfumarate is the active metabolite of the psoriasis drug Fumaderm. We show that monomethylfumarate activates GPR109A in a calcium based aequorin assay, cAMP assay and demonstrate competitive binding with nicotinic acid. We show that GPR109A is highly expressed in neutrophils and epidermal keratinocytes, and that its expression is increased in human psoriatic lesions. Our findings provide evidence that GPR109A is a target for the drug Fumaderm and suggest that niacin should be investigated to treat psoriasis in addition to its role in treating lipid disorders.  相似文献   

11.
A urea class of high affinity niacin receptor agonists was discovered. Compound 1a displayed good PK, better in vivo efficacy in reducing FFA in mouse than niacin, and no vasodilation in a mouse model. Compound 1q demonstrated equal affinity to GPR109A as niacin.  相似文献   

12.
Until recently, the anti-atherosclerotic effects of niacin were attributed primarily to its lipid modification properties mediated by adipocyte G-protein coupled receptor GPR109A, though recent studies have raised significant doubts about this mechanism. In fact, in rodents it has recently been demonstrated that niacin inhibits progression of atherosclerosis through actions on immune cells, particularly via macrophage-expressed GPR109A, independent of lipid-modifying properties. Here, we studied GPR109A signal transduction in human Langerhans cells, macrophages and adipocytes. We find that the consequences of receptor activation are profoundly influenced by cellular context and that ligand-biased signaling significantly impacts functionally relevant signaling. In Langerhans cells, niacin initiates GPR109A-mediated signaling pathways (Erk1/2 and Ca2 +) responsible for the release of vasodilatory prostanoids, while the synthetic GPR109A agonist MK-0354 fails to elicit any signaling, providing a mechanistic basis for the latter compound's inability to cause flushing. While GPR109A mediates inhibition of cAMP in adipocytes, in macrophages GPR109A signaling via Gβγ subunits results in paradoxical augmentation of intracellular cAMP levels. Also, in macrophages niacin and GPR109A full agonists induce Erk1/2 and Ca2 + signaling, release of prostanoids, upregulation of cholesterol transporters ABCA1 and ABCG1 and stimulation of reverse cholesterol transport in GPR109A dependent manner. A mechanism is presented in which signals from the autocrine action of released prostanoids and Gi protein mediated cAMP augmentation are integrated leading to modulation of reverse cholesterol transport regulatory components. These studies provide key insights into mechanisms by which GPR109A may influence cholesterol efflux in macrophages; a process that may be at least partially responsible for niacin's anti-atherosclerotic activity. MK-0354 does not induce niacin-like GPR109A signaling in macrophages, suggesting that biased agonists devoid of the flushing side-effect may also lack properties required for macrophage-mediated anti-atherosclerotic effects.  相似文献   

13.
Nicotinic acid (niacin) has been widely used as a favorable lipid-lowering drug for several decades, and the orphan G protein-coupled receptor GPR109A has been identified to be a receptor for niacin. Mechanistic investigations have shown that as a Gi-coupled receptor, GPR109A inhibits adenylate cyclase activity upon niacin activation, thereby inhibiting free fatty acid liberation. However, the underlying molecular mechanisms that regulate signaling and internalization of GPR109A remain largely unknown. To further characterize GPR109A internalization, we made a construct to express GPR109A fused with enhanced green fluorescent protein (EGFP) at its carboxyl-terminal end. In stable GPR109A-EGFP-expressing HEK-293 cells, GPR109A-EGFP was mainly localized at the plasma membrane and was rapidly internalized in a dose- and time-dependent manner upon agonist stimulation. GPR109A internalization was completely blocked by hypertonic sucrose, indicating that GPR109A internalizes via the clathrin-coated pit pathway. Further investigation demonstrated that internalized GPR109A was recycled to the cell surface after the removal of agonist, and recycling of the internalized receptors was not blocked by treatment with acidotropic agents, NH4Cl and monensin. Pertussis toxin pretreatment not only inhibited forskolin-induced cAMP accumulation and intracellular Ca2+ mobilization; it also significantly attenuated agonist-promoted GPR109A internalization. Moreover, RNA interference experiments showed that knockdown of GRK2 (G protein-coupled receptor kinase 2) and arrestin3 expression significantly impaired receptor internalization. Taken together, these results indicate that the agonist-induced internalization of GPR109A receptors is regulated by GRK2 and arrestin3 in a pertussis toxin-sensitive manner and that internalized receptor recycling is independent of endosomal acidification.  相似文献   

14.
Free fatty acids (FFAs) provide an important energy source and also act as signaling molecules. FFAs are known to exert a variety of physiological responses via their G protein-coupled receptors (GPCRs), such as the GPR40 family. Recently, we identified a novel FFA receptor, GPR120, that promotes secretion of glucagon-like peptide-1 (Hirasawa, A., Tsumaya, K., Awaji, T., Katsuma, S., Adachi, T., Yamada, M., Sugimoto, Y., Miyazaki, S., and Tsujimoto, G. (2005) Nat. Med. 11, 90-94). Here we showed that FFAs inhibit serum deprivation-induced apoptosis of murine enteroendocrine STC-1 cells, which express two types of GPCRs, GPR120 and GPR40, for unsaturated long chain FFA. We first found that linolenic acid potently activated ERK and Akt/protein kinase B (Akt) in STC-1 cells. ERK kinase inhibitors significantly reduced the anti-apoptotic effects of linolenic acid. Inhibitors for phosphatidylinositol 3-kinase (PI3K), a major target of which is Akt, significantly reduced the anti-apoptotic effects. Transfection of STC-1 cells with the dominant-negative form of Akt also inhibited the anti-apoptotic effect. These results suggested that the activation of ERK and PI3K-Akt pathways is required for FFA-induced anti-apoptotic effects on STC-1 cells. Transient transfection of STC-1 cells with GPR120 cDNA, but not GPR40 cDNA, enhanced inhibition of caspase-3 activation. RNA interference experiments showed that reduced expression of GPR120, but not GPR40, resulted in reduced ERK activation and reduced effects of FFAs on caspase-3 inhibition. Collectively, these results demonstrated that FFAs promote the activation of ERK and PI3K-Akt pathways mainly via GPR120, leading to the anti-apoptotic effect of STC-1 cells.  相似文献   

15.
Context: The “free fatty acid receptors” (FFARs) GPR40, GPR41, and GPR43 regulate various physiological homeostases, and are all linked to activation of extracellular signal-regulated kinases (ERK)1/2.

Objective: Investigation of coupling of FFARs to two other mitogen-activated protein kinases (MAPKs) sometimes regulated by G protein-coupled receptors (GPCRs), c-Jun N-terminal kinase (JNK) and p38MAPK, and characterization of signaling proteins involved in the regulation of FFAR-mediated ERK1/2 activation.

Methods: FFARs were recombinantly expressed, cells challenged with the respective agonist, and MAPK activation quantitatively determined using an AlphaScreen SureFire assay. Inhibitors for signaling proteins were utilized to characterize ERK1/2 pathways.

Results: Propionate-stimulated GPR41 strongly coupled to ERK1/2 activation, while the coupling of linoleic acid-activated GPR40 and acetate-activated GPR43 was weaker. JNK and p38MAPK were weakly activated by FFARs. All three receptors activated ERK1/2 fully or partially via Gi/o and Rac. PI3K was relevant for GPR40- and GPR41-mediated ERK1/2 activation, and Src was essential for GPR40- and GPR43-induced activation. Raf-1 was not involved in the GPR43-triggered activation.

Conclusion: The results demonstrate a novel role of Rac in GPCR-mediated ERK1/2 signaling, and that GPCRs belonging to the same family can regulate ERK1/2 activation by different receptor-specific mechanisms.  相似文献   

16.
A series of 3-nitro-4-substituted-aminobenzoic acids were prepared and found to act as potent and highly selective agonists of the orphan human GPCR GPR109b, a low affinity receptor for niacin. No activity was observed at the closely homologous high affinity niacin receptor, GPR109a. A second series, comprising 6-amino-substituted nicotinic acids was, also prepared and several analogues showed comparable activity to the nitroaryl series.  相似文献   

17.
The recently deorphanized niacin receptor subtypes NIACR1 (GPR109A) and NIACR2 (GPR109B) play an essential role in the regulation of metabolic processes and immune reactions. Both receptors belong to the G-protein-coupled receptor (GPCR) family, whose members have traditionally been treated as monomeric entities, but now appear to exist and function as both homodimers and heterodimers. In this study, a close physical interaction is shown between the highly homologous niacin receptor subtypes, NIACR1 and NIACR2, using bioluminescence resonance energy transfer (BRET2) in living cells. The extent of homo- and hetero-dimerization of the niacin receptors did not vary after activation of the receptors with selective agonists, indicating that the dimerization state of NIACR1 and NIACR2 is not regulated by ligand binding. Moreover, detection of niacin receptor dimers in both plasma membrane- and endoplasmic reticulum-enriched fractions suggests that they are formed early in the biosynthetic pathway. Taken together, these results demonstrate that niacin receptor dimerization is a constitutive process occurring early during biosynthesis.  相似文献   

18.
The lysophospholipids, lysophosphatidic acid, sphingosine-1-phosphate, and sphingosylphosphorylcholine (SPC), are bioactive lipid molecules that regulate diverse biological processes. Although the specific G protein-coupled receptors for lysophosphatidic acid and sphingosine-1-phosphate have been well-characterized, much less is known of the SPC receptors. It has been reported that ovarian cancer G protein-coupled receptor 1 (OGR1) is a high affinity receptor for SPC, and its closely related homologue GPR4 is a high affinity receptor for SPC with low affinity for lysophosphatidylcholine (LPC). However, in a functional assay to examine the specificity of ligand binding, we found that neither SPC nor LPC, or other related lysophospholipids, induced internalization of GPR4 from the plasma membrane. In agreement, these lysolipids also did not induce translocation of beta-arrestin2-GFP from the cytosol to the plasma membrane in GPR4 expressing cells. However, when these cells were cotransfected with G protein-coupled receptor kinase 2, in the absence of added ligands, beta-arrestin2-GFP accumulated in cytoplasmic vesicles, reminiscent of vesicular labeling usually observed after agonist stimulation of GPCRs. In addition, neither SPC nor LPC stimulated the binding of GTPgammaS to membranes prepared from GPR4 expressing cells and did not activate ERK1/2. Surprisingly, enforced expression of GPR4 inhibited activation of ERK1/2 induced by several stimuli, including SPC, sphingosine-1-phosphate, and even EGF. Collectively, our results suggest that SPC and LPC are not the ligands for GPR4 and that this receptor may constitutively inhibit ERK1/2 activation.  相似文献   

19.

Background

Anecdotal animal and human studies have implicated the symptomatic and neuroprotective roles of niacin in Parkinson’s disease (PD). Niacin has a high affinity for GPR109A, an anti-inflammatory receptor. Niacin is also thought to be involved in the regulation of circadian rhythm. Here we evaluated the relationships among the receptor, niacin levels and EEG night-sleep in individuals with PD.

Methods and Findings

GPR109A expression (blood and brain), niacin index (NAD-NADP ratio) and cytokine markers (blood) were analyzed. Measures of night-sleep function (EEG) and perceived sleep quality (questionnaire) were assessed. We observed significant up-regulation of GPR109A expression in the blood as well as in the substantia nigra (SN) in the PD group compared to age-matched controls. Confocal microscopy demonstrated co-localization of GPR109A staining with microglia in PD SN. Pro and anti-inflammatory cytokines did not show significant differences between the groups; however IL1-β, IL-4 and IL-7 showed an upward trend in PD. Time to sleep (sleep latency), EEG REM and sleep efficiency were different between PD and age-matched controls. Niacin levels were lower in PD and were associated with increased frequency of experiencing body pain and decreased duration of deep sleep.

Conclusions

The findings of associations among the GPR109A receptor, niacin levels and night-sleep function in individuals with PD are novel. Further studies are needed to understand the pathophysiological mechanisms of action of niacin, GPR109A expression and their associations with night-sleep function. It would be also crucial to study GPR109A expression in neurons, astrocytes, and microglia in PD. A clinical trial to determine the symptomatic and/or neuroprotective effect of niacin supplementation is warranted.  相似文献   

20.
G protein-coupled receptor (GPR)109A (HM74A) is a G(i) protein-coupled receptor, which is activated by nicotinic acid (NA), a lipid-lowering drug. Here, we demonstrate that mature human neutrophils, but not eosinophils, express functional GPR109A receptors. The induction of the GPR109A gene appears to occur late in the terminal differentiation process of neutrophils, since a mixed population of immature bone marrow neutrophils did not demonstrate evidence for its expression. NA accelerated apoptosis in cultured neutrophils in a concentration-dependent manner, as assessed by phosphatidylserine redistribution, caspase-3 activation, and DNA fragmentation assays. The pro-apoptotic effect of NA was abolished by pertussis toxin, which was used to block G(i) proteins, suggesting a receptor-mediated mechanism. Activation of GPR109A by NA resulted in decreased levels of cyclic adenosine monophosphate (cAMP), most likely due to G(i)-mediated inhibition of adenylyl cyclase activity. NA-induced apoptosis was reversed by the addition of cell-permeable cAMP, pointing to the possibility that reduced cAMP levels promote apoptosis in neutrophils. Distal mechanism involved in this process may include the post-translational modification of members of the Bcl-2 family, such as dephosphorylation of pro-apoptotic Bad and antiapoptotic Mcl-1 proteins. Taken together, following maturation in the bone marrow, neutrophils express functional GPR109A receptors, which might be involved in the regulation of neutrophil numbers. Moreover, this study identified a new cellular target of NA and future drugs activating GPR109A receptors, the mature neutrophil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号