首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microdamage density has been shown to increase with age in trabecular bone and is associated with decreased fracture toughness. Numerous studies of crack propagation in cortical bone have been conducted, but data in trabecular bone is lacking. In this study, propagation of severe, linear, and diffuse damage was examined in trabecular bone cores from the femoral head of younger (61.3±3.1 years) and older (75.0±3.9 years) men and women. Using a two-step mechanical testing protocol, damage was first initiated with static uniaxial compression to 0.8% strain then propagated at a normalized stress level of 0.005 to a strain endpoint of 0.8%. Coupling mechanical testing with a dual-fluorescent staining technique, the number and length/area of propagating cracks were quantified. It was found that the number of cycles to the test endpoint was substantially decreased in older compared to younger samples (younger: 77,372±15,984 cycles; older: 34,944±11,964 cycles, p=0.06). This corresponded with a greater number of severely damaged trabeculae expanding in area during the fatigue test in the older group. In the younger group, diffusely damaged trabeculae had a greater damage area, which illustrates an efficient energy dissipation mechanism. These results suggest that age-related differences in fatigue life of human trabecular bone may be due to differences in propagated microdamage morphology.  相似文献   

2.
Cortical bone specimens were damaged using repeated blocks of tensile creep loading until a near-terminal amount of creep damage was generated (corresponding to a reduction in elastic modulus of 15%). One group of cortical bone specimens was submitted to the near-terminal damage protocol and subsequently underwent fatigue loading in tension with a maximum strain of 2000 με (Damage Fatigue, n=5). A second group was submitted to cyclic fatigue loading but was not pre-damaged (Control Fatigue, n=5). All but one specimen (a damaged specimen) reached run-out (10 million cycles, 7.7 days). No significant differences in microscopic cracks or other tissue damage were observed between the two groups or between either group and additional, completely unloaded specimens. Our results suggest that damage in cortical bone allograft that is not obvious or associated with a stress riser may not substantially affect its fatigue life under physiologic loading.  相似文献   

3.
Relatively small amounts of microdamage have been suggested to have a major effect on the mechanical properties of bone. A significant reduction in mechanical properties (e.g. modulus) can occur even before the appearance of microcracks. This study uses a novel non-linear microdamaging finite-element (FE) algorithm to simulate the low-cycle fatigue behavior of high-density trabecular bone. We aimed to investigate if diffuse microdamage accumulation and concomitant modulus reduction, without the need for complete trabecular strut fracture, may be an underlining mechanism for low-cycle fatigue failure (defined as a 30% reduction in apparent modulus). A microCT constructed FE model was subjected to a single cycle monotonic compression test, and constant and variable amplitude loading scenarios to study the initiation and accumulation of low-cycle fatigue microdamage. Microcrack initiation was simulated using four damage criteria: 30%, 40%, 50% and 60% reduction in bone element modulus (el-MR). Evaluation of structural (apparent) damage using the four different tissue level damage criteria resulted in specimen fatigue failure at 72, 316, 969 and 1518 cycles for the 30%, 40%, 50% and 60% el-MR models, respectively. Simulations based on the 50% el-MR model were consistent with previously published experimental findings. A strong, significant non-linear, power law relationship was found between cycles to failure (N) and effective strain (Deltasigma/E(0)): N=1.394x10(-25)(Deltasigma/E(0))(-12.17), r(2)=0.97, p<0.0001. The results suggest that microdamage and microcrack propagation, without the need for complete trabecular strut fracture, are mechanisms for high-density trabecular bone failure. Furthermore, the model is consistent with previous numerical fatigue simulations indicating that microdamage to a small number of trabeculae results in relatively large specimen modulus reductions and rapid failure.  相似文献   

4.
Mechanical fatigue of bone cement leading to damage accumulation is implicated in the loosening of cemented hip components. Even though cracks have been identified in autopsy-retrieved mantles, damage accumulation by continuous growth and increase in number of microcracks has not yet been demonstrated experimentally. To determine just how damage accumulation occurs in the cement layer of a hip replacement, a physical model of the joint was used in an experimental study. The model regenerates the stress pattern found in the cement layers whilst at the same time allowing visualisation of microcrack initiation and growth. In this way the gradual process of damage accumulation can be determined. Six specimens were tested to 5 million cycles and a total of 1373 cracks were observed. It was found that, under the flexural loading allowed by the model, the majority of cracks come from pores in the bulk cement and not from the interfaces. Furthermore, the lateral and medial sides have statistically different damage accumulation behaviours, and pre-load cracks significantly accelerate the damage accumulation process. The experimental results confirm that damage accumulation commences early on in the loading history and that it is continuously increasing with load in the form of crack initiation and crack propagation. The results highlight the importance of replicating the loading and restraint conditions of clinical cement mantles when endeavouring to accurately model the damage accumulation process.  相似文献   

5.
Peak stress levels predicted in finite element analysis (FEA) usually depend on mesh density, due to singular points in the model. In an earlier study, an FEA algorithm was developed to simulate the damage accumulation process in the cement mantle around total hip replacement (THR) implants. It allows cement crack formation to be predicted, as a function of the local cement stress levels. As the simulation is driven by mesh-dependent peak stresses, predicted crack formation rates are also likely to be mesh dependent. The aim of this study was to evaluate the mesh dependence of the predicted crack formation process, and to present a method to reduce the mesh dependence. Crack-propagation experiments were simulated. Experimental specimens, representing transverse slices of cemented THR reconstructions, were subjected to cyclic torsional loading. Crack development around the corners of the stem was monitored. The experiments were simulated using three meshes with increasing levels of mesh refinement. Crack locations and orientations were accurately predicted, and were virtually independent of the level of mesh refinement. However, the experimental crack propagation rates were overestimated considerably, increasing with mesh refinement. To eliminate the effect of stress singularities around the corners of the stem, a stress averaging algorithm was applied in the simulation. This algorithm redistributed the stresses by weighted spatial averaging. When damage accumulation was computed based on averaged stresses, the crack propagation rates predicted were independent of the level of mesh refinement. The critical distance, a parameter governing the effect of the averaging algorithm, was optimized such that the predicted crack propagation rates accurately corresponded to the experimental ones. These results are important for the validity and standardization of pre-clinical testing methods for orthopaedic implants.  相似文献   

6.
Despite its clinical importance, the fatigue behaviour of cortical bone has not been examined as widely as its static behaviour. In the present study, specimens from the tibiae of horses have been subjected to load-controlled single step tests. The cyclic deformation behaviour was described by the development of stress-strain hysteresis parameters over the lifetime. The fatigue behaviour of bone is characterised by cyclic softening which is most distinctive towards the end of the lifetime. The microstructural damage accumulated during cyclic loading results in a loss of stiffness, asymmetrical deformation of the bone in tension and compression in cyclic creep. As shown by light and scanning electron microscopy, microcrack formation and growth is the main damage mechanism. The crack growth behaviour is strongly influenced by the microstructure, the stress components and the absolute value of the local stresses. Lower local stresses and/or compressive mean stresses lead to a dominant influence of the shear stress components with shear failure at inner interfaces. With increasing crack length, that is, higher local stress amplitudes, or tensile mean stresses, the microstructure is more and more ignored and failure occurs primarily under the influence of the normal stress components. This can be clearly seen on the fracture and specimen surfaces.  相似文献   

7.
The goal of this study was to quantify the micromechanics of the cement–bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement–bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement–bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties.  相似文献   

8.
Small endosseous implants, such as screws, are important components of modern orthopedics and dentistry. Hence they have to reliably fulfill a variety of requirements, which makes the development of such implants challenging. Finite element analysis is a widely used computational tool used to analyze and optimize implant stability in bone. For these purposes, bone is generally modeled as a continuum material. However, bone failure and bone adaptation processes are occurring at the discrete level of individual trabeculae; hence the assessment of stresses and strains at this level is relevant. Therefore, the aim of the present study was to investigate how peri-implant strain distribution and load transfer between implant and bone are affected by the continuum assumption. We performed a computational study in which cancellous screws were inserted in continuum and discrete models of trabecular bone; axial loading was simulated. We found strong differences in bone-implant stiffness between the discrete and continuum bone model. They depended on bone density and applied boundary conditions. Furthermore, load transfer from the screw to the surrounding bone differed strongly between the continuum and discrete models, especially for low-density bone. Based on our findings we conclude that continuum bone models are of limited use for finite element analysis of peri-implant mechanical loading in trabecular bone when a precise quantification of peri-implant stresses and strains is required. Therefore, for the assessment and improvement of trabecular bone implants, finite element models which accurately represent trabecular microarchitecture should be used.  相似文献   

9.
10.
Microdamage, in the form of small cracks, may accumulate in trabecular bone loaded in fatigue. Specimens of bovine trabecular bone were loaded in compressive fatigue at one of four normalized stresses and loading was stopped after the specimens reached one of six maximum strains. Microdamage was identified using a fluorochrome staining technique, and microdamage parameters, including the number of damaged trabeculae and the damaged area fraction, were measured. No microdamage was observed during loading to strains below the yield strain; at higher strains, all microdamage parameters increased with increasing maximum compressive strain. Few significant differences were observed in the type or amount of microdamage accumulation between specimens loaded to the same maximum strain at different normalized stresses; however, more trabecular fractures were observed at high numbers of cycles, which corresponded to low normalized stresses.  相似文献   

11.
The musculoskeletal system is adept at dissipating potentially damaging energy that could accelerate fracture consequent to multiple loading cycles. Microstructural damage reduces bone's residual properties, but prevents high stresses within the material by dissipating energy that can lead to eventual failure. Thus skeletal microdamage can be viewed as an adaptive process to prevent bone failure by dissipating energy. Because a damaged bone has reduced strength and stiffness, it must be repaired, so bone has evolved a system of self-repair that relies on microdamage-stimulated signaling mechanisms. When repair cannot occur quickly enough, low energy stress fractures can occur. The regulating effects of muscle also prevent failure by controlling where high stresses occur. Acting synergistically, muscle forces dissipate energy by appropriately regulating accelerations and decelerations of the limbs during movement. When muscles become fatigued, these functions are constrained, larger amounts of energy are imparted to bone, increasing the likelihood of microstructural damage and fracture. Thus, healthy bones are maintained by the ability of the musculoskeletal system to dissipate the energy through synergistic muscular activity and through the maintenance of microstructural and material properties that allow for crack initiation, but also for their repair.  相似文献   

12.
A new method using fluorescent light microscopy has been developed to visualize and evaluate bone microdamage. We report the findings of two different experiments with a common aim of comparing the fluorescent light technique to the brightfield method for quantifying microdamage in bone. In Experiment 1, 36 canine femurs were tested in four-point cyclic bending until they had lost between 5 and 43% of their stiffness. The loaded portion of the bone was stained en bloc with basic fuchsin for the presence of damage. Standard point counting techniques were used to calculate fractional damaged area (Dm.Ar = Cr.Ar/B.Ar, mm2/mm2) under brightfield and fluorescent microscopy. In Experiment 2, bone microdamage adjacent to endosseous implants, subjected to fatigue loading (150,000 cycles, 2 Hz and 37 degrees C) ex vivo was examined. The bone around the implant was either allowed to heal (adapted specimen) for 12 weeks after placement in dog mid-femoral diaphyses prior to testing or was loaded immediately to simulate non-healed bone surrounding endosseous implants (non-adapted). Crack numerical density (Cr.Dn = Cr.N/B.Ar, #/mm2), crack surface density (Cr.S.Dn = Tt.Cr.Le/B.Ar, mm/mm2) and fractional damaged area were calculated separately by both techniques in the adapted and non-adapted specimens. In both Experiments 1 and 2, significantly more microdamage was detected by the fluorescent technique than by the brightfield method. Also, there was a trend towards higher intraobserver repeatability when using the fluorescent method. These results suggest that the brightfield technique underestimates microdamage accumulation and that the fluorescent technique better represents the actual amounts of microdamage present. The results demonstrate that the fluorescent method provides an accurate and precise approach for bone microdamage evaluation, and that it improves the prediction of stiffness loss from damage accumulation.  相似文献   

13.
A two-dimensional (2D) finite element (FE) method was used to estimate the ability of bone tissue to sustain damage as a function of postfailure modulus. Briefly, 2D nonlinear compact-tension FE models were created from quantitative back-scattered electron images taken of human iliac crest bone specimens. The effects of different postfailure moduli on predicted microcrack propagation were examined. The 2D FE models were used as surrogates for real bone tissues. The crack number was larger in models with higher postfailure modulus, while mean crack length and area were smaller in these models. The rate of stiffness reduction was greater in the models with lower postfailure modulus. Hence, the current results supported the hypothesis that hard tissue postfailure properties have strong effects on bone microdamage morphology and the rate of change in apparent mechanical properties.  相似文献   

14.
Fragility fractures are a result of alterations in bone quantity, tissue properties, applied loads, or a combination of these factors. The current study addresses the contribution of cortical bone tissue properties to skeletal fragility by characterizing the shear damage accumulation processes which occur during torsional yielding in normal bone. Samples of human femoral cortical bone were loaded in torsion and damaged at a post-yield twist level. The number of microcracks within osteons, interstitial tissue, and along cement lines were assessed using basic fuchsin staining. Damage density measures (number of cracks/mm2) were correlated with stiffness degradation and changes in relaxation. Damaged samples exhibited a wide variation in total microcrack density, ranging from 1.1 to 43.3 cracks/mm2 with a mean density of 19.7 +/- 9.8 cracks/mm2. Lamellar interface cracks comprised more than 75% of the total damage, indicating that the lamellar interface is weak in shear and is a principal site of shear damage accumulation. Damage density was positively correlated with secant stiffness degradation, but only explained 22% of the variability in degradation. In contrast, damage density was uncorrelated with the changes in relaxation, indicating that a simple crack counting measure such as microcrack density was not an appropriate measure of relaxation degradation. Finally, a nonuniform microcrack density distribution was observed, suggesting that internal shear stresses were redistributed within the torsion samples during post-yield loading. The results suggested that the lamellar interface in human cortical bone plays an important role in torsional yielding by keeping cracks physically isolated from each other and delaying microcrack coalescence in order to postpone the inevitable formation of the fatal crack.  相似文献   

15.
An experimental and computational study of screw pullout from cortical bone has been conducted. A novel modification of standard pullout tests providing real time image capture of damage mechanisms during screw pullout was developed. Pullout forces, measured using the novel test rig, have been validated against standard pullout tests. Pullout tests were conducted, considering osteon alignment, to investigate the effect of osteons aligned parallel to the axis of the orthopaedic screw (longitudinal pullout) as well as the effect of osteons aligned perpendicular to the axis of the screw (transverse pullout). Distinctive alternate failure mechanisms, for longitudinally and transversely orientated cortical bone during screw pullout, were uncovered. Vertical crack propagation, parallel to the axis of the screw, was observed for a longitudinal pullout. Horizontal crack propagation, perpendicular to the axis of the screw, was observed for a transverse pullout. Finite element simulation of screw pullout, incorporating material damage and crack propagation, was also performed. Simulations revealed that a homogenous material model for cortical bone predicts vertical crack propagation patterns for both longitudinal and transverse screw pullout. A bi-layered composite model representing cortical bone microstructure was developed. A unique set of material and damage properties was used for both transverse and longitudinal pullout simulations, with only layer orientations being changed. Simulations predicted: (i) higher pullout forces for transverse pullout; (ii) horizontal crack paths perpendicular to screw axis for transverse pullout, whereas vertical crack paths were computed for longitudinal pullout. Computed results agreed closely with experimental observations in terms of pullout force and crack propagation.  相似文献   

16.
A clamped cantilever beam test was developed to determine the fatigue crack propagation rate of the CoCr alloy/PMMA cement interface at high crack tip phase angles. A combination of finite element and experimental methods was used to determine the fatigue crack growth rates of two different CoCr alloy/PMMA cement surfaces. A crack tip phase angle of 69 deg was found, indicating that loading at the crack tip was mixed-mode with a large degree of in-plane shear loading. The energy required to propagate a crack at the interface was much greater for the plasma-sprayed CoCr surface when compared to the PMMA-precoated satin finish (p < 0.001). Both interface surfaces could be modeled using a Paris fatigue crack growth law over crack propagation rates of 10(-4) to 10(-9) m/cycle.  相似文献   

17.
The method of considering a single loading condition in the study of stress/morphology relationships in trabecular bone is expanded to include the multiple loading conditions experienced by bone in vivo. The bone daily loading histories are characterized in terms of stress magnitudes or cyclic strain energy density and the number of loading cycles. Relationships between local bone apparent density and loading history are developed which assume that bone mass is adjusted in response to strength or energy considerations. Three different bone maintenance criteria are described which are formulated based upon: (1) continuum model effective stress, (2) continuum model fatigue damage accumulation density, and (3) bone tissue strain energy density. These approaches can be applied to predict variations in apparent density within bone and among bones. We show that all three criteria have similar mathematical forms and may be related to the density (or concentration) of bone strain energy which is transferred (dissipated) in the mineralized tissue. The loading history and energy transfer concepts developed here can be applied to many different situations of growth, functional adaptation, injury, and aging of connective tissues.  相似文献   

18.
Damage accumulation underlies tendinopathy. Animal models of overuse injuries do not typically control loads applied to the tendon. Our in vivo model in the rat patellar tendon allows direct control of the loading applied to the tendon. Despite this advantage, natural variation among tendons results in different amounts of damage induced by the same loading protocol. Our objectives were to (1) assess changes in the initial mechanical parameters (hysteresis, stiffness of the loading and unloading load-displacement curves, and elongation) after fatigue loading to identify parameters that are indicative of the induced damage, and (2) evaluate the relationships between these identified initial damage indices with the stiffness 7 day after loading. Left patellar tendons of adult, female retired breeder, Sprague-Dawley rats (n = 68) were fatigue loaded per our previously published in vivo fatigue loading protocol. To induce a range of damage, fatigue loading consisted of either 5, 100, 500 or 7200 cycles that ranged from 1 N to 40 N. Diagnostic tests were applied before and immediately after fatigue loading, and after 45 min of recovery to deduce recoverable and non-recoverable changes in initial damage indices. Relationships between these initial damage indices and the 7-day stiffness (at sacrifice) were determined. Day-0 hysteresis, loading and unloading stiffness exhibited cycle-dependent changes. Initial hysteresis loss correlated with the 7-day stiffness. k-means cluster analysis demonstrated a relationship between 7-day stiffness and day-0 hysteresis and unloading stiffness. This analysis also separated samples that exhibited low from high damage in response to both high or low number of cycles; a key delineation for interpretation of the biological response in future studies. Identifying initial parameters that reflect the induced damage is critical since the ability of the tendon to repair depends on the damage induced and the number of applied loading cycles.  相似文献   

19.

Bulk properties of cortical bone have been well characterized experimentally, and potent toughening mechanisms, e.g., crack deflections, have been identified at the microscale. However, it is currently difficult to experimentally measure local damage properties and isolate their effect on the tissue fracture resistance. Instead, computer models can be used to analyze the impact of local characteristics and structures, but material parameters required in computer models are not well established. The aim of this study was therefore to identify the material parameters that are important for crack propagation in cortical bone and to elucidate what parameters need to be better defined experimentally. A comprehensive material parameter study was performed using an XFEM interface damage model in 2D to simulate crack propagation around an osteon at the microscale. The importance of 14 factors (material parameters) on four different outcome criteria (maximum force, fracture energy, crack length and crack trajectory) was evaluated using ANOVA for three different osteon orientations. The results identified factors related to the cement line to influence the crack propagation, where the interface strength was important for the ability to deflect cracks. Crack deflection was also favored by low interface stiffness. However, the cement line properties are not well determined experimentally and need to be better characterized. The matrix and osteon stiffness had no or low impact on the crack pattern. Furthermore, the results illustrated how reduced matrix toughness promoted crack penetration of the cement line. This effect is highly relevant for the understanding of the influence of aging on crack propagation and fracture resistance in cortical bone.

  相似文献   

20.
Fatigue and plaque rupture in myocardial infarction   总被引:2,自引:0,他引:2  
Plaque rupture plays a role in the majority of acute coronary syndromes. Rupture has been associated with stress concentrations, which are affected by tissue properties and anatomy. In this study rupture was not approached as an acute syndrome, but rather as the culmination of a chronic injury or fatigue process. The aim of our study was to investigate the impact of anatomy, tissue properties, and blood pressure on a fatigue mechanism. Incremental crack propagation was dynamically simulated based on evolving stress distributions. Stresses were resolved by a finite element solver, using vessel stiffness properties derived from in vivo data. Plaque fatigue crack growth per pressure pulse was estimated using an adapted Paris-relation. It was demonstrated that cracks begin at the lumen wall at areas of stress concentration, depending on the shape of the lumen, thickness of the fibrous cap and stiffness of the plaque components. Mean or pulse pressure did not affect initiation location. Cracks extended radially and grew at a rate that was highly dependent on both mean and pulse pressure and on lipid stiffness. Rupture rate depended on blood pressure and lipid stiffness. It was concluded that a fatigue mechanism in a pulsatile cardiovascular pressure environment reconciles clinical evidence of acute plaque rupture at seemingly low stress levels, and it could provide a framework for developing strategies to create a biomechanically benign environment which is least conducive to plaque rupture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号