首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Microalgae have long been considered as potential biological feedstock for the production of wide array of bioproducts, such as biofuel feedstock because of their lipid accumulating capability. However, lipid productivity of microalgae is still far below commercial viability. Here, a glucose‐6‐phosphate dehydrogenase from the oleaginous microalga Nannochloropsis oceanica is identified and heterologously expressed in the green microalga Chlorella pyrenoidosa to characterize its function in the pentose phosphate pathway. It is found that the G6PD enzyme activity toward NADPH production is increased by 2.19‐fold in engineered microalgal strains. Lipidomic analysis reveals up to 3.09‐fold increase of neutral lipid content in the engineered strains, and lipid yield is gradually increased throughout the cultivation phase and saturated at the stationary phase. Moreover, cellular physiological characteristics including photosynthesis and growth rate are not impaired. Collectively, these results reveal the pivotal role of glucose‐6‐phosphate dehydrogenase from N. oceanica in NADPH supply, demonstrating that provision of reducing power is crucial for microalgal lipogenesis and can be a potential target for metabolic engineering.  相似文献   

2.

Commercial production of biofuel from oleaginous microalgae is often impeded by their slow growth rate than other fast-growing algal species. A promising strategy is to genetically engineer the fast-growing algae to accumulate lipids by expressing key lipogenic genes from oleaginous microalgae. However, lacking of strong expression cassette to transform most of the algal species and potential metabolic target to engineer lipid metabolism has hindered its biotechnological applications. In this study, we engineered the oxidative pentose phosphate pathway (PPP) of green microalga Chlorella pyrenoidosa for lipid enhancement by expressing a glucose-6-phosphate dehydrogenase (G6PD) from oleaginous diatom Phaeodactylum tricornutum. Molecular characterization of transformed lines revealed that heterologous PtG6PD was transcribed and expressed successfully. Interestingly, subcellular localization analyses revealed that PtG6PD was targeted to chloroplasts of C. pyrenoidosa. PtG6PD expression remarkably elevated NADPH content and consequently enhanced the lipid content without affecting growth rate. Collectively, this report represents a promising candidate to engineer lipid biosynthesis in heterologous hosts with notable commercial significance, and it highlights the potential role of plastidial PPP in supplying lipogenic NADPH in microalgae.

  相似文献   

3.
4.
5.
Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) is the key regulatory enzyme of the pentose phosphate pathway and produces NADPH and riboses. In this study, the kinetic properties of G6PD activity were determined in situ in chemically induced hepatocellular carcinomas, and extralesional and control parenchyma in rat livers and were directly compared with those of the second NADPH-producing enzyme of the pentose phosphate pathway, phosphogluconate dehydrogenase (PGD). Distribution patterns of G6PD activity, protein, and mRNA levels were also compared to establish the regulation mechanisms of G6PD activity. In (pre)neoplastic lesions, the V(max) of G6PD was 150-fold higher and the K(m) for G6P was 10-fold higher than in control liver parenchyma, whereas in extralesional parenchyma, the V(max) was similar to that in normal parenchyma but the K(m) was fivefold lower. This means that virtual fluxes at physiological substrate concentrations are 20-fold higher in lesions and twofold higher in extralesional parenchyma than in normal parenchyma. The V(max) of PGD was fivefold higher in lesions than in normal and extralesional liver parenchyma, whereas the K(m) was not affected. Amounts of G6PD protein and mRNA were similar in lesions and in extralesional liver parenchyma. These results demonstrate that G6PD is strongly activated post-translationally in (pre)neoplastic lesions to produce NADPH.  相似文献   

6.
Microalgae have higher productivity of biomass than the conventional crops of fuel and are therefore, considered a potential biofuel source. Lipid, an important precursor of biodiesel, can be overproduced in microalgae by nitrogen deprivation. During nitrogen deficiency, radicals are overproduced, and the antioxidant levels are insufficient to counteract the radicals. Thus, the increase in cellular oxidative stress level, consequently acts as a stimulus for lipid accumulation. Lipid accumulation requires an excess of acetyl CoA and NADPH that is made possible by the following mechanism. Glycolysis upregulation overproduces pyruvate, which could be further transformed into acetyl CoA by the pyruvate dehydrogenase complex; while the upregulation of the oxidative pentose phosphate cycle generates a high amount of NADPH. In addition to lipid overproduction, the lack of nitrogen often causes the accumulation of carbohydrates in selected species of microalgae, which could be used to generate biogas and bioethanol from the defatted biomass. By providing details on the differential regulation of the biochemical pathways leading to lipid and carbohydrate accumulation in nitrogen starved microalgae, the review opens up new possibilities in the microalgal biofuel production.  相似文献   

7.
Measurements of metabolic fluxes in whole embryos and isolated plastids have revealed major changes in the pathways of carbon utilization during cotyledon filling by oilseed rape (Brassica napus L.) embryos. In the early cotyledon stage (stage A), embryos used sucrose (Suc) predominantly for starch synthesis. Plastids isolated from these embryos imported glucose-6-phosphate (Glc-6-P) and partitioned it to starch and fatty acids synthesis and to the oxidative pentose phosphate pathway in the ratio of 2:1:1 on a hexose basis. Of the substrates tested, Glc-6-P gave the highest rates of fatty acid synthesis by the plastids and pyruvate was used weakly. By the mid- to late-cotyledon stage (stage C), oil accumulation by the embryos was rapid, as was their utilization of Suc for oil synthesis in vitro. Plastids from C-stage embryos differed markedly from those of stage-A embryos: (a) pyruvate uptake and utilization for fatty acid synthesis increased by respectively 18- and 25-fold; (b) Glc-6-P partitioning was predominantly to the oxidative pentose phosphate pathway (respective ratios of 1:1:3); and (c) the rate of plastidial fatty acid synthesis more than doubled. This increased rate of fatty synthesis was dependent upon the increase in pyruvate uptake and was mediated through the induction of a saturable transporter activity.  相似文献   

8.
Photosynthetic microalgae are of burgeoning interest in the generation of commercial bioproducts. Microalgae accumulate high lipid content under adverse conditions, which in turn compromise their growth and hinder their commercial potential. Hence, it is necessary to engineer microalgae to mitigate elevated lipid accumulation and biomass. In this study, we identified acetyl-CoA carboxylase (ACCase) in oleaginous microalga Phaeodactylum tricornutum (PtACC2) and expressed constitutively in the chloroplast to demonstrate the potential of chloroplast engineering. Molecular characterization of transplastomic microalgae revealed that PtACC2 was integrated, transcribed and expressed successfully, and localized in the chloroplast. Enzymatic activity of ACCase was elevated by 3.3-fold, and the relative neutral lipid content increased substantially by 1.77-fold, and lipid content reached up to 40.8% of dry weight. Accordingly, the number and size of oil bodies markedly increased. Fatty acid profiling showed that the content of monounsaturated fatty acids increased, while polyunsaturated fatty acids decreased. This method provides a valuable genetic engineering toolbox for microalgal bioreactors with industrial significance.  相似文献   

9.
The influence of both the lipid composition of microalgal diets and commercial flours on the lipid classes and fatty acids of Ruditapes decussatus spat was studied. These aspects of the nutritional value of the diets were discussed in relation to the growth of the spat. Four diets were tested; Diet A, composed of 100% of the daily food ration of microalgae; Diet B, composed of 100% of wheatgerm; Diet C, composed of 50% of microalgae and 50% of wheatgerm; and Diet D, composed of 25% of microalgae and 75% of wheatgerm. The microalgal cells present a higher lipid content than that for wheatgerm. Tahitian Isochrysis cells have phospholipids and triacylglycerols as majority lipids, whereas in the wheatgerm particles, the lipids more abundant are triacylglycerols. Fatty acid content was higher in the microalgal cells than in the wheatgerm particles. The n-3 fatty acids were the most abundant acids in the microalgae, whereas the n-6 fatty acids were in the wheatgerm. The n-3 PUFA were not detected in wheatgerm. Phospholipids were the main lipids present in the clam spat, followed by triacylglycerols. Other lipid classes, detected in significantly lower amounts, included free fatty acids, sterols, and sterol ester + waxes. The composition of fatty acids in the spat was influenced by the fatty acid composition of the diet. Highest spat growth rates were observed with those diets that present a higher phospholipid/triacylglycerol relation. A negative correlation in the relation n-6/n-3 vs. growth has also been observed, with better growth rates in diets with a lower ratio. If the fatty acid 20:5n-3 and 22:6n-3 considered "essential" for marine animals were not present in the diet, they were not present in the spat either. Desaturation and elongation capabilities of R. decussatus spat were also discussed.  相似文献   

10.
植物戊糖磷酸途径及其两个关键酶的研究进展   总被引:7,自引:1,他引:6  
戊糖磷酸途径是植物体中糖代谢的重要途径,主要生理功能是产生供还原性生物合成需要的NADPH,可供核酸代谢的磷酸戊糖以及一些中间产物可参与氨基酸合成和脂肪酸合成等.葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶是戊糖磷酸途径的两个关键酶,广泛的分布于高等植物的胞质和质体中.本文综述了植物戊糖磷酸途径及其两个关键酶的分子生物学的研究进展,讨论了该途径在植物生长发育和环境胁迫应答中的作用.  相似文献   

11.
Lipid synthesis from acetate-1-(14)C by rat skin was inhibited 44-56% by 2.5 x 10(-4) m dehydroepiandrosterone (DHA) in vitro with or without addition of glucose in the incubation medium. This inhibition affected all the lipid fractions examined (hydrocarbons, sterols, sterol esters, tri-, di- and monoglycerides, fatty acids, and polar lipids) and could be reversed by NADPH. DHA also inhibited lipid synthesis from glucose-U-(14)C and the formation of (14)CO(2) from glucose-1-(14)C, indicating interference with pentose cycle activity. Experiments with the 105,000 g supernatant fluid of rat skin homogenates demonstrated considerable activities of malic enzyme (ME) (12.6 nmoles of NADPH generated per min per mg of protein), of glucose-6-phosphate dehydrogenase (G6PD), and of 6-phosphogluconate dehydrogenase (6PGD) (17.5 nmoles of NADPH generated per min per mg of protein). G6PD was inhibited 98% by 2.5 x 10(-4) m dehydroepiandrosterone, while 6PGD and ME were not affected. It can be estimated from these data that the pentose cycle may contribute 41-57% of the NADPH needed for lipid synthesis in rat skin; the remainder of the necessary NADPH is presumably supplied by malic enzyme.  相似文献   

12.
The initial and rate-limiting enzyme of the oxidative pentose phosphate shunt, glucose-6-phosphate dehydrogenase (G6PD), is inhibited by NADPH and stimulated by NADP(+). Hence, under normal growth conditions, where NADPH levels exceed NADP(+) levels by as much as 100-fold, the activity of the pentose phosphate cycle is extremely low. However, during oxidant stress, pentose phosphate cycle activity can increase by as much as 200-fold over basal levels, to maintain the cytosolic reducing environment. G6PD-deficient (G6PD(-)) cell lines are sensitive to toxicity induced by chemical oxidants and ionizing radiation. Compared to wild-type CHO cells, enhanced sensitivity to ionizing radiation was observed for G6PD(-) cells exposed to single-dose or fractionated radiation. Fitting the single-dose radiation response data to the linear-quadratic model of radiation-induced cytotoxicity, we found that the G6PD(-) cells exhibited a significant enhancement in the alpha component of radiation-induced cell killing, while the values obtained for the beta component were similar in both the G6PD(-) and wild-type CHO cell lines. Here we report that the enhanced alpha component of radiation-induced cell killing is associated with a significant increase in the incidence of ionizing radiation-induced apoptosis in the G6PD(-) cells. These data suggest that G6PD and the oxidative pentose phosphate shunt protect cells from ionizing radiation-induced cell killing by limiting the incidence of radiation-induced apoptosis. The sensitivity to radiation-induced apoptosis was lost when the cDNA for wild-type G6PD was transfected into the G6PD(-) cell lines. Depleting GSH with l-BSO enhanced apoptosis of K1 cells while having no effect in the G6PD(-) cell line  相似文献   

13.
14.
植物戊糖磷酸途径及其两个关键酶的研究进展   总被引:1,自引:0,他引:1  
戊糖磷酸途径是植物体中糖代谢的重要途径,主要生理功能是产生供还原性生物合成需要的NADPH,可供核酸代谢的磷酸戊糖以及一些中间产物可参与氨基酸合成和脂肪酸合成等。葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶是戊糖磷酸途径的两个关键酶,广泛的分布于高等植物的胞质和质体中。本文综述了植物戊糖磷酸途径及其两个关键酶的分子生物学的研究进展,讨论了该途径在植物生长发育和环境胁迫应答中的作用。  相似文献   

15.
The provision of carbon substrates and reducing power for fatty acid synthesis in the heterotrophic plastids of developing embryos of sunflower (Helianthus annuus L.) has been investigated. Profiles of oil and storage protein accumulation were determined and embryos at 17 and 24 days after anthesis (DAA) were selected to represent early and late periods of oil accumulation. Plastids isolated from either 17 or 24 DAA embryos did not incorporate label from [1-(14)C]glucose 6-phosphate (Glc6P) into fatty acids. Malate, when supplied alone, supported the highest rates of fatty acid synthesis by the isolated plastids at both stages. Pyruvate supported rates of fatty acid synthesis at 17 DAA that were comparable to those supported by malate, but only when incubations also included Glc6P. The stimulatory effect of Glc6P on pyruvate utilization at 17 DAA was related to the rapid utilization of Glc6P through the oxidative pentose phosphate pathway (OPPP) at this stage. Addition of pyruvate to incubations containing [1-(14)C]Glc6P increased OPPP activity (measured as (14)CO(2) release), while the addition of malate suppressed it. Observations of the interactions between the rate of metabolite utilization for fatty acid synthesis and the rate of the OPPP are consistent with regulation of the OPPP by redox control of the plastidial glucose 6-phosphate dehydrogenase activity through the demand for NADPH. During pyruvate utilization for fatty acid synthesis, flux through the OPPP increases as NADPH is consumed, whereas during malate utilization, in which NADPH is produced by NADP-malic enzyme, flux through the OPPP is decreased.  相似文献   

16.
Altered Fatty Acid Distribution in Mutants of Neurospora crassa   总被引:5,自引:2,他引:3       下载免费PDF全文
Morphological mutants of Neurospora with decreased levels of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and reduced nicotinamide ad enine dinucleotide (NADH) contained only 20% as much of a polyunsaturated fatty acid (linolenic acid) as the wild type in both the phospholipid and neutral lipid fractions. There was an excellent correlation between linolenic acid levels and morphological appearance as a function of total NADPH content, but no correlation with NADH content. The linolenic acid deficiency was balanced by a relative increase in the amounts of the less unsaturated fatty acids (oleic and linoleic acids), but the level of three other fatty acids did not appear to be changed. This accumulation of these two precursors suggests that the NADPH deficiency preferentially affected the final desaturation step, i.e., the conversion of linoleic to linolenic acid. The NADPH needed for this reaction in vivo was probably generated by the pentose phosphate shunt, since mutations affecting the shunt lead to the decreased levels of linolenic acid. It is not clear whether the changes in fatty acid distribution affect the morphogenesis of Neurospora, or if these changes are just part of the NADPH-deficiency syndrome.  相似文献   

17.
ABSTRACT: Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae.  相似文献   

18.
19.
By using inhibitors and stimulators of different metabolic pathways the interdependence of the pentose phosphate cycle and lipogenesis in isolated fat-cells was studied. Rotenone, which is known to inhibit electron transport in the respiratory chain, blocked glucose breakdown at the site of pyruvate dehydrogenase. Consequently, because of the lack of acetyl-CoA, fatty acid synthesis was almost abolished. A concomitant decrease in pentose phosphate-cycle activity was observed. Phenazine methosulphate stimulated pentose phosphate-cycle activity about five- to ten-fold without a considerable effect on fatty acid synthesis. The influence of rotenone on both the pentose phosphate cycle and lipogenesis could be overcome by addition of phenazine methosulphate, indicating that rotenone has no direct effect on these pathways. The decreased rate of the pentose phosphate cycle in the presence of rotenone therefore has to be considered as a consequence of decreased fatty acid synthesis. The rate of glucose catabolism via the pentose phosphate cycle in adipocytes appears to be determined by the requirement of NADPH for lipogenesis. Treatment of cells with 6-aminonicotinamide caused an accumulation of 6-phosphogluconate, indicating an inhibition of 6-phosphogluconate dehydrogenase. The rate of glucose metabolism via the pentose phosphate cycle as well as the rate of fatty acid synthesis, however, was not affected by 6-aminonicotinamide treatment and could still be stimulated by addition of insulin. Since even in cells from starved animals, in which the pentose phosphate-cycle activity is extremely low, no accumulation of 6-phosphogluconate was observed, it is concluded that the control of this pathway is achieved by the rate of regeneration of NADP at the site of glucose 6-phosphate dehydrogenase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号