首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
We studied the mechanism of sphingosylphosphorylcholine (SPC)-induced contraction in feline ileal smooth muscle cells. Western blotting revealed that G protein subtypes of Gαi1, Gαi3 and Gαo existed in feline ileum. Gαi3 antibody penetration into permeabilized cells decreased SPC-induced contraction. In addition, incubation of [35S]guanosine 5′-O-(3-thiotriphosphate) ([35S]GTPγS) with membrane fraction increased its binding to Gαi3 subtype after SPC treatment, suggesting that the signalling pathways invoked by SPC were mediated by Gαi3 protein. MAPK kinase (MEK) inhibitor PD98059 blocked the contraction significantly, but p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 did not. Chelerythrine and neomycin also inhibited the contraction. However, cotreatment of PD98059 and chelerythrine showed no significant difference. Phosphorylation of p44/42 MAPK was increased by SPC treatment, which was reversed by pretreatment of inhibitors of signalling molecules that decreased SPC-induced contraction previously. The same result was obtained in the assay of MAPK activity.  相似文献   

3.
Melanin-concentrating hormone (MCH), a cyclic nonadecapeptide, is predominantly expressed in mammalian neurons located in the zona incerta and lateral hypothalamus. Current interest in MCH relates to its role in the control of feeding behaviour. Two receptors for MCH were recently found: MCH-R(1) and MCH-R(2). We show here by RT-PCR analysis and immunofluorescence studies that the human neuroblastoma cell line Kelly expresses MCH and MCH-R(1) but not MCH-R(2). In competition assays using 125I-labelled MCH an inhibitory concentration 50% (IC(50)) of 76nM was determined for MCH, indicating a high affinity of Kelly cells for MCH. MCH induces mitogen-activated protein kinase (MAPK) phosphorylation in Kelly cells but no increase in the intracellular free Ca(2+) concentration. This suggests that MCH signals via Galpha(i)/Galpha(0) in these cells. The presence and functionality of MCH-R(1) renders this neuronal cell a very useful model for future structure-activity studies in a physiological environment mimicking the human brain for the evaluation of potential appetite-regulating drugs.  相似文献   

4.
The sodium-proton exchanger is activated by various agonists, including insulin, even in human red blood cell. MAPKinase, a family of ubiquitous serine/threonine kinases, plays an important role in the signal transduction pathways which lead to sodium-proton exchanger activation. The aim of our study was to establish the existence of MAPKinase in human red blood cell and to investigate the effects of its activation by insulin and okadaic acid on the sodium-proton exchanger. Immunoblot with antiMAPK antibody revealed the presence of two isoforms, p44(ERK1) and p42(ERK2). Insulin stimulated MAPKinase activity and increased the phosphorylation of MAPK tyrosine residues, with a peak time between 3 and 5 min. Okadaic acid, an inhibitor of serine/threonine phosphatases, stimulated MAPKinase activity. In the presence of PD98059, an inhibitor of MEK, the upstream activator of MAPKinase, insulin and okadaic acid failed to stimulate MAPKinase. Insulin and okadaic acid increased the activity of the sodium-proton exchanger and this effect was abolished by PD98059. In conclusion, we first describe the presence and activity of MAPKinase in human red blood cell. Furthermore, we demonstrate that in human red blood cell, insulin modulates the sodium-proton exchanger through MAPKinase activation.  相似文献   

5.
6.
Energy homeostasis is regulated by peripheral signals, such as leptin, and by several orexigenic and anorectic neuropeptides. Recently, we reported that the orexigenic neuropeptide melanin-concentrating hormone (MCH) stimulates leptin production by rat adipocytes and that the MCH receptor (MCH-R1) is present on these cells. Here, we show that MCH-R1 is present on murine 3T3-L1 adipocytes. Treatment of 3T3-L1 adipocytes with 1 micromolar MCH for up to 2 h acutely downregulated MCH-R1, indicating a mechanism of ligand-induced receptor downregulation. Potential signaling pathways mediating MCH-R1 action in adipocytes were investigated. Treatment of 3T3-L1 adipocytes with 1 micromolar MCH rapidly induced a threefold and a fivefold increase in p44/42 MAPK and pp70 S6 kinase activities, respectively. In addition, 3T3-L1 adipocytes transiently transfected with a murine leptin-luciferase promoter construct showed a fourfold and a sixfold increase in leptin promoter-reporter gene expression at 1 h and 4 h, respectively, in response to MCH. Activity decreased to basal levels at 8 h. Furthermore, MCH-stimulated leptin promoter-driven luciferase activity was diminished in the presence of the MAP/ERK kinase inhibitor PD-98059 and in the presence of rapamycin, an inhibitor of pp70 S6 kinase activation. These results provide further evidence for a functional MCH signaling pathway in adipocytes.  相似文献   

7.
8.
9.
Melanin-concentrating hormone (MCH) is a neuropeptide occurring in all vertebrates and some invertebrates and is now known to stimulate pigment aggregation in teleost melanophores and food-intake in mammals. Whereas the two MCH receptor subtypes hitherto cloned, MCH-R1 and MCH-R2, are thought to mediate mainly the central effects of MCH, the MCH-R on pigment cells has not yet been identified, although in some studies MCH-R1 was reported to be expressed by human melanocytes and melanoma cells. Here we present data of a structure-activity study in which 12 MCH peptides were tested on rat MCH-R1 and mouse B16 melanoma cell MCH-R, by comparing receptor binding affinities and biological activities. For receptor binding analysis with HEK-293 cells expressing rat MCH-R1 (SLC-1), the radioligand was [125I]-[Tyr13]-MCH with the natural sequence. For B16 cells (F1 and G4F sublines) expressing B16 MCH-R, the analog [125I]-[D-Phe13, Tyr19]-MCH served as radioligand. The bioassay used for MCH-R1 was intracellular Ca2+ mobilization quantified with the FLIPR instrument, whereas for B16 MCH-R the signal determined was MAP kinase activation. Our data show that some of the peptides displayed a similar relative increase or decrease of potency in both cell types tested. For example, linear MCH with Ser residues at positions 7 and 16 was almost inactive whereas a slight increase in side-chain hydrophilicity at residues 4 and 8, or truncation of MCH at the N-terminus by two residues hardly changed binding affinity or bioactivity. On the other hand, salmonic MCH which also lacks the first two residues of the mammalian sequence but in addition has different residues at positions 4, 5, 9, and 18 exhibited a 5- to 10-fold lower binding activity than MCH in both cell systems. A striking difference in ligand recognition between MCH-R1 and B16 MCH-R was however observed with modifications at position 13 of MCH: whereas L-Phe13 in [Phe13, Tyr19]-MCH was well tolerated by both MCH-R1 and B16 MCH-R, change of configuration to D-Phe13 in [D-Phe13, Tyr19]-MCH or [D-Phe13]-MCH led to a complete loss of biological activity and to a 5- to 10-fold lower binding activity with MCH-R1. By contrast, the D-Phe13 residue increased the affinity of [D-Phe13, Tyr19]-MCH to B16 MCH-R about 10-fold and elicited MAP kinase activation as observed with [Phe13, Tyr19]-MCH or MCH. These data demonstrate that ligand recognition by B16 MCH-R differs from that of MCH-R1 in several respects, indicating that the B16 MCH-R represents an MCH-R subtype different from MCH-R1.  相似文献   

10.
To evaluate the role of the MEK/ERK pathway in NSCLC survival, we analyzed NSCLC cell lines that differed in tumor histology and status of p53, Rb, and K-ras. Constitutive ERK1/2 activity was demonstrated in 17 of 19 cell lines by maintenance of ERK1/2 phosphorylation with serum deprivation. Phosphorylation of ERK1/2 correlated with phosphorylation of MEK1/2 and p90RSK, but was inversely correlated with phosphorylation of c-Raf at S259. With serum deprivation, the MEK inhibitors, PD98059 and U0126, inhibited ERK1/2 activity but did not increase apoptosis. PD98059 and U0126 induced cell cycle arrest in G(0)/G(i) in cells with the highest levels of ERK1/2 activity, which correlated with induction of p27 but not p21. To confirm the cytostatic response to MEK inhibitors, we performed transient transfections with dominant negative forms of MEK or ERK. Surprisingly, dominant negative MEK and ERK mutants increased apoptosis without affecting cell cycle or p27 levels. When combined with paclitaxel, MEK inhibitors had no effect on apoptosis. In contrast, dominant negative ERK2 potentiated paclitaxel-induced apoptosis. Our studies show that constitutive ERK1/2 activity in NSCLC cells promotes cellular survival and chemotherapeutic resistance. Moreover, our data are the first to demonstrate divergent cellular responses to inhibition of the MEK/ERK pathway by small molecule inhibitors or dominant negative mutants.  相似文献   

11.
12.
Melanin-concentrating hormone (MCH) is a neuropeptide highly expressed in the brain that regulates several physiological functions mediated by receptors in the G protein-coupled receptor family. Recently an orphan receptor, SLC-1, has been identified as an MCH receptor (MCH-R1). Herein we identify and characterize a novel receptor for human MCH (MCH-R2). The receptor is composed of 340 amino acids encoded by a 1023-base pair cDNA and is 35% homologous to SLC-1. (125)I-MCH specifically bound to Chinese hamster ovary cells stably expressing MCH-R2. MCH stimulated dose-dependent increases in intracellular free Ca(2+) and inositol phosphate production in these cells but did not affect cAMP production. The pharmacological profile for mammalian MCH, [Phe(13),Tyr(19)]MCH, and salmon MCH at MCH-R2 differed compared with MCH-R1 as assessed by intracellular signaling and radioligand binding assays. The EC(50) in signaling assays and the IC(50) in radioligand binding assays of salmon MCH was an order of magnitude higher than mammalian MCH at MCH-R2. By comparison, the EC(50) and IC(50) values of salmon MCH and mammalian MCH at MCH-R1 were relatively similar. Blot hybridization revealed exclusive expression of MCH-R2 mRNA in several distinct brain regions, particularly in the cortical area, suggesting the involvement of MCH-R2 in the central regulation of MCH-mediated functions.  相似文献   

13.
We previously demonstrated that human chorionic gonadotropin β (hCGβ) induced migration and invasion in human prostate cancer cells. However, the involved molecular mechanisms are unclear. Here, we established a stable prostate cancer cell line overexpressing hCGβ and tested hCGβ-triggered signaling pathways causing cell migration and invasion. ELISA showed that the hCGβ amount secreted into medium increased with culture time after the hCGβ-transfected cells were incubated for 3, 6, 9, 12 and 24 h. More, hCGβ standards promoted MAPK (ERK1/2) phosphorylation and increased MMP-2 expression and activity in both dose- and time-dependent manners in hCGβ non-transfected cells. In addition, hCGβ promoted ERK1/2 phosphorylation and increased MMP-2 expression and activity significantly in hCGβ transfected DU145 cells. Whereas ERK1/2 blocker PD98059 (25 µM) significantly downregulated phosphorylated ERK1/2 and MMP-2. Particularly, hCGβ promoted cell migration and invasion, yet the PD98059 diminished the hCGβ-induced cell motility under those conditions. These results indicated that hCGβ induced cell motility via promoting ERK1/2 phosphorylation and MMP-2 upregulation in human prostate cancer DU145 cells.  相似文献   

14.
Cellular models for the study of the neuropeptide melanin-concentrating hormone (MCH) have become indispensable tools for pharmacological profiling and signaling analysis of MCH and its synthetic analogues. Although expression of MCH receptors is most abundant in the brain, MCH-R(1) is also found in different peripheral tissues. Therefore, not only cell lines derived from nervous tissue but also from peripheral tissues that naturally express MCH receptors have been used to study receptor signaling and regulation. For screening of novel compounds, however, heterologous expression of MCH-R(1) or MCH-R(2) genes in HEK293, Chinese hamster ovary, COS-7, or 3T3-L1 cells, or amplified MCH-R(1) expression/signaling in IRM23 cells transfected with the G(q) protein gene are the preferred tools because of more distinct pharmacological effects induced by MCH, which include inhibition of cAMP formation, stimulation of inositol triphosphate production, increase in intracellular free Ca(2+) and/or activation of mitogen-activated protein kinases. Most of the published data originate from this type of model system, whereas data based on studies with cell lines endogenously expressing MCH receptors are more limited. This review presents an update on the different cellular models currently used for the analysis of MCH receptor interaction and signaling.  相似文献   

15.
Monocytic THP-1 cells expressed tumour necrosis factor-α (TNF-α) mRNA, but hardly any detectable TNF-α protein and a partially activated MAP kinase ERK-2 in the unstimulated state. Stimulation with phorbol ester led to expression of TNF-α protein without significant changes in mRNA, a response that was sensitive to the MEK-1/2 inhibitors PD98059 and U0126. A calcium signal also led to expression of TNF-α protein, but now accompanied by a rapid increase in mRNA. A synergistic effect between phorbol ester and calcium ionophore was evident at the level of TNF-α protein, but not its mRNA. Stimulation with anisomycin led to a TNF-α expression that was sensitive to the p38 inhibitor SB203580. Actinomycin D lowered TNF-α mRNA in a similar way as PD98059 but was less inhibitory on PMA- or anisomycin-induced formation of TNF-α, thus confirming that these agents acted by causing translational derepression. Thus, in THP-1 cells MAP kinase pathways involving MEK-1/2 and possibly ERK-2 as well as the human p38 analogue were essential for basal TNF-α mRNA expression and translational activation.  相似文献   

16.
CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.  相似文献   

17.
Since anti-apoptotic effect of ERK has not been elucidated clearly in DNA-damage-induced cell death, the role of ERK was examined in normal HEF cells treated with mild DNA damage using etoposide or camptothecin. ERK was activated by DNA damage in HEF cells. PD98059 increased apoptosis and reduced DNA-damage-induced p21Waf1/Cip1/Sdi level. Depletion of p21Waf1/Cip1/Sdi induced cell death and PD98059 induced additional cell death. DNA-damage-induced increase in cytoplasmic localization and phosphorylation of threonine residues of p21Waf1/Cip1/Sdi was reversed by PD98059. Thus, the results suggest that ERK pathway mediates anti-apoptotic effects through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to mild DNA damage.  相似文献   

18.
The pro-apoptotic function of p53 has been well defined in preventing genomic instability and cell transformation. However, the intriguing fact that p53 contributes to a pro-survival advantage of tumor cells under DNA damage conditions raises a critical question in radiation therapy for the 50% human cancers with intact p53 function. Herein, we reveal an anti-apoptotic role of mitochondrial p53 regulated by the cell cycle complex cyclin B1/Cdk1 in irradiated human colon cancer HCT116 cells with p53+/+ status. Steady-state levels of p53 and cyclin B1/Cdk1 were identified in the mitochondria of many human and mouse cells, and their mitochondrial influx was significantly enhanced by radiation. The mitochondrial kinase activity of cyclin B1/Cdk1 was found to specifically phosphorylate p53 at Ser-315 residue, leading to enhanced mitochondrial ATP production and reduced mitochondrial apoptosis. The improved mitochondrial function can be blocked by transfection of mutant p53 Ser-315-Ala, or by siRNA knockdown of cyclin B1 and Cdk1 genes. Enforced translocation of cyclin B1 and Cdk1 into mitochondria with a mitochondrial-targeting-peptide increased levels of Ser-315 phosphorylation on mitochondrial p53, improved ATP production and decreased apoptosis by sequestering p53 from binding to Bcl-2 and Bcl-xL. Furthermore, reconstitution of wild-type p53 in p53-deficient HCT116 p53−/− cells resulted in an increased mitochondrial ATP production and suppression of apoptosis. Such phenomena were absent in the p53-deficient HCT116 p53−/− cells reconstituted with the mutant p53. These results demonstrate a unique anti-apoptotic function of mitochondrial p53 regulated by cyclin B1/Cdk1-mediated Ser-315 phosphorylation in p53-wild-type tumor cells, which may provide insights for improving the efficacy of anti-cancer therapy, especially for tumors that retain p53.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号