首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diversity of bacteria associated with the deer tick (Ixodes scapularis) was assessed using PCR amplification, cloning, and sequencing of 16S rRNA genes originating from seven ticks collected from Nantucket Island and Wellfleet, Cape Cod, Mass. The majority of sequences obtained originated from gram-negative proteobacteria. Four intracellular bacteria were detected including strains of Ehrlichia, Rickettsia, and Wolbachia and an organism related to intracellular insect symbionts from the Cytophaga-Flavobacterium-Bacteroides group. Several strains of members of the Sphingomonadaceae were also detected in all but one tick. The results provide a view of the diversity of bacteria associated with I. scapularis ticks in the field.  相似文献   

2.
A microorganism (Dermacantor andersoni symbiont [DAS]) infecting Rocky Mountain wood ticks (D. andersoni) collected in the Bitterroot Mountains of western Montana was characterized as an endosymbiont belonging to the genus Francisella. Previously described as Wolbachia like, the organism's DNA was amplified from both naturally infected tick ovarial tissues and Vero cell cultures by PCR assay with primer sets derived from eubacterial 16S ribosomal DNA (rDNA) and Francisella membrane protein genes. The 16S rDNA gene sequence of the DAS was most similar (95.4%) to that of Francisella tularensis subsp. tularensis. Through a combination of Giménez staining, PCR assay, and restriction fragment length polymorphism analysis, 102 of 108 female ticks collected from 1992 to 1996 were infected. Transovarial transmission to female progeny was 95.6%, but we found no evidence of horizontal transmission.  相似文献   

3.
The identification of micro-organisms carried by ticks is an important issue for human and animal health. In addition to their role as pathogen vectors, ticks are also the hosts for symbiotic bacteria whose impact on tick biology is poorly known. Among these, the bacterium Wolbachia pipientis has already been reported associated with Ixodes ricinus and other tick species. However, the origins of Wolbachia in ticks and their consequences on tick biology (known to be very diverse in invertebrates, ranging from nutritional symbionts in nematodes to reproductive manipulators in insects) are unknown. Here we report that the endoparasitoid wasp Ixodiphagus hookeri (Hymenoptera, Chalcidoidea, Encyrtidae)--strictly associated with ticks for their development--infested at almost 100% prevalence by a W. pipientis strain belonging to a Wolbachia supergroup that has already been reported as associated with other hymenopteran parasitoids. In a natural population of I. ricinus that suffers high parasitism rates due to I. hookeri, we used specific PCR primers for both hymenopteran and W. pipientis gene fragments to show that all unfed tick nymphs parasitized by I. hookeri also harbored Wolbachia, while unparasitized ticks were Wolbachia-free. We demonstrated experimentally that unfed nymphs obtained from larvae exposed to I. hookeri while gorging on their vertebrate host also harbor Wolbachia. We hypothesize that previous studies that have reported W. pipientis in ticks are due to the cryptic presence of the endoparasitoid wasp I. hookeri. This association has remained hidden until now because parasitoids within ticks cannot be detected until engorgement of the nymphs brings the wasp eggs out of diapause. Finally, we discuss the consequences of this finding for our understanding of the tick microbiome, and their possible role in horizontal gene transfer among pathogenic and symbiotic bacteria.  相似文献   

4.
Wolbachia are maternally inherited, intracellular, alpha proteobacteria that infect a wide range of arthropods. They cause three kinds of reproductive alterations in their hosts: cytoplasmic incompatibility, parthenogenesis and feminization. There have been many studies of the distribution of Wolbachia in arthropods, but very few crustacean species are known to be infected. We investigated the prevalence of Wolbachia in 85 species from five crustacean orders. Twenty-two isopod species were found to carry these bacteria. The bacteria were found mainly in terrestrial species, suggesting that Wolbachia came from a continental environment. The evolutionary relationships between these Wolbachia strains were determined by sequencing bacterial genes and by interspecific transfers. All the bacteria associated with isopods belonged to the Wolbachia B group, based on 16S rDNA sequence data. All the terrestrial isopod symbionts in this group except one formed an independent clade. The results of interspecific transfers show evidence of specialization of Wolbachia symbionts to their isopod hosts. They also suggest that host species plays a more important role than bacterial phylogeny in determining the phenotype induced by Wolbachia infection.  相似文献   

5.
Ecological specialization to restricted diet niches is driven by obligate, and often maternally inherited, symbionts in many arthropod lineages. These heritable symbionts typically form evolutionarily stable associations with arthropods that can last for millions of years. Ticks were recently found to harbour such an obligate symbiont, Coxiella‐LE, that synthesizes B vitamins and cofactors not obtained in sufficient quantities from blood diet. In this study, the examination of 81 tick species shows that some Coxiella‐LE symbioses are evolutionarily stable with an ancient acquisition followed by codiversification as observed in ticks belonging to the Rhipicephalus genus. However, many other Coxiella‐LE symbioses are characterized by low evolutionary stability with frequent host shifts and extinction events. Further examination revealed the presence of nine other genera of maternally inherited bacteria in ticks. Although these nine symbionts were primarily thought to be facultative, their distribution among tick species rather suggests that at least four may have independently replaced Coxiella‐LE and likely represent alternative obligate symbionts. Phylogenetic evidence otherwise indicates that cocladogenesis is globally rare in these symbioses as most originate via horizontal transfer of an existing symbiont between unrelated tick species. As a result, the structure of these symbiont communities is not fixed and stable across the tick phylogeny. Most importantly, the symbiont communities commonly reach high levels of diversity with up to six unrelated maternally inherited bacteria coexisting within host species. We further conjecture that interactions among coexisting symbionts are pivotal drivers of community structure both among and within tick species.  相似文献   

6.
Genes encoding ferritins were isolated and cloned from cDNA libraries of hard tick Ixodes ricinus and soft tick Ornithodoros moubata. Both tick ferritins are composed of 172 amino-acid residues and their calculated mass is 19,667.2 Da and 19,974.5 Da for I. ricinus and O. moubata, respectively. The sequences of both proteins are closely related to each other as well as to the ferritin from another tick species Dermacentor variabilis (>84% similarity). The proteins contain the conserved motifs for ferroxidase center typical for heavy chains of vertebrate ferritins. The stem-loop structure of a putative iron responsive element was found in the 5' untranslated region of ferritin mRNA of both ticks. Antibodies against fusion ferritin from O. moubata were raised in a rabbit and used to monitor the purification of a small amount of ferritins from both tick species. The authenticity of ferritin purified from O. moubata was confirmed by mass-fingerprinting analysis. In the native state, the tick ferritins are apparently larger (~500 kDa) than horse spleen ferritin (440 kDa). On SDS-PAGE tick ferritins migrate as a single band of about 21 kDa. These results suggest that tick ferritins are homo-oligomers of 24 identical subunits of heavy-chain type. The Northern blot analysis revealed that O. moubata ferritin mRNA level is likely not up-regulated after ingestion of a blood meal.  相似文献   

7.
Wolbachia是专性的细胞内细菌,广泛存在于节肢动物生殖组织。已有的研究结果表明,节肢动物中存在A组和B组Wolbachia,而烟粉虱Bemisia tabaci中主要检测到了B组Wolbachia。本研究从福建省采集到17个不同烟粉虱地理种群,首先通过rDNA-ITS1克隆测序鉴定了不同烟粉虱地理种群的生物型,然后采用Wolbachia 16S rDNA的特异引物,并通过PCR-RFLP技术分析了不同烟粉虱地理种群中Wolbachia的感染特点。结果表明:从福建省闽侯、平潭、南平、来舟、漳平和沙县采集到的烟粉虱自然种群属于非B型,而非B型烟粉虱种群中存在广泛的超感染现象,即单个非B型烟粉虱个体中同时感染了不同型Wolbachia。相反,B型烟粉虱自然种群的个体中只感染A组Wolbachia。该研究依据密集采样的数据进一步证实了Wolbachia在烟粉虱自然种群中的分布确实与宿主的生物型密切相关,提示Wolbachia可能在烟粉虱的种群分化中发挥作用。  相似文献   

8.
Distribution of the bacterial symbiont Cardinium in arthropods   总被引:2,自引:0,他引:2  
Abstract 'Candidatus Cardinium', a recently described bacterium from the Bacteroidetes group, is involved in diverse reproduction alterations of its arthropod hosts, including cytoplasmic incompatibility, parthenogenesis and feminization. To estimate the incidence rate of Cardinium and explore the limits of its host range, 99 insect and mite species were screened, using primers designed to amplify a portion of Cardinium 16S ribosomal DNA (rDNA). These arthropods were also screened for the presence of the better-known reproductive manipulator, Wolbachia. Six per cent of the species screened tested positive for Cardinium, compared with 24% positive for Wolbachia. Of the 85 insects screened, Cardinium was found in four parasitic wasp species and one armoured scale insect. Of the 14 mite species examined, one predatory mite was found to carry the symbiont. A phylogenetic analysis of all known Cardinium 16S rDNA sequences shows that distantly related arthropods can harbour closely related symbionts, a pattern typical of horizontal transmission. However, closely related Cardinium were found to cluster among closely related hosts, suggesting host specialization and horizontal transmission among closely related hosts. Finally, the primers used revealed the presence of a second lineage of Bacteroidetes symbionts, not related to Cardinium, in two insect species. This second symbiont lineage is closely allied with other arthropod symbionts, such as Blattabacterium, the primary symbionts of cockroaches, and male-killing symbionts of ladybird beetles. The combined data suggest the presence of a diverse assemblage of arthropod-associated Bacteroidetes bacteria that are likely to strongly influence their hosts' biology.  相似文献   

9.
We investigated the interactions between the endosymbionts Wolbachia pipientis strain wMel and Spiroplasma sp. strain NSRO coinfecting the host insect Drosophila melanogaster. By making use of antibiotic therapy, temperature stress, and hemolymph microinjection, we established the following strains in the same host genetic background: the SW strain, infected with both Spiroplasma and Wolbachia; the S strain, infected with Spiroplasma only; and the W strain, infected with Wolbachia only. The infection dynamics of the symbionts in these strains were monitored by quantitative PCR during host development. The infection densities of Spiroplasma exhibited no significant differences between the SW and S strains throughout the developmental course. In contrast, the infection densities of Wolbachia were significantly lower in the SW strain than in the W strain at the pupal and young adult stages. These results indicated that the interactions between the coinfecting symbionts were asymmetrical, i.e., Spiroplasma organisms negatively affected the population of Wolbachia organisms, while Wolbachia organisms did not influence the population of Spiroplasma organisms. In the host body, the symbionts exhibited their own tissue tropisms: among the tissues examined, Spiroplasma was the most abundant in the ovaries, while Wolbachia showed the highest density in Malpighian tubules. Strikingly, basically no Wolbachia organisms were detected in hemolymph, the principal location of Spiroplasma. These results suggest that different host tissues act as distinct microhabitats for the symbionts and that the lytic process in host metamorphosis might be involved in the asymmetrical interactions between the coinfecting symbionts.  相似文献   

10.
The hard tick Ixodes ricinus (Ixodidae) is the sole animal thus far shown to harbour an intra-mitochondrial bacterium, which has recently been named Midichloria mitochondrii. The objectives of this work were (i) to screen ixodid ticks for Midichloria-related bacteria and (ii) to determine whether these bacteria exploit the intra-mitochondrial niche in other tick species. Our main goal was to discover further models of this peculiar form of symbiosis. We have thus performed a PCR screening for Midichloria-related bacteria in samples of ixodid ticks collected in Italy, North America and Iceland. A total of 7 newly examined species from 5 genera were found positive for bacteria closely related to M. mitochondrii. Samples of the tick species Rhipicephalus bursa, found positive in the PCR screening, were analysed with transmission electron microscopy, which revealed the presence of bacteria both in the cytoplasm and in the mitochondria of the oocytes. There is thus evidence that bacteria invade mitochondria in at least 2 tick species. Phylogenetic analysis on the bacterial 16S rRNA gene sequences generated from positive specimens revealed that the bacteria form a monophyletic group within the order Rickettsiales. The phylogeny of Midichloria symbionts and related bacteria does not appear completely congruent with the phylogeny of the hosts.  相似文献   

11.
Dermacentor andersoni and Dermacentor variabilis from allopatric and sympatric populations near their northern distributional limits were examined for the presence of Francisella species using molecular techniques that targeted 373 bp of the 16S rRNA gene. Although there was no evidence for the presence of Francisella tularensis in any tick, Francisella-like endosymbionts (FLEs) were common in D. andersoni and D. variabilis adults and immatures. A significantly greater proportion of female ticks contained FLEs compared to male ticks. In addition, significantly more D. variabilis adult individuals contained multiple FLE sequence types than did D. andersoni adults. Ten different types of FLEs were identified based on the sequence data, which has implications for diagnostic tests and epidemiological studies of F. tularensis in tick populations in Canada. The three most prevalent types of FLEs have been detected previously in D. andersoni or D. variabilis from other parts of their distributional ranges, whereas the other seven FLE types have not been reported previously. A comparison of the FLEs from both allopatric and sympatric populations of these two tick species provided insight into the relative host-specificity and the modes of transmission of these tick-borne bacteria. In general, each FLE type was specific for one tick species, suggesting vertical transmission of each bacterium. However, there were a few instances of potential cross-transfer of two FLE types to the other tick species at locations where D. andersoni and D. variabilis occurred in sympatry, suggesting that there may be occasional horizontal transmission of some FLEs.  相似文献   

12.
The lone star tick Amblyomma americanum is host to a wide diversity of endosymbiotic bacteria. We identified a novel Wolbachia symbiont infecting A. americanum. Multilocus sequence typing phylogenetically placed the endosymbiont in the increasingly diverse F supergroup. We assayed a total of 1031 ticks (119 females, 78 males and 834 nymphs in 89 pools) from 16 Maryland populations for infection. Infection frequencies in the natural populations were approximately 5% in females and <2% (minimum infection rate) in nymphs; infection was not detected in males. Infected populations were only observed in southern Maryland, suggesting the possibility that Wolbachia is currently invading Maryland A. americanum populations. Because F supergroup Wolbachia have been detected previously in filarial nematodes, tick samples were assayed for nematodes by PCR. Filarial nematodes were detected in 70% and 9% of Wolbachia-positive and Wolbachia-negative tick samples, respectively. While nematodes were more common in Wolbachia-positive tick samples, the lack of a strict infection concordance (Wolbachia-positive, nematode-negative and Wolbachia-negative, nematode-positive ticks) suggests that Wolbachia prevalence in ticks is not due to nematode infection. Supporting this hypothesis, phylogenetic analysis indicated that the nematodes were likely a novel species within the genus Acanthocheilonema, which has been previously shown to be Wolbachia-free.  相似文献   

13.
Findings from a number of studies suggest that the PilA pilin proteins may play an important role in the pathogenesis of disease caused by species within the genus Francisella. As such, a thorough understanding of PilA structure and chemistry is warranted. Here, we definitively identified the PglA protein-targeting oligosaccharyltransferase by virtue of its necessity for PilA glycosylation in Francisella tularensis and its sufficiency for PilA glycosylation in Escherichia coli. In addition, we used mass spectrometry to examine PilA affinity purified from Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica and demonstrated that the protein undergoes multisite, O-linked glycosylation with a pentasaccharide of the structure HexNac-Hex-Hex-HexNac-HexNac. Further analyses revealed microheterogeneity related to forms of the pentasaccharide carrying unusual moieties linked to the distal sugar via a phosphate bridge. Type A and type B strains of Francisella subspecies thus express an O-linked protein glycosylation system utilizing core biosynthetic and assembly pathways conserved in other members of the proteobacteria. As PglA appears to be highly conserved in Francisella species, O-linked protein glycosylation may be a feature common to members of this genus.  相似文献   

14.
Wolbachia-like symbiotes in the Rocky Mountain wood tick, Dermacentor andersoni, were isolated repeatedly by injection of ovarial tissues into 5-day-old chick embryos. In Giemsa-stained smears of infected embryo tissues, the organisms appeared as blueish or pinkstained coccal bodies indistinguishable from those seen in the ovaries of ticks, where they are located in the luminal epithelium and funicle cells, as well as in oocytes.Electron microscopy revealed that these symbiotes are highly pleomorphic and vary in size from 0.6 to 3.4 μm in diameter. Their fine structure in tissue cells is differentiated into a granular, cortical region, which contains densely stained ribosomes, and a medullary region consisting of a diffuse reticulum partially or completely devoid of granular material or ribosomes. Multiplication is by binary fission. Each organism is delimited by a distinct plasmalemma; a cell wall as in bacterial and rickettsial agents was not observed in organisms from ovarial tissues.Symbiotes cultivated in chick embryos and then injected intracoelomically into adult D. andersoni, developed rapidly and produced massive infestations in hemocytes, hypodermal tissues, salivary glands, and in connective tissues surrounding midgut, Malpighian tubules, and ovary. In hypodermal tissue, organisms with a distinct bilayered cell envelope were occasionally detected. The massive invasion of tissues by injected symbiotes invariably proved fatal for ticks.Results of complement-fixation tests and of fluorescent antibody staining indicated that symbiotes in D. andersoni are closely related to Wolbachia persica, previously isolated from Argas arboreus.  相似文献   

15.
Although heritable microorganisms are increasingly recognized as widespread in insects, no systematic screens for such symbionts have been conducted in Drosophila species (the primary insect genetic models for studies of evolution, development, and innate immunity). Previous efforts screened relatively few Drosophila lineages, mainly for Wolbachia. We conducted an extensive survey of potentially heritable endosymbionts from any bacterial lineage via PCR screens of mature ovaries in 181 recently collected fly strains representing 35 species from 11 species groups. Due to our fly sampling methods, however, we are likely to have missed fly strains infected with sex ratio-distorting endosymbionts. Only Wolbachia and Spiroplasma, both widespread in insects, were confirmed as symbionts. These findings indicate that in contrast to some other insect groups, other heritable symbionts are uncommon in Drosophila species, possibly reflecting a robust innate immune response that eliminates many bacteria. A more extensive survey targeted these two symbiont types through diagnostic PCR in 1225 strains representing 225 species from 32 species groups. Of these, 19 species were infected by Wolbachia while only 3 species had Spiroplasma. Several new strains of Wolbachia and Spiroplasma were discovered, including ones divergent from any reported to date. The phylogenetic distribution of Wolbachia and Spiroplasma in Drosophila is discussed.  相似文献   

16.
A yellow-pigmented Gram-negative bacterium, Chryseobacterium indologenes, was found in the gut contents of about 65% of soft ticks Ornithodoros moubata from a perishing laboratory colony. The isolated putative pathogen, C. indologenes, was susceptible to cotrimoxazol and addition of this antibiotic (Biseptol 480) to the blood meal significantly decreased the tick mortality rate. The artificial infection of healthy O. moubata by membrane feeding on blood contaminated with C. indologenes was lethal to all ticks at concentrations 10(6) bacteria/ml. On the contrary, a similar infection dose applied to the hard tick Ixodes ricinus by capillary feeding did not cause significant mortality. Examination of guts dissected from infected O. moubata and I. ricinus revealed that C. indologenes was exponentially multiplied in the soft tick but were completely cleared from the gut of the hard ticks within 1 day. In both tick species, C. indologenes were found to penetrate from the gut into the hemocoel. The phagocytic activity of hemocytes from both tick species was tested by intrahaemocoelic microinjection of C. indologenes and evaluated by indirect fluorescent microscopy using antibodies raised against whole bacteria. Hemocytes from both tick species displayed significant phagocytic activity against C. indologenes. All O. moubata injected with C. indologenes died within 3 days, whereas the increase of the mortality rate of I. ricinus was insignificant. Our results indicate that hard ticks possess much more efficient defense system against infection with C. indologenes than the soft ticks. Thus, C. indologenes infection has the potential to be a relevant comparative model for the study of tick immune reactions to transmitted pathogens.  相似文献   

17.
The blacklegged tick Ixodes scapularis is the primary vector of the most prevalent vector-borne zoonosis in North America, Lyme disease (LD). Enzootic maintenance of the pathogen Borrelia burgdorferi by I. scapularis and small mammals is well documented, whereas its "cryptic" maintenance by other specialist ticks and wildlife hosts remains largely unexplored because these ticks rarely bite humans. We quantified B. burgdorferi infection in a cryptic bird-rabbit-tick cycle. Furthermore, we explored the role of birds in maintaining and moving B. burgdorferi strains by comparing their genetic diversity in this cryptic cycle to that found in cycles vectored by I. scapularis. We examined birds, rabbits, and small mammals for ticks and infection over a 4-year period at a focal site in Michigan, 90 km east of a zone of I. scapularis invasion. We mist netted 19,631 birds that yielded 12,301 ticks, of which 86% were I. dentatus, a bird-rabbit specialist. No resident wildlife harbored I. scapularis, and yet 3.5% of bird-derived ticks, 3.6% of rabbit-derived ticks, and 20% of rabbit ear biopsy specimens were infected with B. burgdorferi. We identified 25 closely related B. burgdorferi strains using an rRNA gene intergenic spacer marker, the majority (68%) of which had not been reported previously. The presence of strains common to both cryptic and endemic cycles strongly implies bird-mediated dispersal. Given continued large-scale expansion of I. scapularis populations, we predict that its invasion into zones of cryptic transmission will allow for bridging of novel pathogen strains to humans and animals.  相似文献   

18.
Six hundred sixty-five hunter-killed white-tailed deer (Odocoileus virginianus) from 18 counties in Alabama (USA) were examined for ticks. Most of the collections were made at state-operated wildlife management areas. Four species of ticks (n = 4,527) were recovered: the lone star tick Amblyomma americanum (n = 482); the Gulf Coast tick A. maculatum (n = 11); the winter tick Dermacentor albipictus (n = 1,242); and the black-legged tick Ixodes scapularis (n = 2,792). Fifty-six percent of the ticks (n = 2,555) were examined for Borrelia sp. spirochetes using an immunofluorescent, polyclonal antibody assay. Spirochetes were detected in I. scapularis (five females, seven males) from Barbour, Butler, Coosa, and Lee counties and A. americanum (four males, four nymphs) from Hale, Lee, and Wilcox counties. Area-specific prevalences in ticks were as high as 3.3% for I. scapularis and 3.8% for A. americanum.  相似文献   

19.
To quantify microbial composition and interactions, we identified prokaryotic communities in the lone star tick (Amblyomma americanum) based on 16S rRNA gene sequences and direct probing. The lone star tick is the vector of emerging diseases and host to additional symbionts of unknown activity, and is representative of other blood‐sucking arthropods. We evaluated the potential for vertical (transovarial) transmission by molecular analysis of microbial symbionts from egg and larval clutches. Direct probing of adults (N = 8 populations from the southeastern and midwestern USA, 900 ticks total) revealed three vertically transmitted symbionts: a Coxiella symbiont occurred at 100% frequency, Rickettsia species occurred in 45–61% of all ticks in every population and an Arsenophonus symbiont occurred in 0–90% of ticks per population. Arsenophonus and Rickettsia exhibited significant heterogeneity in frequency among populations. The human pathogens Ehrlichia chafeensis and Borrelia lonestari were rare in most populations. Additional microbes were detected sporadically. Most ticks (78%) were co‐infected by two or three microbes but statistical analysis indicated no significant deviation from random co‐occurrence. Our findings indicate that microbial communities within lone star ticks are diverse, and suggest that direct probing for a wider range of prokaryotes and application of quantitative polymerase chain reaction (PCR) may provide further insights into microbial interactions within disease vectors. Our results also emphasize the close phylogenetic relationship between tick symbionts and human pathogens, and consistent differences in their prevalence.  相似文献   

20.
Fluorescence in situ hybridization was tested to specifically detect symbionts of the genus Wolbachia in Trichogramma and to allow for semiquantitative estimations of symbiont abundance. Extraction solutions used for horizontal transfers of symbionts contain a high abundance of Wolbachia, but Wolbachia have a low and decreasing abundance in microinjected lines (transfected lines). Moreover, eggs of microinjected lines were shown to be polymorphic for the infection. In naturally infected lines, Wolbachia are localized at the posterior pole of the eggs; they are scattered during the early stages of larval development and then concentrated in the ovaries at the end of the female pupal development. Scattering and concentration are probably not active but rather the result of replications or morphogenesis. Conversely, Wolbachia are not concentrated at the posterior pole of eggs in microinjected lines. Comparison of the within-family and between-family variances of the symbiont abundance in a microinjected line did not lead us to conclude that this character shows a genetic variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号