首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Navicula incerta is a marine microalga distributed in Baja California, México, commonly used in aquaculture nutrition, and has been extended to human food, biomedical, and pharmaceutical industries due to its high biological activity. Therefore, the study aimed to optimize culture conditions to produce antioxidant pigments. A central composite experimental design and response surface methodology (RSM) was employed to analyze the best culture conditions. The medium (nitrogen-deficient concentrations), salinity (PSU = Practical Salinity Unity [g/kg]), age of culture (days), and solvent extraction (ethanol, methanol, and acetone) were the factors used for the experiment. Chlorophyll a (Chl a) and total carotenoids (T-Car), determined spectroscopically, were used as the response variables. The antioxidant capacity was evaluated by DPPH? and ABTS?+ radical inhibition, FRAP, and anti-hemolytic activity. According to the overlay plots, the optimum growth conditions for Chl a and T-Car production were the following conditions: medium = 0.44 mol·L-1 of NaNO3, salinity = 40 PSU, age of culture: 3.5 days, and solvent = methanol. The pigment extracts obtained in these optimized conditions had high antioxidant activity in ABTS?+ (86.2–92.1% of inhibition) and anti-hemolytic activity (81.8–96.7% of hemolysis inhibition). Low inhibition (33–35%) was observed in DPPH?. The highest value of FRAP (766.03 ± 16.62 μmol TE/g) was observed in the acetonic extract. The results demonstrated that RSM could obtain an extract with high antioxidant capacity with potential applications in the biomedical and pharmaceutical industry, which encourages the use of natural resources for chemoprevention of chronic-degenerative pathologies.  相似文献   

3.
Plant growth is often affected with hampered physiological and cellular functioning due to salinity and drought stress. To assess the effectiveness of plant bioregulators (PBRs) in mitigating abiotic stresses, a double spilt plot field study was conducted with three replications at ICAR-CSSRI, research farm, Nain, Panipat. The study comprised of three deficit irrigation regimes viz., 100, 80 and 60% of crop evapo-transpiration (ETc) (I1, I2 and I3), four levels of irrigation water salinity i.e. 2, 4, 8, 12 dS m−1 (S0, S1, S2 and S3) and two PBRs salicylic acid (SA; G1) and thiourea (TU; G2). Irrigations, as per regimes and salinity, were applied at identified critical stages of wheat and if needed in pearl millet. PBRs were applied as seed priming and foliar sprays at two sensitive stages of respective crops. The trend of plant height, and physiological and biochemical traits was similar under different treatments at both stages, but differed significantly only at reproductive stage. Water deficit caused significant reduction in pearl millet (5.1%) and wheat (6.7%) grain yields. The reduction in grain yield under 8 and 12 dS m−1 was 12.90 and 22.43% in pearl millet and 7.68 and 32.93% in wheat, respectively compared to 2 dS m−1. Application of either SA (G1) or TU (G2) significantly enhanced plant height and grain yield, but magnitude of the increment was higher with SA in pearl millet and with TU in wheat. Application of SA and TU increased grain yield by 14.42 and 12.98 in pearl millet, and 12.90 and 17.36% in wheat, respectively. The plant height, RWC, TC, MI, LP, proline, Fv/Fm and Na/K ratio significantly reduced by salinity stress in pearl millet and both water and salinity stress in wheat. Application of both PBRs proved beneficial to mitigate adverse effect of water deficit and salt stress by significantly improving physiological traits, biochemical traits and ultimately grain yield in both crops.  相似文献   

4.
Duckweed is recognized as a phytoremediation aquatic plant due to the production of large biomass and a high level of tolerance in stressed conditions. A laboratory experiment was conducted to investigate antioxidant response and mechanism of copper and mercury tolerance of S. polyrhiza (L.) Schleid. To understand the changes in chlorophyll content, MDA, proline, and activities of ROS-scavenging enzymes (SOD, CAT, GPOD) during the accumulation of Cu+2 and Hg+2, S. polyrhiza were exposed to various concentrations of Cu+2 (0.0–40 μM) and Hg+2 (0.0–0.4 μM). antioxidant activity initially indicated enhancing trend with application of 10 μM Cu+2; 0.2 μM Hg+2 (SOD), of 20 μM Cu+2; 0.2 μM Hg+2 (CAT) and of 10 μM Cu+2;0.2 μM Hg+2 (GPOD) and then decreased consistently up to 40 μM Cu+2 and 0.4 μM Hg+2. In the experiment chlorophyll and frond multiplication initially showed increasing tendency and decreased gradually with the application of increased metal concentration. Application of heavy metal has constantly enhanced proline and MDA content while the maximum increase was observed with the application of 40 μM Cu; 0.4 μM Hg for proline and MDA respectively. The upregulation of antioxidant enzymes and proline reveals that S. polyrhiza has strong biochemical strategies to deal with the heavy metal toxicity induced by the accumulation of Cu+2 and Hg+2.  相似文献   

5.
Pomegranate peels (PPW) as municipal waste is inexpensive biomass that could be a renewable source of sugars particularly rich in hemicellulosic contents. The subsequent conversion of available sugars in PPW can provide prospective strategy for cost-effective bioenergy production. In this study, an experimental setup based on CCD was implemented with the aim of bioconversion of biomass into bioethanol. The factors considered were Hydrochloric acid concentration (X1), the hydrolysis temperature (X2) and time (X3) for optimization with dilute Hydrochloric acid (HCl) saccharification. The present study investigates the optimised level of bioethanol synthesis from acid pre-treated PPW explained by RSM. Subsequently, three yeasts viz. Saccharomyces cerevisiae K7, Metschnikowia sp. Y31 and M. cibodasensis Y34 were utilized for fermentation of acid hydrolysed and detoxified feed stocks. Optimum values of reducing sugars 48.02 ± 0.02 (gL?1) and total carbohydrates 205.88 ± 0.13 (gL?1) were found when PPW was hydrolyzed with 1% HCl concentration at 100?C of temperature for 30 min. Later on, fermentation of PPWH after detoxification with 2.5% activated charcoal. The significant ethanol (g ethanol/g of reducing sugars) yields after fermentation with Metschnikowia sp. Y31 and M. cibodasensis Y34 found to be 0.40 ± 0.03 on day 5 and 0.41 ± 0.02 on last day of experiment correspondingly. Saccharomyces cerevisiae K7 also produce maximum ethanol 0.40 ± 0.00 on last day of incubation utilizing the PPWH. The bioconversion of commonly available PPW into bioethanol as emphasize in this study could be a hopeful expectation and also cost-effective to meet today energy crisis.  相似文献   

6.
Cucurbita moschata D. seed oil contains approximately 75% unsaturated fatty acids, with high levels of monounsaturated fatty acids and antioxidant compounds such as vitamin E and carotenoids, constituting a promising food in nutritional terms. In addition, the Brazilian germplasm of C. moschata exhibits remarkable variability, representing an important source for the genetic breeding of this vegetable and other cucurbits. The present study evaluated the productivity and profile of the seed oil of 91C. moschata accessions from different regions of Brazil maintained in the Vegetable Germplasm Bank of the Federal University of Viçosa (BGH-UFV). A field experiment was conducted between January and July 2016. The accessions showed high genetic variability in terms of characteristics related to seed oil productivity (SOP), such as the weight of seeds per fruit and productivity of seeds, providing predicted selection gains of 29.39 g and 0.26 t ha?1, respectively. Based on the phenotypic and genotypic correlations, a greater SOP can be achieved while maintaining a high oleic acid concentration and low linoleic acid concentration, providing oil of better nutritional and chemical quality. In the variability analysis, the accessions were clustered into five groups, which had different averages for SOP and fatty acid concentration of seed oil, an approach that will guide the use of appropriate germplasm in programs aimed at genetic breeding for SOP and seed oil profile. Per se analysis identified BGH-4610, BGH-5485A, BGH-6590, BGH-5556A, BGH-5472A, and BGH-5544A as the most promising accessions in terms of SOP, with an average (μ + g) of approximately 0.20 t ha?1. The most promising accessions for a higher oleic acid concentration of seed oil were BGH-5456A, BGH-3333A, BGH-5361A, BGH-5472A, BGH-5544A, BGH-5453A, and BGH-1749, with an average (μ + g) of approximately 30%, almost all of which were also the most promising in terms of a lower linoleic acid concentration of the seed oil, with an average (μ + g) of approximately 45%. Part of the C. moschata accessions evaluated in the present study can serve as a promising resource in genetic breeding programs for SOP and fatty acid profile, aiming at the production of oil with better nutritional and physicochemical quality.  相似文献   

7.
8.
A spiral-shaped, highly motile bacterium was isolated from freshwater sulfidic sediment. Strain J10T is a facultative autotroph utilizing sulfide, thiosulfate, and sulfur as the electron donors in microoxic conditions. Despite high 16S rRNA gene sequence sequence identity to Magnetospirillum gryphiswaldense MSR-1 T (99.6 %), digital DNA-DNA hybridisation homology and average nucleotide identity between the two strains was of the different species level (25 % and 83 %, respectively). Strain J10T is not magnetotactic. The DNA G + C content of strain J10T is 61.9 %. The predominant phospholipid ester-linked fatty acids are C18:1ω7, C16:1ω7, and C16:0. Strain J10T (=DSM 23205 T = VKM B-3486 T) is the first strain of the genus Magnetospirillum showing lithoautotrophic growth and is proposed here as a novel species, Magnetospirillum sulfuroxidans sp. nov. In addition, we propose to establish a framework for distinguishing genera and families within the order Rhodospirillales based on phylogenomic analysis using the threshold values for average amino acid identity at ̴ 72 % for genera and ̴ 60 % for families. According to this, we propose to divide the existing genus Magnetospirillum into three genera: Magnetospirillum, Paramagnetospirillum, and Phaeospirillum, constituting a separate family Magnetospirillaceae fam. nov. in the order Rhodospirillales. Furthermore, phylogenomic data suggest that this order should accomodate six more new family level groups including Magnetospiraceae fam. nov., Magnetovibrionaceae fam. nov., Dongiaceae fam. nov., Niveispirillaceae fam. nov., Fodinicurvataceae fam. nov., and Oceanibaculaceae fam. nov.  相似文献   

9.
BackgroundThe patients who require transfusion are prevalent in the Jazan Province, Saudi Arabia. Therefore, it is essential to know the frequency of blood group antigens in such a population. The Kidd blood group system (JK) has two antithetical antigens, Jka and Jkb. Antibodies to these antigens may result in delayed hemolytic transfusion reactions. The present study investigated the frequencies of Jka and Jkb and the phenotypes among Saudi blood donors living in the Jazan Province.MethodsOne hundred and forty-three samples from anonymous Saudi volunteer blood donors in the Jazan Province were serotype to detect Jka and Jkb using gel card technology and determine the phenotypes of the JK blood group system.ResultsThe prevalence of Jka and Jkb antigens were 90.64% (n = 126) and 69.40% (n = 93), respectively. The JK phenotypes were 34.96% Jk(a + b ? ) (n = 51), 12.59% Jk(a ? b + ) (n = 18), 52.45% Jk(a + b + ) (n = 75), and 0% Jk(a ? b ? ). The frequencies of the JK phenotypes in the Jazan population were significantly different from those in the Asian population (P < 0.05).ConclusionsWe reported the frequencies of the Jka and Jkb antigens and the distribution of the JK phenotypes in a group of Saudi blood donors in the Jazan Province, Saudi Arabia. The phenotype Jk(a + b + ) was the most common among the study population. Furthermore, this study emphasizes the significance of identifying the frequency of JK antigens and phenotypes in the provinces of Saudi Arabia.  相似文献   

10.
Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species.16S rRNA gene accession number: GenBank = OK001858.Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.  相似文献   

11.
Sunflower occupies the fourth position among oilseed crops the around the world. Eceriferum (CER) is an important gene family that plays critical role in very-long-chain fatty acids elongation and biosynthesis of epicuticular waxes under both biotic and abiotic stress conditions. The aim of present study was to investigate the effect of sunflower CER genes during drought stress condition. Thus, comparative analysis was undertaken for sunflower CER genes with Arabidopsis genome to determine phylogenetic relationship, chromosomal mapping, gene structures, gene ontology and conserved motifs. Furthermore, we subjected the sunflower cultivars under drought stress and used qRT-PCR analysis to explore the expression pattern of CER genes during drought conditions. We identified thirty-seven unevenly distributed CER genes in the sunflower genome. The phylogenetic analysis revealed that CER genes were grouped into seven clades in Arabidopsis, Helianthus annuus, and Gossypium hirsutum. Expression analysis showed that genes CER10 and CER60 were upregulated in sunflower during drought conditions, indicating that these genes are activated during drought stress. The results obtained will serve to characterize the CER gene family in sunflower and exploit the role of these genes in wax biosynthesis under limited water conditions.Key messageCuticular waxes protect the plants from drought stress, so we observed the expression of wax bio synthesis genes in recently sequences genome of Helianthus annuus. We observed that expression of wax biosynthesis genes CER10 and CER60 was upregulated when the plants were subjected to drought stress.  相似文献   

12.
Lipoprotein lipase (LPL) is an enzyme involved in lipid metabolism and distribution of fatty acids hence its role in the initiation and development of dyslipidemia and adiposity. Single nucleotide polymorphisms (SNPs) across the LPL gene have been associated with dyslipidemia, however, the association with obesity has been limited towards specific populations. This study examined the association between LPL gene polymorphisms with plasma lipid levels and body mass index (BMI) in the Kuwaiti population. We examined a total of 486 adults (303 and 183 females and males respectively) with plasma lipid levels and BMI. DNA samples were genotyped for two LPL gene polymorphisms (rs1534649 and rs28645722) using TaqMan allelic discrimination. The relationship between the genotypes with both plasma lipid levels and BMI were assessed using linear regression using “SNPassoc” package from R statistical software. Using an additive genetic model, linear regression analysis showed the T-allele of rs1534649 to be associated with increased BMI in a dose-dependent trend β = 2.13 (95% CI 1.33–2.94); p = 1.7 × 10?7. In addition, a borderline significance was observed between the T-allele and low levels of high density lipoprotein-cholesterol β = ?0.04 (95% CI ?0.08, ?0.006); p = 0.02. There were no associations between rs28645722 and plasma lipid levels (p > 0.05). However, a trend was observed between the A-allele and increased BMI β = 1.75 (95% CI 0.14–3.35); p = 0.03. Our study shows intron one polymorphism rs1534649 to increase the risk of obesity and dyslipidemia. Our findings warrant further investigation of the mechanism of LPL on the development of obesity along with the role of intron one and its impact on LPL gene activity.  相似文献   

13.
In the era of climate change, decreased precipitation and increased evapo-transpiration hampers the yield of several cereal crops along with the soil salinity and poor ground water resource. Wheat being the moderately tolerant crop face many challenges in the arid and semi-arid regions under irrigated agriculture. In view of this, the study was planned to explore the potential of durum wheat genotypes under salinity on the basis of physiological traits. Experiment was designed as RBD in three replications to evaluate 15 wheat genotypes with moderate saline irrigation (ECiw – 6 dS m−1) and extreme saline irrigation (ECiw – 10 dS m−1) along with one set of control (Best available water). Different physiological traits such as water potential (ψp), osmotic potential (ψs), relative water content (RWC), Na+ and K+ content were recorded in roots as well as shoots at the reproductive stage whereas photosynthetic rate and chlorophyll content were measured in the flag leaves. A significant variability (p < 0.001) was noted among the genotypes under different stress environments and it was observed that durum genotype HI 8728 and HI 8737 showed less reduction in plant water traits (RWC, ψp and ψs) than the salinity tolerant checks of bread wheat KRL 99 and KRL 3–4. HD 4728 and HI 8708 maintained higher photosynthetic rate as well as higher chlorophyll content under the extreme salinity level of ECiw – 10 dSm−1. No significant differences were found in root Na+ in genotypes KRL 99 (3.17g), KRL 3–4 (3.34g) and HI 8737 (3.41g) while in shoots, lowest accumulation was seen in KRL 99, MACS 3949 and KRL 3–4 at ECiw – 10 dSm−1. The mean range of K+ content was 7.60–9.74% in roots and 4.21–6.61% in shoots under control environment which decreased to 50.77% in roots and 46.05% in shoots under extreme salinity condition of ECiw – 10 dSm−1. At ECiw – 10 dSm−1, KRL 99 maintained highest K+/Na+ in both root and shoot followed by KRL 3–4, HI 8737, MACS 3949, HD 4728 in roots and MACS 3949, KRL 3–4, MACS 4020, HD 4758, MACS 3972 and HI 8713 in shoots. The differential response of durum wheat genotypes under salinity particularly for physiological traits, confer their adaptability towards stress environments and exhibit their potential as genetic sources in breeding programs for improving salt stress tolerance.  相似文献   

14.
The strains designed PP-18T, JC-4 and JC-7 isolated from soils, were Gram-stain-positive rods, facultative anaerobe, endospore-forming bacteria. The strains produced l-lactic acid from glucose. They showed positive for catalase but negative for oxidase, nitrate reduction and arginine hydrolysis. Strains P-18T, JC-4 and JC-7 were closely related to Weizmannia coagulans LMG 6326T (97.27–97.64%) and W. acidiproducens KCTC 13078T (96.46–96.74%) based on 16S rRNA gene sequence similarity, respectively. They contained meso-diaminopimelic acid in cell wall peptidoglycan and had seven isoprene units (MK-7) as the predominant menaquinone. The major cellular fatty acids of strain PP-18T were iso-C15:0, anteiso-C17:0, iso-C16:0 and anteiso-C15:0. The ANIb and ANIm values among the genomes of strains PP-18T, JC-4 and JC-7 are above 99.4% while their ANIb and ANIm values among them and W. coagulans LMG 6326T and W. acidiproducens KCTC 13078T were ranged from 76.61 to 79.59%. These 3 strains showed the digital DNA-DNA hybridization (dDDH) values of 20.7–23.6% when compared with W. coagulans LMG 6326T and W. acidiproducens DSM 23148T. The DNA G + C contents of strains PP-18T, JC-4 and JC-7 were 45.82%, 45.86% and 45.86%, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphoglycolipids. The results of phenotypic and chemotaxonomic characteristics and whole-genome analysis indicated that the strains PP-18T, JC-4 and JC-7 should be represented as a novel species within the genus Weizmannia for which the name Weizmannia acidilactici sp. nov. is proposed. The type strain is PP-18T (=KCTC 33974T = NBRC 113028T = TISTR 2515T).  相似文献   

15.
The present study examined the phytochemical composition, antioxidant, antimicrobial properties, and molecular docking of different solvents extracts (methanol and water) of two medicinal plants, namely, Capparis spinosa L (CS) and Rumex nervosus (RN). Phytochemical analysis showed that total phenol, flavonoids, alkaloids, and vitamin C were significantly (P ≤ 0.05) higher in the methanolic extract of both plants than in other solvents. However, tannin content was significantly (P ≤ 0.05) high in the water extract for both plants. Chloroform and acetone extracts were significantly lower in phytochemicals than other solvents, therefore excluded in this study. GC–MS analysis showed one dominant compound in CS (isopropyl isothiocyanate) and two in RN (pyrogallol and palmitic acid). The antioxidant methods applied (DPPH, ABTS, β-Carotene/linoleic acid assay, and reducing the power) showed that the methanolic extract of CS exerted higher activity in methanolic extract but lower than that of BHA standard. The methanolic extract of both plants inhibited the bacterial pathogens when a minimum inhibitory concentration (MIC) method was applied, compared to water extract with RN-methanolic extract had a lower inhibition concentration than CS-methanolic extract. The molecular interactions study revealed that the palmitic acid and pyrogallol interacted with the receptors' active site. This work concluded that CS and RN showed a remarkable antioxidant and antibacterial effect with the high antimicrobial activity of RN extract.  相似文献   

16.
Avoidable or inappropriate nitrogen (N) fertilizer rates harmfully affect the yield production and ecological value. Therefore, the aims of this study were to optimize the rate and timings of N fertilizer to maximize yield components and photosynthetic parameter of soybean. This field experiment consists of five fertilizer N rates: 0, 75, 150, 225 and 300 kg N ha−1 arranged in main plots and four N fertilization timings: V5 (trifoliate leaf), R2 (full flowering stage) and R4 (full poding stage), and R6 (full seeding stage) growth stages organized as subplots. Results revealed that 225 kg N ha−1 significantly enhanced grain yield components, total chlorophyll (Chl), photosynthetic rate (PN), and total dry biomass and N accumulation by 20%, 16%, 28%, 7% and 12% at R4 stage of soybean. However, stomatal conductance (gs), leaf area index (LAI), intercellular CO2 concentration (Ci) and transpiration rate (E) were increased by 12%, 88%, 10%, 18% at R6 stage under 225 kg N ha−1. Grain yield was significantly associated with photosynthetic characteristics of soybean. In conclusion, the amount of nitrogen 225 kg ha−1 at R4 and R6 stages effectively promoted the yield components and photosynthetic characteristics of soybean.  相似文献   

17.
Lactobacilli are dominant in zha-chili. This study provides a taxonomic characterization of five bacterial strains isolated from zha-chili in China. The cells were Gram-positive, facultative anaerobic, non-spore-forming, flagella-free, catalase-negative, heterofermentative, pentose-fermenting, and gamma-aminobutyric acid (GABA)-producing rods. For HBUAS51241T, HBUAS51329, and HBUAS51416, C16:0, C18:1 ω9c and C19:0 iso were the predominant cellular fatty acids; diphosphatidylglycerol (DPG), phosphatidylglycerol (DP), glycolipids (GL), and glycolipids (AL) were the major phospholipids. While for HBUAS51383T and HBUAS58055, C16:0, C18:1 ω9c, C19:0 cyclo ω8c were the predominant cellular fatty acids; DPG, DP, GL, and AL were the major phospholipids. Strains HBUAS51241T, HBUAS51329, and HBUAS51416 showed 98.1–99.1% 16S rRNA gene sequence similarity, 80.2–81.4% ANI, 87.7–90.0% AAI, and 23.8–32.8% digital DDH to their closest related type strains Levilactobacillus hammesii DSM 16381T, Levilactobacillus parabrevis ATCC 53295T, and Levilactobacillus fuyuanensis 244-4T. Strains HBUAS51383T and HBUAS58055 showed 98.7–99.5% 16S rRNA gene sequence similarity, 75.4–81.4% ANI, 75.5–89.1% AAI, and 19.7–24.0% digital DDH to their closest related type strains Secundilactobacillus silagincola IWT5T, Secundilactobacillus silagei JCM 19001T, Secundilactobacillus pentosiphilus IWT25T, Secundilactobacillus mixtipabuli IWT30T, Secundilactobacillus odoratitofui DSM 19909T, and Secundilactobacillus similis DSM 23365T. The central carbon metabolism pathways for the five strains were summarizeded. Based on the phenotypic, chemotaxonomic, and genomic data, we propose two novel species Levilactobacillus tujiorum sp. nov. whose type strain is HBUAS51241T (=GDMCC 1.3022T = JCM 35241T), and Secundilactobacillus angelensis sp. nov. whose type strain is HBUAS51383T (=GDMCC 1.3021T = JCM 35209T).  相似文献   

18.
Radioligand therapy (RLT) using prostate-specific membrane antigen (PSMA) targeting ligands is an attractive option for the treatment of Prostate cancer (PCa) and its metastases. We report herein a series of radioiodinated glutamate-urea-lysine-phenylalanine derivatives as new PSMA ligands in which l-tyrosine and l-glutamic acid moieties were added to increase hydrophilicity concomitant with improvement of in vivo targeting properties. Compounds 8, 15, 19a/19b and 23a/23b were synthesized and radiolabeled with 125I by iododestannylation. All iodinated compounds displayed high binding affinities toward PSMA (IC50 = 1–13 nM). In vitro cell uptake studies demonstrated that compounds containing an l-tyrosine linker moiety (8, 15 and 19a/19b) showed higher internalization than MIP-1095 and 23a/23b, both without the l-tyrosine linker moiety. Biodistribution studies in mice bearing PC3-PIP and PC3 xenografts showed that [125I]8 and [125I]15 with higher lipophilicity exhibited higher nonspecific accumulations in the liver and intestinal tract, whereas [125I]19a/19b and [125I]23a/23b containing additional glutamic acid moieties showed higher accumulations in the kidney and implanted PC3-PIP (PSMA+) tumors. [125I]23b displayed a promising biodistribution profile with favorable tumor retention, fast clearance from the kidney, and 2–3-fold lower uptake in the liver and blood than that observed for [125I]MIP-1095. [125/131I]23b may serve as an optimal PSMA ligand for radiotherapy treatment of prostate cancer over-expressing PSMA.  相似文献   

19.
20.
Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号