首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
With the projected rise in the global human population, agriculture intensification and land‐use conversion to arable fields is anticipated to meet the food and bio‐energy demand to sustain a growing population. Moving towards a circular economy, agricultural intensification results in the increased re‐investment of bio‐based residues in agricultural soils, with consequences for microbially mediated greenhouse gas (GHG) emission, as well as other aspects of soil functioning. To date, systematic studies to address the impact of bio‐based residue amendment on the GHG balance, including the soil microorganisms, and nutrient transformation in agricultural soils are scarce. Here, we assess the global warming potential (GWP) of in situ GHG (i.e., CO2, CH4, and N2O) fluxes after application of six bio‐based residues with broad C : N ratios (5–521) in two agricultural soils (sandy loam and clay; representative of vast production areas in north‐western Europe). We relate the GHG emission to the decomposability of the residues in a litter bag assay and determined the effects of residue input on crop (common wheat) growth after incubation. The shift in the bacterial community composition and abundance was monitored using IonTorrentTM sequencing and qPCR, respectively, by targeting the 16S rRNA gene. The decomposability of the residues, independent of C : N ratio, was proportional to the GWP derived from the GHG emitted. The soils harbored distinct bacterial communities, but responded similarly to the residue amendments, because both soils exhibited the highest mean GWP after addition of the same residues (sewage sludge, aquatic plant material, and compressed beet leaves). Our results question the extent of using the C : N ratio alone to predict residue‐induced response in GHG emission. Taken together, we show that although soil properties strongly affect the bacterial community composition, microbially mediated GHG emission is residue dependent.  相似文献   

2.
This study reports on the carbon, water, and energy footprints of tomatoes grown in a greenhouse in Northern Italy and two possible future variations of heating and carbon dioxide (CO2) fertilization on the current setup. The heat supply in place, consisting of natural gas (NG) and canola oil combustion, is compared to cogeneration and incineration of municipal solid waste for heating and CO2 from industrial exhaust for fertilization. As a benchmark, the current system is also compared to a conventional system, in which heat is delivered solely based on NG. Each kilogram (kg) of fresh tomatoes (“Cuore di Bue” variety) produced in the current greenhouse emits 2.28 kg CO2 equivalents (eq) and uses 95.5 megajoules (MJ) eq energy and 122 liters (L) of water. Relative to the system in place, the carbon footprint (CF) is 57.5% and 18% higher with conventional NG heating and cogeneration and is 40% lower with waste valorization. Further, 33%, 55%, and 63% less energy and 9%, 96%, and 14% less water are used in the conventional, cogeneration, and waste valorization scenarios, respectively. This confirms that there are multiple strategies to reduce the impact of the tomato production under consideration.  相似文献   

3.

Background, aim, and scope  

Globally, 45 million metric tonnes of palm oil has been produced in 2009. The production of 1 t crude palm oil requires 5 t of fresh fruit bunches (FFB). On average, processing of 1 t FFB in palm oil mills generates 230 kg empty fruit bunches (EFB) and 650 kg palm oil mill effluent (POME) as residues. These residues cause considerable environmental burdens, particularly greenhouse gas emissions. In order to reduce those emissions, four waste management options are compared in the present study using 1,000 kg of FFB as functional unit.  相似文献   

4.
New contingency policy plans are expected to be published by the United Kingdom government to set out urgent actions, such as carbon capture and storage, greenhouse gas removal and the use of sustainable bioenergy to meet the greenhouse gas reduction targets of the 4th and 5th Carbon Budgets. In this study, we identify two plausible bioenergy production pathways for bioenergy with carbon capture and storage (BECCS) based on centralized and distributed energy systems to show what BECCS could look like if deployed by 2050 in Great Britain. The extent of agricultural land available to sustainably produce biomass feedstock in the centralized and distributed energy systems is about 0.39 and 0.5 Mha, providing approximately 5.7 and 7.3 MtDM/year of biomass respectively. If this land‐use change occurred, bioenergy crops would contribute to reduced agricultural soil GHG emission by 9 and 11 /year in the centralized and distributed energy systems respectively. In addition, bioenergy crops can contribute to reduce agricultural soil ammonia emissions and water pollution from soil nitrate leaching, and to increase soil organic carbon stocks. The technical mitigation potentials from BECCS lead to projected CO2 reductions of approximately 18 and 23 /year from the centralized and distributed energy systems respectively. This suggests that the domestic supply of sustainable biomass would not allow the emission reduction target of 50 /year from BECCS to be met. To meet that target, it would be necessary to produce solid biomass from forest systems on 0.59 or 0.49 Mha, or alternatively to import 8 or 6.6 MtDM/year of biomass for the centralized and distributed energy system respectively. The spatially explicit results of this study can serve to identify the regional differences in the potential capture of CO2 from BECCS, providing the basis for the development of onshore CO2 transport infrastructures.  相似文献   

5.
Anaerobic digestion is a promising option for recycling agricultural by-products and some organic wastes. While both agricultural by-products and wastes have no direct commercial value, their management is both complicated and costly. One option to simplify by-product management and reduce the costs associated with biogas plant feedstock is to substitute dedicated crops with vegetal by-products. Given that the chemical composition of some of these by-products can differ considerably from more typical biogas plant feedstock (such as maize silage), more complete knowledge of these alternatives to produce environmentally friendly energy is warranted. To this end, batch trials under mesophilic conditions were conducted to evaluate the potential biogas yield of many agricultural by-products: maize stalks, rice chaff, wheat straw, kiwi fruit, onions, and two expired organic waste products (dairy and dry bread) from the retail mass-market. Among the considered biomasses, the highest methane producer was the expired dairy product mixture, which yielded 554 lNCH4 kg−1 volatile solids (VS). Maize stalks and wheat straw produced the lowest yields of 214 and 285 lNCH4 kg−1VS, respectively. An assessment of the biogas and methane yields of each biomass was also undertaken to account for the specific chemical composition of each biomass as it can affect the anaerobic digestion operating system. Finally, the total Italian green energy production that might be derived from feeding all these biomasses to a biogas digester was estimated, in order to understand its potential impact.  相似文献   

6.
We present topographical and nanomechanical characterization of single Didymosphenia geminata stalk. We compared the samples before and after adsorption of metal ions from freshwater samples. Transmission electron microscopy studies of single stalk cross‐sections have shown three distinct layers and an additional thin extra coat on the external layer (called “EL”). Using scanning electron microscopy and atomic force microscopy (AFM), we found that topography of single stalks after ionic adsorption differed significantly from topography of pristine stalks. AFM nanoindentation studies in ambient conditions yielded elastic moduli of 214 ± 170 MPa for pristine stalks and 294 ± 108 MPa for stalks after ionic adsorption. Statistical tests showed that those results were significantly different. We conducted only preliminary comparisons between ionic adsorption of several stalks in air and in water. While the stalks with ions were on average stiffer than the pristine stalks in air, they became more compliant than the pristine stalks in water. We also heated the stalks and detected EL softening at 50°C ± 15°C. AFM nanoindentation in air on the softened samples yielded elastic moduli of 26 ± 9 MPa for pristine samples and 43 ± 22 MPa for stalks with absorbed metal ions. Substantial decrease of the EL elastic moduli after heating was expected. Significantly different elastic moduli for the samples after ionic adsorption in both cases (i.e., for heated and nonheated samples), as well as behavior of the stalks immersed in water, point to permanent structural EL changes due to ions.  相似文献   

7.
The diet and feeding behaviour of the kipunji (Rungwecebus kipunji) was studied over 45 months, the first dietary analysis for this species. During 9498 h of direct observation of 34 kipunji groups, a list of 122 identified foodplants was recorded. The list represents 60 families, including 64 trees, 30 herbs, 9 climbers, 7 shrubs, 6 lianas, 3 grasses and 3 ferns. Kipunji were observed eating bark, young and mature leaves, ripe and unripe fruits, flowers, pith, seed pods, rhizomes, tubers, shoots and stalks. Invertebrates, fungi, moss, lichen, and soil were also eaten. Macaranga capensis var. capensis, an early successional tree, was the most commonly consumed species, with leaves, leaf stalks, pith, flowers and bark all eaten. We demonstrate that the kipunji is an omnivorous dietary generalist, favouring mature and immature leaves, ripe and unripe fruits and bark in similar proportions, with an almost comparable fondness for leaf stalks and flowers. Kipunji appear to be adaptable foragers able to modify their diet seasonally, being more folivorous in the dry season and more frugivorous in the wet. Whereas more ripe fruit is eaten in the wet season, the proportion of unripe fruit remains similar across the year. The proportion of mature leaves and pith increases throughout the dry season at the expense of ripe fruits and bark, and this may compensate nutritionally for the lack of available dry-season ripe fruits. Relatively more pith is eaten in the dry season, more stalks at the end of the dry and beginning of the wet seasons, and bark consumption increases as the rainfall rises.  相似文献   

8.
Annual production of crop residues has reached nearly 4 billion metric tons globally. Retention of this large amount of residues on agricultural land can be beneficial to soil C sequestration. Such potential impacts, however, may be offset if residue retention substantially increases soil emissions of N2O, a potent greenhouse gas and ozone depletion substance. Residue effects on soil N2O emissions have gained considerable attention since early 1990s; yet, it is still a great challenge to predict the magnitude and direction of soil N2O emissions following residue amendment. Here, we used a meta‐analysis to assess residue impacts on soil N2O emissions in relation to soil and residue attributes, i.e., soil pH, soil texture, soil water content, residue C and N input, and residue C : N ratio. Residue effects were negatively associated with C : N ratios, but generally residue amendment could not reduce soil N2O emissions, even for C : N ratios well above ca. 30, the threshold for net N immobilization. Residue effects were also comparable to, if not greater than, those of synthetic N fertilizers. In addition, residue effects on soil N2O emissions were positively related to the amounts of residue C input as well as residue effects on soil CO2 respiration. Furthermore, most significant and stimulatory effects occurred at 60–90% soil water‐filled pore space and soil pH 7.1–7.8. Stimulatory effects were also present for all soil textures except sand or clay content ≤10%. However, inhibitory effects were found for soils with >90% water‐filled pore space. Altogether, our meta‐analysis suggests that crop residues played roles beyond N supply for N2O production. Perhaps, by stimulating microbial respiration, crop residues enhanced oxygen depletion and therefore promoted anaerobic conditions for denitrification and N2O production. Our meta‐analysis highlights the necessity to connect the quantity and quality of crop residues with soil properties for predicting soil N2O emissions.  相似文献   

9.
Agricultural soils have tremendous potential to sequester soil organic carbon (SOC) and mitigate global climate change. However, agricultural land use has a profound impact on SOC dynamics, and few studies have explored how agricultural land use combined with soil conditions affect SOC changes throughout the soil profile. Based on a paired soil resampling campaign in the 1980s and 2010s, this study investigated the SOC changes of the soil profile caused by agricultural land use and the correlations with parent material and topography across the Chengdu Plain of China. The results showed that the SOC content increased by 3.78 g C/kg in the topsoil (0–20 cm), but decreased in the 20–40 cm and 40–60 cm soil layers by 0.90 and 1.26 g C/kg respectively. SOC increases in topsoil were observed for all types of agricultural land. Afforestation on former agricultural land also caused SOC decreases in the 20–60 cm soil layers, while SOC decreases only occurred in the 40–60 cm soil layer for agricultural land using a traditional crop rotation (i.e. traditional rice–wheat/rapeseed rotation) and with rice–vegetable rotations converted from the traditional rotations. For each agricultural land use, SOC decreases in deep soils only occurred in high relief areas and in soils formed from Q4 (Quaternary Holocene) grey‐brown alluvium and Q4 grey alluvium that had a relatively low soil bulk density and clay content. The results indicated that SOC change caused by agricultural land use was depth dependent and that the effects of agricultural land use on soil profile SOC dynamics varied with soil characteristics and topography. Subsoil SOC decreases were more likely to occur in high relief areas and in soils with low soil bulk density and low clay content.  相似文献   

10.
Leafless nodal segments (4 ± 1 mm long) of hardy hibiscus were excised from in vitro proliferating microshoots, encapsulated in sodium alginate solidified with 50 μM CaCl2, stored under refrigeration for 4 weeks in darkness, and then planted in the greenhouse. Planting in vermiculite and placing under intermittent mist was the best environment tested. If the encapsulated nodal segments were exposed to light for at least 2 weeks while in vitro in the laboratory prior to planting in the greenhouse, all survived, rooted, and produced shoots in the greenhouse. Rooting into the vermiculite was best if the encapsulated nodal segments were planted 1 cm deep and not covered. Anatomically, the new leaves that were produced from shoots that grew under mist in the greenhouse from encapsulated nodal segments were about the same thickness as leaves produced in vitro; had fewer intercellular spaces than the in vitro produced leaves; had palisade cells intermediate in length, and were intermediate for epicuticular wax formation between in vitro produced leaves and leaves on macrocuttings rooted in the greenhouse. The stomates on greenhouse shoots from encapsulated nodal segments closed similar to stomates on leaves on rooted macrocuttings, and were unlike in vitro produced leaves where the stomates remained open even when stressed. Storing and planting encapsulated nodal segments could allow producers to generate sufficient numbers of nodal segments, refrigerate them until needed, and facilitate greenhouse acclimatization and production of plants.  相似文献   

11.
“Iron” bacteria belonging to the genus Gallionella were observed by scanning electron microscopy in water samples and attached to pipe surfaces in a Southern California drinking-water distribution system. The cells were recognized by their characteristic elongated helical stalks composed of numerous intertwined microfibrils. Many of the stalks were partially coated with insoluble ferric salt deposits. Stalks recovered directly from water samples were analyzed for their elemental composition by using X-ray energy-dispersive microanalysis. Silicon, aluminum, calcium, and iron were the predominant elements present in the stalks. Smaller quantities of the elements phosphorous, sulfur, chlorine, copper, and zinc were also detected. Manganese, though present in measurable quantities in the water supply, was not detected in the stalks, suggesting that this organism is unable to utilize this element as an electron donor. This represents the first such analysis of Gallionella stalks recovered from environmental samples without prior subculturing in artificial laboratory media.  相似文献   

12.
Cell immobilization has been proposed as a useful technique for mass production and efficient purification of secondary metabolites. In this study, we compared the bio-productivity of ligand-free and Ca-alginate-immobilized mulberry cells for rutin and γ-amino butyric acid (GABA). In the leaves of Subong mulberry plants (M. bombycis K.) grown in a greenhouse, GABA accumulated as the leaves aged; a more than a 20-fold increase of GABA was observed in leaves undergoing senescence than in younger leaves. In contrast, more rutin was detected in mature leaves than in young leaves and those undergoing senescence. The production of total proteins in ligand-free leaf callus cells dramatically increased until 6 days after incubation in liquid suspension media (from 6.5 mg/g callus at day 0–14.5 mg/g callus), and by day 15 dropped to levels similar to those seen in the 0-day control. In contrast, immobilized cells showed a slight increase and then an insignificant decrease in protein content during the 15-day incubation period. Interestingly, immobilized mulberry cells more efficiently produced and secreted rutin and GABA into the suspension media than ligand-free cells. KN, a cytokinin, enhanced this production while 2,4-dichlorophenoxyacetic acid(2,4-D), an auxin, alleviated the effect of KN. As a result, incubation of the immobilized Subong cells in a full-strength Murashige and Skoog (MS) liquid medium containing 1 mg/l of 2,4-D and 0.1 mg/l KN, among the hormone combinations in the medium we tested, produced the highest amounts of rutin (8.2 μg/g callus cells) and GABA (305 μg/g callus cells) and secreted the largest amounts into the suspension media.  相似文献   

13.
Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re‐investment of carbon compounds (residues) into agro‐systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well‐aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio‐based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group‐specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell‐specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may compensate for the loss of the methane sink function following land‐use change.  相似文献   

14.
Hundreds of aromatic plant species are growing naturally around Mediterranean. Plant essential oils are incorporated in aromatic plant material and follow the litter fall. During litter degradation, the presence of essential oils can affect soil microorganisms. Mycorrhizal fungi have never been investigated so far under the presence of volatile oils. The aim of this study was to explore the effect of aromatic Laurus nobilis L. on development of two mycorrhizal species Glomus deserticola and Glomus intraradices. The response of fungi colonization and host growth were monitored under different concentrations of L. nobilis leaves and essential oil. The major compounds of L. nobilis essential oil were 1,8-cineole (49.6%), sabinene (7.8%), ??-pinene (6.0%), eugenole (5.6%), ??-terpinyl acetate (5.2%) and ??-pinene (5.1%). Both mycorrhizal fungi colonized successfully the host plants whose growth was positively influenced by mycorrhizal fungi. G. deserticola presented higher infection level than G. intraradices. The addition of L. nobilis leaves in the soil resulted in mycorrhiza inhibition. The level of inhibition was positively correlated with the added amount of aromatic leaves in the soil. The essential oil presented a little higher inhibition than the leaves. The presence of this aromatic plant in many different ecosystems could contribute in mycorrhiza inhibition and it is suggested, when it’s possible, reduction of laurel litter before reforestation programs.  相似文献   

15.
Summary The increased downward mobility of phorate, quinalphos and carbofuran residues was detected in soil with increase in depth of soil column whereas aldicarb was found to remain localised mainly in 0–7.5 cm and 7.5–15.0 cm layers. Persistence of organophosphate insecticides was higher as compared to carbamates in all the soil layers. Residues of all the four insecticides got distributed in all parts of okra plant through uptake but accumulated in higher amounts in fruits only. Contribution No. 312/83 from I.I.H.R. Bangalore (India)  相似文献   

16.
The southern root-knot nematode (Meloidogyne incognita) is a major parasite of cotton in the U.S., and management tactics for this nematode attempt to minimize population levels. We compared three post-harvest practices for their ability to reduce nematode population levels in the field, thereby reducing initial nematode population for the next year's crop. The three practices tested were: 1) chemical defoliation before harvest plus cutting cotton stalks after harvest, 2) chemical defoliation plus applying a herbicide to kill plants prior to cutting the stalks, and 3) chemical defoliation without cutting stalks. Experiments were conducted in both the greenhouse and in the field. The greenhouse experiments demonstrated that M. incognita reproduction (measured as egg counts and root gall rating indices) was significantly greater when stalks were not cut. Cutting stalks plus applying herbicide to kill cotton roots did not significantly reduce nematode reproduction compared to cutting stalks alone. In field experiments, cutting stalks reduced egg populations and root galling compared to defoliation without stalk cutting. In a greenhouse bioassay which used soil from the field plots, plants grown in soil from the defoliation only treatment had greater root gall ratings and egg counts than in the stalk cutting plus herbicide treatment. Therefore, we conclude that cutting cotton stalks immediately after harvest effectively reduces M. incognita reproduction, and may lead to a lower initial population density of this nematode in the following year.  相似文献   

17.
Abstract: This article reports an assessment of the global warming potential associated with the life cycle of a biopolymer (poly(hydroxyalkanoate) or PHA) produced in genetically engineered corn developed by Monsanto. The grain corn is harvested in a conventional manner, and the polymer is extracted from the corn stover (i.e., residues such as stalks, leaves and cobs), which would be otherwise left on the field. While corn farming was assessed based on current practice, four different hypothetical PHA production scenarios were tested for the extraction process. Each scenario differed in the energy source used for polymer extraction and compounding, and the results were compared to polyethylene (PE). The first scenario involved burning of the residual biomass (primarily cellulose) remaining after the polymer was extracted from the stover. In the three other scenarios, the use of conventional energy sources of coal, oil, and natural gas were investigated. This study indicates that an integrated system, wherein biomass energy from corn stover provides energy for polymer processing, would result in a better greenhouse gas profile for PHA than for PE. However, plant-based PHA production using fossil fuel sources provides no greenhouse gas advantage over PE, in fact scoring worse than PE. These results are based on a "cradle-to-pellet" modeling as the PHA end-of-life was not quantitatively studied due to complex issues surrounding the actual fate of postconsumer PHA.  相似文献   

18.
A mineral oil, an insecticidal soap, and a plant-derived surfactant were compared with a broad-spectrum pyrethroid for residual toxicity and repellency to silverleaf whitefly,Bemisia argentifolii Bellows & Perring (Homoptera: Aleyrodidae) on tomatoes (Lycopersicum esculentum Miller, cv. Lanai) under greenhouse and laboratory conditions. The materials tested were: Sunspray oil (a mineral oil), M-Pede (an insecticidal soap),Nicotiana gossei extract (a sucrose ester surfactant), Garlic Barrier (repellency only), and the pyrethroid bifenthrin (Brigade 10WP), with water as a control. For toxicity studies, whiteflies were confined on leaves which had been dipped in solutions of 0.5×, 1× and 2× field rate concentrations. Insecticide residues were compared when the leaves were wet and dry. Adult mortalities were greatest with bifenthrin and Sunspray oil, followed by M-Pede,N. gossei extract and water. Mortality from dry residue of lower rates of bifenthrin and sunspray oil was greater than mortality from wet residues, whereas M-Pede lost all activity upon drying. Dual and multiple choice tests for repellency were carried out in the greenhouse or laboratory by spraying plants or individual leaves to runoff with 1 × field concentrations. Bifenthrin and Sunspray oil repelledB. argentifolii adults for up to 7 and 5 days, respectively, followed by M-Pede and extract ofN. gossei, whereas Garlic Barrier was not significantly different from the water control in all tests. Numbers of whitefly eggs were significantly reduced on bifenthrin and Sunspray oil-treated leaves, whereas egg numbers in other treatments were not different from water. Sunspray oil as a dip proved to be at least as effective as the synthetic pyrethroid for whitefly control. A multiple-choice leaf-wheel proved to be a useful device to quickly evaluate repellent effects of several different insecticides to whitefly.  相似文献   

19.
Warming temperatures and increasing CO2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th–11th years of an elevated CO2 (+200 ppm) experiment on a maize–soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process‐based ecosystem model (DayCent) to simulate the decadal effects of warming and CO2 enrichment on soil C. Both heating and elevated CO2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO2 and temperature will lead to long‐term declines in the amount of carbon stored in agricultural soils.  相似文献   

20.
The objective of this work was to evaluate the feasibility of ethanol production by fermentation of coffee husks by Saccharomyces cerevisiae. Batch fermentation studies were performed employing whole and ground coffee husks, and aqueous extract from ground coffee husks. It was observed that fermentation yield decreased with an increase in yeast concentration. The best results were obtained for the following conditions: whole coffee husks, 3 g yeast/l substrate, temperature of 30°C. Under these conditions ethanol production was 8.49 ± 0.29 g/100 g dry basis (13.6 ± 0.5 g ethanol/l), a satisfactory value in comparison to literature data for other residues such as corn stalks, barley straw and hydrolyzed wheat stillage (5–11 g ethanol/l). Such results indicate that coffee husks present excellent potential for residue-based ethanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号