首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
K Fujie  T Aoki  M Wada 《Mutation research》1990,242(2):111-119
The mutagenic effects of the trihalomethanes (THMs: chloroform, CHCl3; dichlorobromomethane, CHCl2Br; dibromochloromethane, CHClBr2; bromoform, CHBr3), found in chlorinated drinking water have been studied for their ability to induce chromosome aberrations (CA) in vivo in rat bone marrow cells. THMs were administered intraperitoneally (i.p. acute) and orally (subacute). Using a maximal dose of 1 mmole/kg body weight, positive results were noted for CHCl3, CHCl2Br, CHClBr2 and CHBr3 with i.p. treatment, and for CHCl3 and CHBr3 with oral treatment. The time-dependent increase in CA showed a maximum level at 12 h after i.p. injection and at 18 h after the fifth and last day of oral treatment.  相似文献   

2.
Brominated trihalomethanes (THMs) are disinfection by-products present frequently in chlorinated drinking water. Brominated THMs are mutagenic in a variety of systems and are carcinogenic in rodents. The metabolism of brominated THMs is thought to involve a GSH conjugation reaction leading either to formaldehyde or DNA-reactive intermediates via glutathione S-transferase-theta (GSTT1-1), which is polymorphic in humans. In the present study, we have determined the genotoxicity of one of the brominated THMs, bromoform (BF), by measuring its ability to induce sister chromatid exchanges (SCEs) in whole-blood (WB) cultures of human peripheral blood lymphocytes from GSTT1-1+ and GSTT1-1- donors. The results showed no differences in SCEs per cell by BF between GSTT1-1+ and GSTT1-1- individuals when the cells were exposed to 5 x 10(-3) M BF at the beginning of cell culturing (10.8+/-0.85 vs. 10.57+/-0.47, respectively), at the 16th (9.66+/-0.91 vs. 9.57+/-0.07), or the 24th h (8.21+/-0.61 vs. 8.29+/-0.24) of cell growth. Although GSTT1-1 is expressed in the erythrocytes, the lack of expression of the GSTT1-1 gene in the target cells (lymphocytes) may account for this observation.  相似文献   

3.
BACKGROUND: Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of two major causes of human mortality, colorectal and bladder cancer. Trihalomethanes (THMs) are by-products formed when chlorine is used to disinfect drinking water. The purpose of this study was to examine the ability of the THMs, trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and tribromomethane (TBM), to induce DNA strand breaks (SB) in (1) CCRF-CEM human lymphoblastic leukemia cells, (2) primary rat hepatocytes (PRH) exposed in vitro, and (3) rats exposed by gavage or drinking water. METHODS: DNA SB were measured by the DNA alkaline unwinding assay (DAUA). CCRF-CEM cells were exposed to individual THMs for 2 hr. Half of the cells were immediately analyzed for DNA SB and half were transferred into fresh culture medium and incubated for an additional 22 hr before testing for DNA SB. PRH were exposed to individual THMs for 4 hr then assayed for DNA SB. F344/N rats were exposed to individual THMs for 4 hr, 2 weeks, and to BDCM for 5 wk then tested for DNA SB. RESULTS: CCRF-CEM cells exposed to 5- or 10-mM brominated THMs for 2 hr produced DNA SB. The order of activity was TBM>DBCM>BDCM; TCM was inactive. Following a 22-hr recovery period, all groups had fewer SB except 10-mM DBCM and 1-mM TBM. CCRF-CEM cells were found to be positive for the GSTT1-1 gene, however no activity was detected. No DNA SB, unassociated with cytotoxicity, were observed in PRH or F344/N rats exposed to individual THMs. CONCLUSION: CCRF-CEM cells exposed to the brominated THMs at 5 or 10 mM for 2 hr showed a significant increase in DNA SB when compared to control cells. Additionally, CCRF-CEM cells exposed to DBCM and TBM appeared to have compromised DNA repair capacity as demonstrated by an increased amount of DNA SB at 22 hr following exposure. CCRF-CEM cells were found to be positive for the GSTT1-1 gene, however no activity was detected. No DNA SB were observed in PRH or F344/N rats exposed to individual THMs.  相似文献   

4.
To understand better the species differences in carcinogenicity caused by 1,3-butadiene (BD), we exposed G0 lymphocytes (either splenic or peripheral blood) from rats, mice and humans to 3, 4-epoxy-1-butene (EB) (20 to 931 microM) or 1,2:3,4-diepoxybutane (DEB) (2.5 to 320 uM), two of the suspected active metabolites of BD. Short EB exposures induced little measurable cytogenetic damage in either rat, mouse, or human G0 lymphocytes as measured by either sister chromatid exchange (SCE) or chromosome aberration (CA) analyses. However, DEB was a potent inducer of both SCEs and CAs in G0 splenic and peripheral blood lymphocytes. A comparison of the responses among species showed that the rat and mouse were approximately equisensitive to the cytogenetic damaging effects of DEB, but the situation for the human subjects was more complex. The presence of the GSTT1-1 gene (expressed in the erythrocytes) reduced the relative sensitivity of the lymphocytes to the SCE-inducing effects of DEB. However, additional factors also appear to influence the genotoxic response of humans to DEB. This study is the first direct comparison of the genotoxicity of EB and DEB in the cells from all three species.  相似文献   

5.
A growing body of evidence suggests that ribosome-inactivating proteins (RIPs) remove adenine moieties not only from rRNA, but also from DNA--an effect leading to DNA damage in cultured cells. We herein report that two distinct RIPs of bacterial (shiga toxin 1, Stx1) and plant (ricin) origin, inhibit the repair of the DNA lesions generated by hydrogen peroxide in cultured human cells. This effect is unrelated either to inhibition of protein synthesis or to depletion of cellular antioxidant defenses and is likely to derive from direct interactions with cellular DNA repair machinery. Therefore, the genotoxicity of these toxins on mammalian cells seems to be a complex phenomenon resulting from the balance between direct (DNA damaging activity), indirect (DNA repair inhibition) effects and the eventual presence of other DNA damaging species. In particular, with regard to Stx1, it could be hypothesized that Stx-producing bacteria increase the risk of transformation of surrounding, inflamed tissues in the course of human infections.  相似文献   

6.
针对饮用水中消毒副产物与微囊藻毒素的低剂量复合污染问题,采用离体细胞培养诱导方法,以草鱼淋巴细胞为暴露受体,研究了MCLR、MCRR两种微囊藻毒素和CHClBr2、CHCl2Br两种消毒副产物的单独与联合毒效应.结果表明:4种污染物在试验浓度下暴露2 h即能使草鱼淋巴细胞发生凋亡,且呈显著的剂量-效应关系;1 nmol·L-1MCLR、MCRR分别和1~100 nmol·L-1的CHCl2Br、CHClBr2的联合作用均表现为相加作用,并且均呈显著的剂量-效应关系.草鱼淋巴细胞凋亡率可作为一种有效的指标来评价微囊藻毒素及消毒副产物复合污染引起的细胞毒性.  相似文献   

7.
When hepatocytes isolated from phenobarbital-induced rats were incubated with chloroform and the spin trap phenyl-t-butyl nitrone (PBN) under anaerobic conditions, a free radical-spin trap adduct was detectable by ESR spectroscopy. A similar incubation of hepatocytes in the presence of air resulted in an ESR signal that was eight times less intense than that seen under anaerobic conditions; incubation mixtures exposed to pure oxygen had no detectable adduct signal. A significant reduction in the signal intensity was also produced by the addition of cytochrome P-450 inhibitors such as SKF-525A, metyrapone and carbon monoxide, indicating that free radical formation depended upon the reductive metabolism of chloroform mediated by the mixed oxidase system. The origin of the CHCl3-derived free radical has been confirmed by using [13C]CHCl3, while the comparison between the ESR spectra obtained in the presence of deuterated chloroform (CDCl3) and bromodichloro-methane (CHBrCl2) suggests that the free radical derived from CHCl3 may be CHCl2. Free radical intermediates were also detected during the aerobic and anaerobic incubation of isolated hepatocytes with bromoform (CHBr3), and iodoform (CHI3). The intensity of the ESR signal obtained with the various trihalomethanes increases in the order CHCl3 less than CHBrCl2 less than CHBr3 less than CHI3. The formation of PBN-free radical adducts has also been observed in phenobarbital-induced rats in vivo when intoxicated with chloroform, bromoform or iodoform, suggesting that the reductive metabolism of trihalomethanes might be of relevance to their established toxicity in the whole animal.  相似文献   

8.
Cytogenetic tests - chromosome aberrations (CA), sister chromatid exchanges (SCE) and micronuclei (MN) - are most often applied in biomonitoring of the genotoxicity of potentially carcinogenic chemicals in human cells. One of the extensively studied genotoxins is diepoxybutane (DEB) - reactive biometabolite of butadiene (BD). Several studies showed a high SCE induction in human lymphocytes exposed in vitro to various concentrations of DEB. DEB also proved to be a potent inducer of chromosome aberrations and micronuclei. A bimodal distribution of SCE frequency after in vitro DEB treatment was observed. The aim of the present study was to examine the ability of DEB to induce different individual cytogenetic response measured by SCE and CA frequency. The possible influence of genetic polymorphism has also been taken into account, by including donors representing positive or null GSTM1 and GSTT1 genotypes. Our study supported the earlier results showing that DEB is an effective inducer of SCEs and CAs, causing also the decrease in replication index (RI). DEB bioactivity measured by SCE induction - but not by CA test - was significantly higher in GSTT1 negative than in GSTT1 positive donors. GSTM1 polymorphism had no influence on these endpoints. The donors GSTT1-/GSTM1+ were shown to be slightly more sensitive to DEB than GSTT1-/GSTM1- individuals. There was also observed a unimodal distribution of DEB-induced SCEs and CAs in the group, despite the fact that the experiment was performed on the lymphocytes obtained from both GSTT1 positive and negative donors.  相似文献   

9.
Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case-control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P < 0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P < 0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P < 0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case-control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects.  相似文献   

10.
Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case-control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P?0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P?0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P?0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case-control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects.  相似文献   

11.
 Glutathione S-transferase-mediated metabolism of exogenous compounds usually leads to detoxification, but there are some exceptions. For example, glutathione S-transferase-T1 (GSTT1) can also generate genotoxic metabolites. Studies on the biology of GSTT1 are limited by the lack of specific antibodies recognizing GSTT1 in animal tissues. We localized GSTT1 immunohistochemically in mouse kidney, liver, and lung using a novel antibody targeted against the C-terminus of rat GSTT1 (rGSTT1). The antibody was characterized using immunoblot and shown to specifically recognize rGSTT1 and mouse GSTT1, but not human GSTT1. In kidney, GSTT1 staining was detected only in collecting duct epithelium. In liver, pericentral hepatocytes showed cytoplasmic and nuclear staining. Nuclear staining was also observed in several other hepatocytes without relation to liver zonation. Nuclei and supranuclear cytoplasm of bile duct epithelium and endothelium of interlobular arterioles also reacted strongly. In lung, staining was observed in bronchiolar epithelium and in surrounding muscle cells. Type II pneumocytes and endothelial cells of intrapulmonary capillaries also showed strong positive staining. This report describes the first immunohistochemical localization of GSTT1 in mammalian tissues. The reported location of GSTT1 is consistent with its known metabolic activity toward compounds such as dichloromethane and their metabolism into genotoxic products. Accepted: 11 May 1998  相似文献   

12.
Doxorubicin (Dox) is a widely used drug in oncology with a broad spectrum of interactions with various cellular components; therefore, it is likely to act through different mechanisms. In clinical practice there is inter-individual variability in cytotoxic drug response and in the occurrence of adverse reactions. Glutathione S-transferases (GSTM1, GSTT1 and GSTP1) are thought to be involved in the detoxification of endogenous and exogenous genotoxicants. The aim of this work is the assessment of a possible influence of polymorphisms in GSTs on the levels of genetic damage induced in vitro by Dox in cultured human lymphocytes. For this purpose, whole blood cultures from individuals with different genotypes for GSTM1, GSTT1 and GSTP1 were exposed to Dox and the cytokinesis-blocked micronucleus (CBMN) assay was used as the endpoint for chromosomal damage in the lymphocytes. Genotyping of GSTM1 and GSTT1 was carried out by multiplex PCR and the GSTP1-Ile105Val polymorphism was determined by PCR/RFLP. The total number of micronuclei present in 1000 binucleated cells and the frequency of micronucleated binucleated lymphocytes in the different individuals were analyzed considering the GSTM1, GSTT1 and GSTP1 genotypes. The results obtained suggest that GSTM1 and GSTT1 deletion polymorphisms do not modify significantly the genotoxic potential of Dox. However, the GSTP1 Ile105Val polymorphism was associated with an increase of micronucleated binucleated cells induced by Dox. Lymphocytes from homozygous individuals for the variant form (Val/Val) presented a significant increase in micronucleated binucleated cells (approximately 1.5-fold; p<0.05) when compared with individuals with at least one wild-type allele. These results suggest a possible role for GSTP1 on the modulation of the genotoxicity induced by Dox, which may be considered in cancer therapy.  相似文献   

13.
The genes of the glutathione S-transferase (GST) family encode enzymes that appear to be critical in cellular protection against the cytotoxic effects, whereas p53 is a tumor suppressor gene. Despite a large number of studies on germline polymorphisms of GSTM1, GSTT1 and p53 genes, there have been very few reports on genotyping of these genes in human malignant tumor cells. In this study, we investigated GSTM1, GSTT1 and p53 codon 72 polymorphisms in a variety of human tumor cell lines originating from different organs to clarify tissue-specific polymorphic frequency of these genes in human solid tumors. The GSTM1 and GSTT1 genetic polymorphisms were evaluated using multiplex PCR techniques and PCR-RFLP analysis was conducted to identify p53 codon 72 genotypes. Gene expression of GSTM1 or GSTT1 was detected by RT-PCR in the cells with respective present genotype for each. Polymorphisms of p53 codon 72 detected by PCR-RFLP were also confirmed using SSCP and sequence analyses. GSTM1 and GSTT1 genotypes were various in 104 cell lines examined. Null GSTM1 genotype was dominant in small cell lung, kidney and ovarian carcinoma cells, whereas null GSTT1 genotype was dominant in cervical and endometrial carcinoma cells. GSTM1 and GSTT1 genotypes in ovarian carcinoma cells were quite similar to those in small cell lung carcinoma cells. Polymorphic frequency of p53 codon 72 was also various among the cells, however, the Pro allele was found in only 1 of 6 kidney, 14 cervical and 4 endometrial carcinoma cell lines. There was a significant difference in GSTM1 and p53 genotypes between 34 small cell and 24 non small cell lung carcinoma cells (P < 0.01). Combined study on the distribution of GSTM1, GSTT1 and p53 genotypes revealed that null GSTM1 genotype was associated with the Arg allele of p53 codon 72 in 58 lung carcinoma cells and null GSTT1 genotype was associated with the Pro/Pro homozygote in 104 tumor cell lines examined. This is the first study examining GSTM1, GSTT1 and p53 codon 72 polymorphisms in a variety of human solid tumor cells and suggesting that polymorphic frequency of these genes may be tissue- and organ-specific. The molecular interaction between GST gene defects and p53 codon 72 genotype in the development of human malignant tumors should be further investigated.  相似文献   

14.
Glutathione activation of chloropicrin in the Salmonella mutagenicity test   总被引:1,自引:0,他引:1  
Chloropicrin (CCl3NO2) is a major soil fumigant for control of fungi, insects and nematodes and may by formed by chlorination of drinking water. It is also a strong lacrimator and induces sister chromatid exchanges in cultured human lymphocytes. Mutagenicity assays of CCl3NO2 in Salmonella typhimurium TA100 establish that it is toxic but not mutagenic at 500 nmol/plate but becomes mutagenic but not toxic on addition of S9 (previous work) or 1-2 molar equivalents of glutathione (GSH) (this study). The preincubation assay is superior to the plate incorporation test giving 2-4-fold higher revertants/nmol. Using the preincubation assay with GSH at 5 mM (a biomimetic level) in the top agar gives linear dose-response relationships for CCl3NO2 and its dechlorination products CHCl2NO2 and CH2ClNO2 with 0.56, 0.56 and 1.8 revertants/nmol, respectively. The mutagenicity values for CHCl2NO2 and CH2ClNO2 are the same in the presence and the absence of GSH, which only improves the linearity at high levels by reducing toxicity to the bacteria. GSH activation of CCl3NO2 mutagenicity may be due to reductive dechlorination of the trichloro compound to the more active CHCl2NO2 and CH2ClNO2. Alternatively, the mutagenicity may result from an intermediate GSH conjugate such as GSCCl2NO2 or GSCHClNO2. In comparison, the mutagenicity of CH2Br2 and CH2I2 is affected little if any by addition of GSH and these dihalomethanes are much less active than the halonitromethane series. It therefore appears that CCl3NO2 is not mutagenic in the absence of activation and that the dechlorinated metabolites CHCl2NO2 and CH2ClNO2 are moderately potent bacterial mutagens, consistent with the possible genotoxicity of CCl3NO2 in mammals.  相似文献   

15.
应用病例-对照分析研究(对照组205例,肺癌病例组104例),抽提静脉血基因组DNA,采用PCR及多重PCR方法,检测谷胱甘肽转移酶GSTM1和GSTT1单独及联合缺失基因型的遗传多态性在中国湖南人群中肺癌患者和正常人群体中的分布,探讨这些多态性基因型与肺癌易感性的关系.结果显示GSTM1-/-基因型在湖南地区居民肺癌群体和正常对照人群中的频率分别为62.5%和46.3%(P<0.05);肺癌患者组GSTT1-/-基因型的频率(66.3%)显著高于正常对照组(42.4%)(P<0.05).GSTM1-/-和GSTT1-/-联合基因型在肺癌组和正常对照组中的频率分别为41.3%和22.4%(P<0.05).SPSS11.5软件统计学分析表明,这些基因型在肺癌患者组和正常对照组人群中的发生频率具有显著性差异.由此可知GSTM1基因缺失和GSTT1基因缺失分别与肺癌的易感性相关;GSTM1和GSTT1基因联合缺失与肺癌的发生和发展呈现显著正相关.  相似文献   

16.
Genetic susceptibility, biomarker respones, and cancer   总被引:1,自引:0,他引:1  
Norppa H 《Mutation research》2003,544(2-3):339-348
A large number of studies have reported associations between polymorphisms of xenobiotic-metabolizing enzymes (XMEs) and various cancers. However, the carcinogenic exposures behind such findings have usually been unclear. Information on susceptibility to specific carcinogens could better be obtained by examining situations where the exposure and the endpoint studied are nearer in time, i.e., by studying biomarkers of carcinogen exposure and early (genotoxic) effect in exposed humans. For example, analyses of DNA adducts and cytogenetic endpoints have indicated an increased susceptibility of glutathione S-transferase M1 (GSTM1) null genotype to genotoxicity of tobacco smoking, supporting the view that the associations of the GSTM1 null genotype with bladder and lung cancer are partly related to smoking. In vitro genotoxicity studies with human cells offer an experimental tool that can be used, within the limits of the cell systems, to predict individual sensitivity and genotype-carcinogen interactions. In vitro sensitivity to the genotoxicity of 1,2:3,4-diepoxybutane, an epoxide metabolite of 1,3-butadiene has clearly been shown to depend on GSTT1 genotype, which has also been implicated to modify, along with GSTM1 genotype, the in vitro genotoxicity of 1,2-epoxy-3-butene, another epoxide metabolite of 1,3-butadiene. These genotypes appear to modulate the excretion of 1,3-butadiene-specific mercapturic acids, and influence genotoxicity biomarker levels in 1,3-butadiene-exposed workers. The excretion of specific mercapturic acids (PHEMA) in workers exposed to styrene has clearly been shown to depend on GSTM1 genotype, and GSTT1 genotype seems to modulate the excretion of one PHEMA diastereoisomer. These genotypes have also been implicated to modulate the in vitro genotoxicity of styrene. In general, the genetic polymorphisms potentially important for biomarker response largely depend on the exposing agent, biological material examined, and ethnicity of the population under study. Individual exposure level may vary a lot, and a reliable estimate of the exposure is essential for correct interpretation of genotype-exposure interaction. Besides XME polymorphisms, any polymorphisms that affect cellular response to DNA damage could, in principle, modify individual sensitivity to genotoxins. For instance, those concerning DNA repair proteins are presently being studied by many laboratories.  相似文献   

17.
Styrene is one of the most important organic chemicals used worldwide. Its main metabolite, styrene-7,8-oxide (SO), is considered responsible for the genotoxic effects associated with exposure to styrene. SO is detoxified by hydrolysis catalyzed by epoxide hydrolase (EH), or, to a minor extent, by conjugation mediated by glutathione S-transferases (GSTs). The purpose of the present study was to investigate whether EH (exons 3 and 4), GSTP1 (exons 5 and 6), GSTM1 and GSTT1 polymorphisms have any influence on the genotoxicity of SO in human leukocytes. Peripheral leukocytes from 30 healthy donors were exposed to SO (50 and 200 micro M) and genotoxicity was evaluated by means of the micronucleus (MN) test and alkaline comet assay, using 1% DMSO as solvent control. When EH genotypes were classified in low, medium, and high with respect to the expected EH activity, an increase in induced comet tail length was observed with decreasing EH activity in SO-exposed cells. An increase was seen in induced MN frequency in EH low-activity donors. These findings are consistent with the detoxifying activity of this enzyme. In addition, increases in MN frequencies for GSTP1 *A/*B and *A/*C genotypes with regard to the wild-type homozygous *A/*A genotype were detected. This may be due to a low detoxifying activity as a consequence of altered SO affinity of the variant protein, but must be confirmed using homozygote variant individuals, not included in this study. No clear results were obtained for GSTM1 or GSTT1 genotypes, even when performing the analysis after grouping individuals with the same expected EH activity, probably due to the minor role that glutathione conjugation plays in styrene metabolism. The present in vitro findings using human leukocytes suggest that polymorphisms in EH, and, to a lesser extent, in GSTP1, may influence induction of cytogenetic and DNA damage by SO.  相似文献   

18.
Jung YJ  Youn JY  Ryu JC  Surh YJ 《Mutation research》2001,474(1-2):25-33
Salsolinol (SAL) is a tetrahydroisoquinoline neurotoxin that has been speculated to contribute to pathophysiology of Parkinson's disease and chronic alcoholism. The compound is also found in certain beverages and food stuffs, including soy sauce, beer and bananas. Despite potential human exposure to SAL and its endogenous formation, little is known about the genotoxic or carcinogenic potential of this substance. In the present investigation, SAL induced DNA damage in cultured Chinese hamster lung (CHL) fibroblasts as assessed by single cell gel electrophoresis (Comet). CHL cells treated with SAL also exhibited higher frequencies of chromosomal aberrations than did vehicle-treated controls. Our recent study has revealed that SAL in combination with Cu(II) causes the strand scission in phiX174 supercoiled DNA [Neurosci. Lett. 238 (1997) 95]. In line with this notion, addition of cupric ion potentiated the DNA damaging and clastogenic activity of SAL. Antioxidant vitamins, such as Vitamin C and Vitamin E, and reduced glutathione inhibited clastogenicity of SAL, suggesting the involvement of reactive oxygen species (ROS) in SAL-induced DNA damage and genotoxicity in CHL cells.  相似文献   

19.
The enhancing effect of tetrandrine, an antisilicosis, antitumor and antiinflammatory drug, on the genotoxic activity of two known mutagens, mitomycin C (MMC) and cigarette-smoke condensate (CSC), has been studied using cultured Chinese hamster lung (V79) cells. The sister-chromatid exchange (SCE) was used as genetic endpoint to measure genotoxicity. One-day cultured cells were exposed to the test chemicals for 3 h with or without metabolic activation. The results show that the frequencies of SCE induced by MMC or CSC were enhanced by tetrandrine. The percent of enhancement was dependent on the concentration of tetrandrine.  相似文献   

20.
Zhang L  Xu L  Zeng Q  Zhang SH  Xie H  Liu AL  Lu WQ 《Mutation research》2012,741(1-2):89-94
Disinfection of drinking water reduces pathogenic infection, but generates disinfection by-products (DBPs) in drinking water. In this study, the effect of fifteen DBPs on DNA damage in human-derived hepatoma line (HepG2) was investigated by the single cell gel electrophoresis (SCGE) assay. These fifteen DBPs are: four trihalomethanes (THMs), six haloacetic acides (HAAs), three haloacetonitriles (HANs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and chloral hydrate (CH). Based on the minimal effective concentration (MEC) at which DBPs induced significant increase in olive tail moment (OTM), the rank order of DNA-damaging potency is: bromodichloromethane (BDCM)>dibromochloromethane (DBCM)>tribromomethane (TBM)>trichloromethane (TCM) of the four THMs; iodoacetic acid (IA)>bromoacetic acid (BA)>dibromoacetic acid (DBA)>dichloracetic acid (DCA)>trichloroacetic acid (TCA) of the five HAAs; dibromoacetonitrile (DBN)approximately dichloroacetonitrile (DCN)>trichloroacetonitrile (TCN) of the three HANs. The DNA damaging potency of MX and CH is similar to TCA and DCA, respectively. IA is the most genotoxic DBP in the fifteen DBPs, followed by BA. Chloroacetic acid (CA) is not genotoxic in this assay. Our findings indicated that HepG2/SCGE is a sensitive tool to evaluate the genotoxicity of DBPs and iodinated DBPs are more genotoxic than brominated DBPs, but chlorinated DBPs are less genotoxic than brominated DBPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号