首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The manner of interaction of the coat peptide of the Pf3 phage (Pf3 peptide) with lipid bilayers has been extensively studied. Presently, we designed a derivative of the Pf3 peptide, referred to as the DDRK peptide, and subjected it to trypsin digestion to understand its physicochemical properties. In the presence of Triton X-100 used for solubilization of the peptide, digestion of DDRK with trypsin caused specific cleavage at the lysine (Lys) residue in its N-terminal region but not at other Lys residues or at the arginine residue. As the N-terminal region of the DDRK peptide is relatively hydrophilic, but its remaining region is hydrophobic, this hydrophobic region of the peptide would be expected to be coated by Triton micelles. Thus, we propose that the presence of such micelles protected against cleavage there, leading to selective cleavage by trypsin of the DDRK peptide at its hydrophilic Lys residue in the N-terminal part of the molecule. However, such a protective effect on the DDRK peptide against trypsin digestion was not observed with octylglucoside. The observed results are important for better understanding of the manner of interaction between detergents and hydrophobic peptides.  相似文献   

2.
A blood coagulation factor, Factor XIII, was highly purified from bovine fresh plasma by a method similar to those used for human plasma Factor XIII. The isolated Factor XIII consisted of two subunit polypeptides, a and b chains, with molecular weights of 79,000 +/- 2,000 and 75,000 +/- 2,000, respectively. In the conversion of Factor XIII to the active enzyme, Factor XIIIa, by bovine thrombin [EC 3.4.21.5], a peptide was liberated. This peptide, designated tentatively as "activation peptide," was isolated by gel-filtration on a Sephadex G-75 column. It contained a total of 37 amino acid residues with a masked N-terminal residue and C-terminal arginine. The whole amino acid sequence of "Activation peptide" was established by the dansyl-Edman method and standard enzymatic techniques, and the masked N-terminal residue was identified as N-acetylserine by using a rat liver acylamino acid-releasing enzyme. This enzyme specifically cleaved the N-acetylserylglutamyl peptide bond serine and the remaining peptide, which was now reactive to 1-dimethylamino-naphthalene-5-sulfonyl chloride. A comparison of the sequences of human and bovine "Activation peptide" revealed five amino acids replacements, Ser-3 to Thr; Gly-5 to Arg; Ile-14 to Val; Thr-18 to Asn, and Pro-26 to Leu. Another difference was the deletion of Leu-34 in the human peptide. Adsorption chromatography on a hydroxylapatite column in the presence of 0.1% sodium dodecyl sulfate was developed as a preparative procedure for the resolution of the two subunit polypeptides, a or a' chain and b chain, constituting the protein molecule of Factor XIII or Factor XIIIa. End group analyses on the isolated pure chains revealed that the structural change of Factor XIII during activation with thrombin occurs only in the N-terminal portion of the a chain, not in the N-terminal end of the b chain or in the C-terminal ends of the a and b chains. From these results, it was concluded that the activation of bovine plasma Factor XIII by thrombin must be accompanied by a limited proteolysis of the arginyl-glycyl bond located in the N-terminal region of the a chain, liberating the "Activation peptide." The possibility of activating Factor XII with other porteinases was examined using Factor Xa [EC 3.4.21.6], Factor XIIa, kallikreins [EC 3.4.21.8], urokinase [EC 3.4.99.26], trypsin [EC 3.4.21.4], ficin [EC 3.4.22.3], papain [EC 3.4.22.2], and bromelain [EC 3.4.22.4]. Among these enzymes, only bromelain and trypsin showed clear activating effects.  相似文献   

3.
Clostridium perfringens type A enterotoxin was activated about 3-fold by treatment with trypsin, without an observed change in molecular weight. On denaturation in 8 M urea, the trypsinated enterotoxin lost a small peptide of about 4000 daltons. The single cysteine residue of enterotoxin was in the small peptide together with seven out of nine residues of proline. Trypsin activation, without removal of the small peptide, increased the 'outside' number of amino groups from eight to eleven. The trypsin treatment of the enterotoxin did not change the antigenic properties of the protein. Glycine was the C-terminal residue of the native enterotoxin while the dansyl alpha-amino acid of the N-terminal could not be identified.  相似文献   

4.
用CM-Cellulose-23柱层析分离纯化了615小鼠珠蛋白α链,测定其N端氨基酸残基为缬氨酸.615小鼠珠蛋白α链含有141个氨基酸残基,其中19个亮氨酸残基,10个组氨酸残基,9个缬氨酸残基,上述氨基酸残基的数目与文献中其亲本C57BL不同.用胰蛋白酶水解615小鼠珠蛋白α链,发现有不溶性的‘核心’和可溶性的酶解片段.其中一个酶解肽段从N端数第8位氨基酸残基发生了突变,由亲本的缬氨酸变为亮氨酸.  相似文献   

5.
6.
The N-terminal amino-acid sequence of human ITI has been found to be identical with that of the acid-stable human 30-kDa inhibitors (HI-30) from urine, serum, and those released from inter-alpha-trypsin inhibitor by trypsin or chymotrypsin. Serum HI-30 and HI-30 released by trypsin differ from the urinary inhibitor by an additional C-terminal arginine residue. Compared to these two inhibitors the inhibitor released by chymotryptic proteolysis is elongated C-terminally by an additional phenylalanine residue. These results strongly favour HI-30 as the N-terminus of the inter-alpha-trypsin inhibitor and its release from this inhibitor in vivo by cleavage of the Arg123-Phe124 peptide bond by trypsin-like proteinases.  相似文献   

7.
The reactive site peptide bond of the eggplant inhibitor against trypsin [EC 3.4.21.4] was identified by chemical modifications with 1,2-cyclohexanedione, 2,4,6-trinitrobenzenesulfonic acid, acetic anhydride and glyoxal, and by sequential treatments with trypsin and carboxypeptidase B [EC 3.4.12.3]. The inhibitor was significantly inactivated by chemical modifications of arginine residues, but was not affected by lysine modifications. Free arginine was released from the trypsin-modified inhibitor by carboxypeptidase B digestion, accompanied by a marked loss of inhibitory activity. A serine residue was newly exposed at the N-terminal amino acid of the inhibitor after modification with trypsin. The reactive site of the inhibitor against trypsin was concluded to be an arginylseryl bond. The inhibitor was completely inactivated by full reduction of its disulfide bonds.  相似文献   

8.
Comparative substrate analysis of full-length bovine enteropeptidase and trypsin, bovine and human enteropeptidase light chains was performed using model N-terminal dodecapeptides corresponding to wild-type human trypsinogen and pancreatitis-associated mutant trypsinogens K23R and D22G. The substitution of Lys residue by Arg at P1 leads to 2-fold increase in the efficiency of enteropeptidase hydrolysis; the absence of the negatively charged residue at P2 reduces the efficiency of such hydrolysis by two orders of magnitude. The difference in efficiency of peptide chain hydrolysis after Lys/Arg residues by enteropeptidase compared to trypsin is equal to the difference in hydrolysis by serine proteases of different primary specificity of their specific substrates.  相似文献   

9.
Glycogen synthase is a substrate for five distinct protein kinases in skeletal muscle which phosphorylate seven different serine residues on the enzyme. Cyclic-AMP-dependent protein kinase phosphorylates sites 1a, 1b and 2, phosphorylase kinase, site 2, glycogen synthase kinase 3, sites 3a, 3b and 3c, glycogen synthase kinase 4, site 2 and glycogen synthase kinase 5 site 5. Site 2 is seven residues from the N-terminus of glycogen synthase and is located in a cyanogen bromide peptide termed CB1 (apparent Mr = 9000). The other six phosphorylation sites are located in a cyanogen bromide peptide termed CB2 (apparent Mr = 24 000) at the C-terminal end of the molecule. The sequence of the N-terminal 123 residues of peptide CB2, has been completed. Sites 3a, 3b, 3c, 5, 1a and 1b are located at residues 30, 34, 38, 46, 87 and 100 from the N-terminus of CB2 respectively. Site 1a is the next serine residue after site 5. The region surrounding sites 3a, 3b and 3c is very rich in proline residues while that surrounding sites 1a and 1b contains many serine and threonine residues. The 23 residues following site 5 contain 15 aspartic acid and glutamic acid residues, while the region immediately N-terminal to site 1a is very basic. The whole region is remarkably hydrophilic and is the region at which the native enzyme is attacked by proteinases. The sites at which glycogen synthase is cleaved by trypsin, chymotrypsin and thermolysin have been identified. The finding that trypsin cleaves the enzyme C-terminal to site 3c while chymotrypsin cleaves N-terminal to site 3a has formed the basis of a simple procedure for determining the state of phosphorylation of the seven serine residues in vivo [Parker, P.J., Embi, N., Caudwell, F.B., and Cohen, P. (1982) Eur. J. Biochem. 124, 47-55].  相似文献   

10.
Three DNA constructs, pETB-40, 41, and 42, encoding human big endothelin-1 (ET-1) preceded by the specific recognition sequence (Ile-Glu-Gly-Arg) for the activated blood coagulation factor Xa (FXa), fused in frame to the N-terminal portion of beta Gal, were expressed in Escherichia coli. The fusion proteins, pETB-40P, 41P, or 42P, consisted of the 55-, 51-, or 42-aa N-terminal peptide of beta Gal and the 38-aa of big ET-1, and had 1, 0, or 0 Cys residues and 5, 5, or 1 Arg residues in the N-terminal peptide of beta Gal, respectively. Enzymatic cleavage of the purified fusion proteins by FXa or trypsin allowed the recovery of authentic human big ET-1. The rates of conversion of pETB-40P, 41P, and 42P to big ET-1 by FXa digestion were 5.6, 11.2, and 30.0%, respectively. pETB-40P with a deletion of one Cys residue and four Arg residues in the N-terminal part was a better substrate than the other two for FXa or trypsin in the production of big ET-1.  相似文献   

11.
The first semi-synthetic serine protease made by native chemical ligation   总被引:1,自引:0,他引:1  
Selective incorporation of non-natural amino acid residues into proteins is a powerful approach to delineate structure-function relationships. Although many methodologies are available for chemistry-based protein engineering, more facile methods are needed to make this approach suitable for routine laboratory practice. Here, we describe a new strategy and provide a proof of concept for engineering semi-synthetic proteins. We chose a serine protease Streptomyces griseus trypsin (SGT) for this study to show that it is possible to efficiently couple a synthetic peptide containing a catalytically critical residue to a recombinant fragment containing the other active site residues. The 223-residue hybrid SGT molecule was prepared by fusing a chemically synthesized N-terminal peptide to a large C-terminal fragment of recombinant origin using native chemical ligation. This C-terminal polypeptide was produced from full-length SGT by cyanogen bromide cleavage at a genetically engineered Met57 position. This semi-synthetic hybrid trypsin is fully active, showing kinetics identical to the wild-type enzyme. Thus, we believe that it is an ideal model enzyme for studying the catalytic mechanisms of serine proteases by providing a straightforward approach to incorporate non-natural amino acids in the N-terminal region of the protein. In particular, this strategy will allow for replacement of the catalytic His57 residue and the buried N-terminus, which is thought to help align the active site, with synthetic analogs. Our approach relies on readily available recombinant proteins and small synthetic peptides, thus having general applications in chemical engineering of large proteins where the N-terminal region is the focal interest.  相似文献   

12.
A tridecapeptide (MITLAIPVNKPGR) that stimulates phagocytosis of human neutrophils was isolated from a trypsin digest of soybean proteins. This peptide is derived from the soybean β-conglycinin ′ subunit and was named soymetide-13. The N-terminal methionine residue of soymetide-13 is essential for its activity, and removal of C-terminal residues revealed that soymetide-4 (MITL) is the minimal structure required for phagocytosis stimulation. Although they are not formylated at their N-termini, soymetides have a weak affinity for the N-formyl-methionyl-leucyl-phenylalanine (fMLP) receptor and their phagocytosis-stimulating activity is inhibited by the fMLP antagonist Boc-MLP. Interestingly, soymetide-4 promotes tumor necrosis factor production at a higher level than soymetide-13 following oral administration in mice.  相似文献   

13.
Further chemical evidence has been obtained using NaB3H4 to support our previous assignment of a thiol ester bond in human C3 (Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L., and Prahl, J. W. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 5764-5768). Following trypsin activation of human C3 in the presence of NaB3H4, 3H was shown to have incorporated specifically into the alpha'-chain of C3b. Subsequent fragmentation of [3H]C3b with porcine elastase further localized the label to the C3d subdomain. Under identical conditions, native C3 or C3 pretreated with trypsin (C3b) showed low reactivity with NaB3H4. A tryptic peptide containing the 3H label was isolated following digestion of [3H]C3b on activated thiol-Sepharose. After hydrolysis and saponification of the peptide hydrolysate, amino acid analysis indicated that the 3H had been incorporated into alpha-amino-delta-hydroxyvaleric acid, the product expected from reduction of an ester bond involving a glutamyl residue. On sequence analysis of the labeled peptide, the 3H was shown to reside at the position of the glutamyl residue previously proposed to be involved in the thiol ester bond. The residue at this position was confirmed as alpha-amino-delta-[3H] hydroxyvaleric acid by high performance liquid chromatography analysis and, after back hydrolysis, by amino acid analysis. These data significantly strengthen earlier studies which indicated the presence of a beta-Cys-gamma-Glu thiol ester bond in human C3.  相似文献   

14.
Mutant rat trypsin Asp189Ser was prepared and complexed with highly purified human α1-proteinase inhibitor. The complex formed was purified to homogeneity and studied by N-terminal amino acid sequence analysis and limited proteolysis with bovine trypsin. As compared to uncomplexed mutant trypsin, the mutant enzyme complexed with α1-proteinase inhibitor showed a highly increased susceptibility to enzymatic digestion. The peptide bond selectively attacked by bovine trypsin was identified as the Arg117-Val118 one of trypsin. The structural and mechanistic relevance of this observation to serine proteinase-substrate and serine proteinase-serpin reactions are discussed.  相似文献   

15.
The effect of γ-toxin, a thermolysin-like metalloprotease of Clostridium perfringens, on the inactive ε-prototoxin produced by the same organism was examined. When the purified ε-prototoxin was incubated with the purified γ-toxin at 37 C for 2 hr, the 32.5-kDa ε-prototoxin was processed into a 30.5-kDa polypeptide, as determined by SDS-polyacrylamide gel electrophoresis. A mouse lethality test showed that the treatment activated the prototoxin: the 50% lethal doses (LD50) of the prototoxin with and without γ-toxin treatment were 110 and 70,000 ng/kg of body weight, respectively. The lethal activity of the prototoxin activated by γ-toxin was comparable to that with trypsin plus chymotrypsin and higher than that with trypsin alone: LD50 of the prototoxin treated with trypsin and trypsin plus chymotrypsin were 320 and 65 ng/kg of body weight, respectively. The ε-toxin gene was cloned and sequenced. Determination of the N-terminal amino acid sequence of each activated ε-prototoxin revealed that γ-toxin cleaved between the 10th and 11th amino acid residues from the N-terminus of the prototoxin, while trypsin and trypsin plus chymotrypsin cleaved between the 13th and 14th amino acid residues. The molecular weight of each activated ε-prototoxin was also determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The C-terminus deduced from the molecular weight is located at the 23rd or 30th amino acid residue from the C-terminus of the prototoxin, suggesting that removal of not only N-terminal but also C-terminal peptide is responsible for activation of the prototoxin.  相似文献   

16.
Tryptic peptides containing two major in vivo P120gag-abl tyrosine phosphorylation acceptor sites were identified, phosphorylated in vitro, and purified to homogeneity. The tyrosine site in peptide a is localized at a position six residues distal to its trypsin cleavage site, whereas the tyrosine acceptor site in peptide b is at residue seven. A third peptide, c, contains an amino-terminal phosphotyrosine residue: phosphorylation of this latter peptide only occurs to a significant extent in vivo.  相似文献   

17.
We found a new variant of human growth hormone (hGH) from the recombinant hGH expression process in Saccharomyces cerevisiae. The variant was identified as N(alpha)-acetyl methionyl hGH which may be formed by N(alpha)-acetylation of met-hGH during the intracellular expression of hGH in S. cerevisiae. The variant was isolated from manufacturing process of LG Life Sciences' hGH product. The variant was subjected to trypsin digestion and RP-HPLC analysis, resulting in a delayed retention time and an increased mass (173 Da) of T1 tryptic peptide. The amino acid composition and amino acid sequence of the peptide showed the same result with T1 peptide of met-hGH except the N-terminal modification on methionine in the variant peptide. With collision induced dissociation (CID) experiments of the variant T1 tryptic peptide, we found the sequence and the a(1) fragment of N-terminal residue matched with those of acetyl-methionyl hGH. Within our production process, we produce the methionyl hGH first and then use the aminopeptidase to cut the N-terminal methionine. So the acetylation may inhibit the aminopeptidase to remove methionine and produces N(alpha)-acetyl methionyl hGH. And the biological activity of the variant was comparable to one of the unmodified hGH when tested by rat weight gain bioassay.  相似文献   

18.
The non-collagenous N-terminal segment of type I procollagen from dermatosparactic sheep skin was isolated in the form of the peptide Col 1 from a collagenase digest of the protein. The peptide has a blocked N-terminus, which was identified as pyrrolid-2-one-5-carboxylic acid. Appropriate overlapping fragments were prepared from reduced and alkylated peptide Col 1 by cleavage with trypsin at lysine, arginine and S-aminoethyl-cysteine residues and by cleavage with staphylococcal proteinase at glutamate residues. Amino acid sequence analysis of these fragments by Edman degradation and mass spectrometry established the whole sequence of peptide Col 1 except for a peptide junction (7--8) and a single Asx residue (44), and demonstrated that peptide Col 1 consists of 98 amino acid residues. The N-terminal portion of peptide Col 1 (86 residues) shows an irregular distribution of glycine, whereas the C-terminal portion (12 residues) possesses the triplet structure Gly-Xy and is apparently derived from the precursor-specific collagenous domain of procollagen. The central region of the peptide contains ten cysteine residues located between positions 18 and 73 and shows alternating polar and hydrophobic sequence elements. The regions adjacent to the cysteine-rich portion have a hydrophilic nature and are abundant in glutamic acid. The data are consistent with previous physicochemical and immunological evidence that distinct regions at the N- and C-termini of the non-collagenous domain possess a less rigid conformation than does the central portion of the molecule.  相似文献   

19.
One possible route to cataract formation may be via the carbamoylation of lens proteins due to increased concentrations of cyanate in the body resulting from uraemia associated with renal failure and with severe diarrhoea. Carbamoylation of gamma-II-crystallin, which is found in the lens core, could alter the surface charge network of the molecules, resulting in aggregation, increased light-scattering and hence cataract. We have attempted to locate the site(s) of carbamoylation in gamma-II-crystallin. gamma-II-Crystallin was isolated by gel chromatography and ion-exchange chromatography. gamma-II-Crystallin was then carbamoylated by incubation with potassium [14C]cyanate, followed by citraconylation and digestion with trypsin to give peptides that were separated by high-resolution ion-exchange chromatography. The amino acid compositions of the radioactive peptides were compared with the expected peptide composition for gamma-II-crystallin. The radioactive peptide compositions, which agreed with the theoretical peptides, all matched with the N-terminal region of gamma-II-crystallin and had in common the presence of the N-terminal glycine residue. It appears that the alpha-amino group of the N-terminal glycine was the main site of carbamoylation. This site forms part of the charge network on the surface of gamma-II-crystallin.  相似文献   

20.
A proteinase was purified from resting seeds of Cucurbita ficifolia by ammonium sulfate fractionation and successive chromatography on CM-cellulose, Sephacryl S-300 and TSK DEAE-2SW (HPLC) columns. Inhibition by DFP and PMSF suggests that the enzyme is a serine proteinase. The apparent molecular mass of this enzyme is ca. 77 kDa. The optimum activity for hydrolysis of casein and Suc-Ala-Ala-Pro-Phe-pNA is around pH 10.5. The following peptide bonds in the oxidized insulin B-chain were hydrolysed by the proteinase: Phe1-Val2, Asn3-Gln4, Gln4-His5, Cya7-Gly8, Glu13-Ala14, Ala14-Leu15, Cya19-Gly20, Pro28-Lys29 and Lys29-Ala30. The proteinase is more selective towards the native squash seed trypsin inhibitor (CMTI I) and primarily cuts off only its N-terminal arginine. The inhibitor devoided of the N-terminal arginine residue is still active against trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号