首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Circadian clocks synchronize various physiological, metabolic and developmental processes of organisms with specific phases of recurring changes in their environment (e.g. day and night or seasons). Here, we investigated whether the circadian clock plays a role in regulation of growth and chlorophyll (Chl) accumulation in Nannochloropsis gaditana, an oleaginous marine microalga which is considered as a potential feedstock for biofuels and for which a draft genome sequence has been published. Optical density (OD) of N. gaditana culture was monitored at 680 and 735 nm under 12:12 h or 18:6 h light‐dark (LD) cycles and after switching to continuous illumination in photobioreactors. In parallel, Chl fluorescence was measured to assess the quantum yield of photosystem II. Furthermore, to test if red‐ or blue‐light photoreceptors are involved in clock entrainment in N. gaditana, some of the experiments were conducted by using only red or blue light. Growth and Chl accumulation were confined to light periods in the LD cycles, increasing more strongly in the first half than in the second half of the light periods. After switching to continuous light, rhythmic oscillations continued (especially for OD680) at least in the first 24 h, with a 50% decrease in the capacity to grow and accumulate Chl during the first subjective night. Pronounced free‐running oscillations were induced by blue light, but not by red light. In contrast, the photosystem II quantum yield was determined by light conditions. The results indicate interactions between circadian and light regulation of growth and Chl accumulation in N. gaditana.  相似文献   

3.
The aim of the present study was to examine arylalkylamine N‐acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light‐dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night‐time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high‐amplitude melatonin rhythms in the turkey.  相似文献   

4.
In leaves of tomato (Lycopersicon esculentum), the synthesis of a light-harvesting complex (LHC) polypeptide of photosystem II and the quinone B (QB)-binding protein varies at different time points during the day. In vivo labeling with [35S]methionine revealed diurnal oscillations of synthesis of these thylakoid membrane proteins. Both proteins are synthesized at elevated levels right after the transition from darkness to light, a maximum is reached around noon, and decreasing levels were measured during the afternoon and night. In addition, in constant darkness both proteins were also synthesized to varied extents at different diurnal time points. Together, these results indicate that the synthesis of a LHC II and the QB-binding protein is under the control of the circadian clock. This circadian oscillation of LHC II protein synthesis correlates with the very well documented circadian Lhc a/b mRNA accumulation.  相似文献   

5.
Yellow wrasses (Halichoeres chrysus) show clear daily activity patterns. The fish hide in the substrate at (subjective) night, during the distinct rest phase. Initial entrainment in a 12h:12h light-dark (12:12 LD) cycle (mean period 24.02h, SD 0.27h, n = 16 was followed by a free run (mean period 24.42h, SD 1.33h) after transition into constant dim light conditions. Light pulses of a comparable intensity as used in the light part of the LD cycles did not result in significant phase shifts of the free-running rhythm in constant darkness. Application of much brighter 3h light pulses resulted in a phase-response curve (PRC) for a fish species, with pronounced phase advances during late subjective night. The PRCs differed from those mainly obtained in other vertebrate taxa by the absence of significant phase delays in the early subjective night. At that circadian phase, significant tonic effects of the light pulses caused a shortening of the circadian period length. Entrainment to skeleton photoperiods of 1:11 LD was observed in five of six wrasses exposed, also after a 3h phase advance of this LD cycle. Subsequently, a 1:11.25 LD cycle resulted in entrainment in four of the six fish. It is suggested that the expression of the circadian system in fish can be interpreted as a functional response to a weak natural zeitgeber, as present in the marine environment. This response allows photic entrainment as described here in the yellow wrasse. (Chronobiology International, 17(5), 613–622, 2000)  相似文献   

6.
Although chronic alcohol intake is associated with widespread disruptions of sleep-wake cycles and other daily biological rhythms in both human alcoholics and experimental animals, the extent to which the chronobiological effects of alcohol are mediated by effects on the underlying circadian pacemaker remains unknown. Nevertheless, recent studies indicate that both adult and perinatal ethanol treatments may alter the free-running period and photic responsiveness of the circadian pacemaker. The present experiment was designed to further characterize the effects of chronic ethanol intake on the response of the rat circadian pacemaker to brief light pulses. Ethanol-treated and control animals were exposed to 15-min light pulses during either early or late subjective night on the first day of constant darkness following entrainment to a 12:12 light-dark cycle. Relative to pulses delivered during early subjective night and to “no-pulse” conditions, light pulses delivered during late subjective night resulted in period-shortening after-effects under constant darkness, but only in control animals, not in ethanol-treated animals. These results indicate that chronic ethanol intake reduces the responsiveness of the circadian pacemaker to acute photic stimulation, and suggest that the chronobiological disruptions seen in human alcoholics are due in part to alterations in circadian pacemaker function.  相似文献   

7.
In the cockroach Leucophaea maderae transplantation studies located the circadian pacemaker center, which controls locomotor activity rhythms, to the accessory medulla (AMe), ventromedially to the medulla of the brain’s optic lobes. The AMe is densely innervated via GABA- and manyfold peptide-immunoreactive neurons. They express ultradian action potential oscillations in the gamma frequency range and form phase-locked assemblies of synchronously spiking cells. Peptide application resulted in transient rises of extracellularly recorded activity. It remained unknown whether transient rises in spontaneous electrical activity as a possible indication of peptide release occur in the isolated circadian clock in a rhythmic manner. In extracellular glass electrode recordings of the isolated AMe in constant darkness, which lasted at least 12 h, the distribution of daytime-dependent changes in activity independently of the absolute action potential frequency was examined. Rapid, transient changes in activity preferentially occurred at the mid-subjective night, with a minimum at the middle of the subjective day, hinting the presence of circadian rhythms in the isolated circadian clock. Additionally, ultradian rhythms in activity change that are multiples of a fundamental 2 h period were observed. We hypothesize that circadian rhythms might originate from coupled ultradian oscillations, possibly already at the single cell level.  相似文献   

8.
Blattella bisignata (Brunner) and B. germanica (L.) are oviparous cockroaches with cyclic reproductive behaviour, but in B. germanica only males show circadian rhythmicity of locomotion at 28°C and DD (constant darkness). In B. bisignata, males and virgin females cockroaches entrained by light–dark cycles show free‐running rhythmicity in DD, and most activities occur during the subjective night. Daily locomotor activities of virgin females show cyclic changes that coincided with ovarian development. Virgin females also exhibit calling behaviour during the subjective night, and this shows a free‐running rhythm. Male mate‐finding locomotion and female calling behaviour are under circadian control, so the timing for both behaviours is synchronized. However, most mated females do not show a locomotor free‐running rhythm under DD conditions. Our results indicate that only mated females could not express a circadian locomotor rhythm. Pregnancy reduces a female’s locomotory intensity and masks the expression of a circadian locomotor rhythm. We attribute the differences in circadian locomotory rhythms between these two species to their living environments and mate‐finding strategies.  相似文献   

9.
10.
11.
Circadian rhythms in the green sunfish retina   总被引:4,自引:0,他引:4       下载免费PDF全文
We investigated the occurrence of circadian rhythms in retinomotor movements and retinal sensitivity in the green sunfish, Lepomis cyanellus. When green sunfish were kept in constant darkness, cone photoreceptors exhibited circadian retinomotor movements; rod photoreceptors and retinal pigment epithelium (RPE) pigment granules did not. Cones elongated during subjective night and contracted during subjective day. These results corroborate those of Burnside and Ackland (1984. Investigative Ophthalmology and Visual Science. 25:539-545). Electroretinograms (ERGs) recorded in constant darkness in response to dim flashes (lambda = 640 nm) exhibited a greater amplitude during subjective night than during subjective day. The nighttime increase in the ERG amplitude corresponded to a 3-10-fold increase in retinal sensitivity. The rhythmic changes in the ERG amplitude continued in constant darkness with a period of approximately 24 h, which indicates that the rhythm is generated by a circadian oscillator. The spectral sensitivity of the ERG recorded in constant darkness suggests that cones contribute to retinal responses during both day and night. Thus, the elongation of cone myoids during the night does not abolish the response of the cones. To examine the role of retinal efferents in generating retinal circadian rhythms, we cut the optic nerve. This procedure did not abolish the rhythms of retinomotor movement or of the ERG amplitude, but it did reduce the magnitude of the nighttime phases of both rhythms. Our results suggest that more than one endogenous oscillator regulates the retinal circadian rhythms in green sunfish. Circadian signals controlling the rhythms may be either generated within the eye or transferred to the eye via a humoral pathway.  相似文献   

12.
13.
Chlorophyll fluorescence has been often used as an intrinsic optical molecular probe to study photosynthesis. In this study, the origin of bands at 437 and 475.5 nm in the chlorophyll fluorescence excitation spectrum for emission at 685 nm in Arabidopsis chloroplasts was investigated using various optical analysis methods. The results revealed that this fluorescence excitation spectrum was related to the absorption characteristics of pigment molecules in PSII complexes. Moreover, the excitation band centred at 475.5 nm had a blue shift, but the excitation band at 437 nm changed relatively less due to induction of non‐photochemical quenching (NPQ). Furthermore, fluorescence emission spectra showed that this blue shift occurred when excitation energy transfer from both chlorophyll b (Chl b) and carotenoids (Cars) to chlorophyll a (Chl a) was blocked. These results demonstrate that the excitation band at 437 nm was mainly contributed by Chl a, while the excitation band at 475.5 nm was mainly contributed by Chl b and Cars. The chlorophyll fluorescence excitation spectrum, therefore, could serve as a useful tool to describe specific characteristics of light absorption and energy transfer between light‐harvesting pigments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The chicken pineal gland possesses the capacity to generate circadian oscillations, is able to synchronize to external light:dark cycles and can generate an hormonal output--melatonin. We examined the light responses of the chicken pineal gland and its effects on melatonin and Per2, Bmal1 and E4bp4 expression in 19-day old embryos and hatchlings during the dark phase, subjective light phase and in constant darkness. Expression of Per2 and E4bp4 were rhythmic under light:dark conditions, but the rhythms of E4bp4 and Bmal1 mRNA did not persist in constant darkness in 19-day old embryos. Per2 mRNA expression persisted in constant darkness, but with a reduced amplitude. Per2 expression was inducible by light only during the subjective day. Melatonin release was inhibited by light only at end of the dark phase and during the subjective light phase in embryos. Our data demonstrate that the embryonic avian pineal pacemaker is light sensitive and can generate rhythmic output, however the effects of light were diminished in chick embryos in compared to hatchlings.  相似文献   

15.
The neural retina is a key component of the vertebrate circadian system that is responsible for synchronizing the central circadian pacemaker to external light-dark (LD) cycles. The retina is itself rhythmic, showing circadian cycles in melatonin levels and gene expression. We assessed the in vivo incorporation of 32P-phosphate and 3H-glycerol into phospholipids of photoreceptor cells (PRCs) and retina ganglion cells (GCs) from chicks in constant illumination conditions (dark: DD or light: LL) over a 24-h period. Our findings showed that in DD there was a daily oscillation in 32P-labeling of total phospholipids synthesized in GCs and axonally transported to the brain. This metabolic fluctuation peaked during the subjective night (zeitgeber time [ZT] 20), persisted for several hours well into the subjective day and declined at subjective dusk (ZT 10-12). PRCs also exhibited an in vivo rhythm of 32P-phospholipid synthesis in DD. This rhythm peaked around ZT 22, continued a few hours into the day and declined by the end of subjective dusk. The major individual species labeled 1 h after 32P administration was phosphatidylinositol (PI) in both PRCs and GCs. Rhythmic phospholipid biosynthesis was also observed in DD after 3H-glycerol administration, with levels in GCs elevated from midday to early night. PRCs exhibited a similar rhythmic profile with the lowest levels of labeling during midnight. Phosphatidylcholine (PC) accounted for the individual species with the highest ratio of 3H-glycerol incorporation in both cell populations at all phases examined. By contrast, in LL the rhythm of 3H-glycerol labeling of phospholipids damped out in both cell layers. Our findings support the idea that, in constant darkness, the metabolism of retinal phospholipids, including their de novo biosynthesis, is regulated by an endogenous circadian clock.  相似文献   

16.
The chicken pineal gland possesses the capacity to generate circadian oscillations, is able to synchronize to external light:dark cycles and can generate an hormonal output--melatonin. We examined the light responses of the chicken pineal gland and its effects on melatonin and Per2, Bmal1 and E4bp4 expression in 19-day old embryos and hatchlings during the dark phase, subjective light phase and in constant darkness. Expression of Per2 and E4bp4 were rhythmic under light:dark conditions, but the rhythms of E4bp4 and Bmal1 mRNA did not persist in constant darkness in 19-day old embryos. Per2 mRNA expression persisted in constant darkness, but with a reduced amplitude. Per2 expression was inducible by light only during the subjective day. Melatonin release was inhibited by light only at end of the dark phase and during the subjective light phase in embryos. Our data demonstrate that the embryonic avian pineal pacemaker is light sensitive and can generate rhythmic output, however the effects of light were diminished in chick embryos in compared to hatchlings.  相似文献   

17.
Loss of Dexras1 in gene-targeted mice impairs circadian entrainment to light cycles and produces complex changes to phase-dependent resetting responses (phase shifts) to light. The authors now describe greatly enhanced and phase-specific nonphotic responses induced by arousal in dexras1?/? mice. In constant conditions, mutant mice exhibited significant arousal-induced phase shifts throughout the subjective day. Unusual phase advances in the late subjective night were also produced when arousal has little effect in mice. Bilateral lesions of the intergeniculate leaflet (IGL) completely eliminated both the nonphotic as well as the light-induced phase shifts of circadian locomotor rhythms during the subjective day, but had no effect on nighttime phase shifts. The expression of FOS-like protein in the suprachiasmatic nucleus (SCN) was not affected by either photic or nonphotic stimulation in the subjective day in either genotype. Therefore, the loss of Dexras1 (1) enhances nonphotic phase shifts in a phase-dependent manner, and (2) demonstrates that the IGL in mice is a primary mediator of circadian phase-resetting responses to both photic and nonphotic events during the subjective day, but plays a different functional role in the subjective night. Furthermore, (3) the change in FOS level does not appear to be a critical step in the entrainment pathways for either light or arousal during the subjective day. The cumulative evidence suggests that Dexras1 regulates multiple photic and nonphotic signal-transduction pathways, thereby playing an essential role modulating species-specific characteristics of circadian entrainment. (Author correspondence: )  相似文献   

18.
Circadian (~24 h) rhythms of cellular network plasticity in the central circadian clock, the suprachiasmatic nucleus (SCN), have been described. The neuronal network in the SCN regulates photic resetting of the circadian clock as well as stability of the circadian system during both entrained and constant conditions. EphA4, a cell adhesion molecule regulating synaptic plasticity by controlling connections of neurons and astrocytes, is expressed in the SCN. To address whether EphA4 plays a role in circadian photoreception and influences the neuronal network of the SCN, we have analyzed circadian wheel‐running behavior of EphA4 knockout (EphA4?/?) mice under different light conditions and upon photic resetting, as well as their light‐induced protein response in the SCN. EphA4?/? mice exhibited reduced wheel‐running activity, longer endogenous periods under constant darkness and shorter periods under constant light conditions, suggesting an effect of EphA4 on SCN function. Moreover, EphA4?/? mice exhibited suppressed phase delays of their wheel‐running activity following a light pulse during the beginning of the subjective night (CT15). Accordingly, light‐induced c‐FOS (FBJ murine osteosarcoma viral oncogene homolog) expression was diminished. Our results suggest a circadian role for EphA4 in the SCN neuronal network, affecting the circadian system and contributing to the circadian response to light.  相似文献   

19.
The appearance of the light harvesting II (LHC II) protein in etiolated bean leaves, as monitored by immunodetection in LDS-solubilized leaf protein extracts, is under phytochrome control. A single red light pulse induces accumulation of the protein, in leaves kept in the dark thereafter, which follows circadian oscillations similar to those earlier found for Lhcb mRNA (Tavladoraki et al. (1989) Plant Physiol 90: 665–672). These oscillations are closely followed by oscillations in the capacity of the leaf to form Chlorophyll (Chl) in the light, suggesting that the synthesis of the LHC II protein and its chromophore are in close coordination. Experiments with levulinic acid showed that PChl(ide) resynthesis does not affect the LHC II level nor its oscillations, but new Chl a synthesis affects LHC II stabilization in thylakoids, implicating a proteolytic mechanism. A proteolytic activity against exogenously added LHC II was detected in thylakoids of etiolated bean leaves, which was enhanced by the light pulse. The activity, also under phytochrome control, was found to follow circadian oscillations in verse to those in the stabilization of LHC II protein in thylakoids. Such a proteolytic mechanism therefore, may account for the circadian changes observed in LHC II protein level, being implicated in pigment-protein complex assembly/stabilization during thylakoid biogenesis.Abbreviations Chl chlorophyll - CL continuous light - D dark - FR far-red light - LA levulinic acid - LHC II light-harvesting complex serving Photosystem II - PChl(ide) protochlorophyllide - PCR protochlorophyllide oxidoreductase - R red light  相似文献   

20.
Yellow wrasses (Halichoeres chrysus) show clear daily activity patterns. The fish hide in the substrate at (subjective) night, during the distinct rest phase. Initial entrainment in a 12h:12h light-dark (12:12 LD) cycle (mean period 24.02h, SD 0.27h, n = 16 was followed by a free run (mean period 24.42h, SD 1.33h) after transition into constant dim light conditions. Light pulses of a comparable intensity as used in the light part of the LD cycles did not result in significant phase shifts of the free-running rhythm in constant darkness. Application of much brighter 3h light pulses resulted in a phase-response curve (PRC) for a fish species, with pronounced phase advances during late subjective night. The PRCs differed from those mainly obtained in other vertebrate taxa by the absence of significant phase delays in the early subjective night. At that circadian phase, significant tonic effects of the light pulses caused a shortening of the circadian period length. Entrainment to skeleton photoperiods of 1:11 LD was observed in five of six wrasses exposed, also after a 3h phase advance of this LD cycle. Subsequently, a 1:11.25 LD cycle resulted in entrainment in four of the six fish. It is suggested that the expression of the circadian system in fish can be interpreted as a functional response to a weak natural zeitgeber, as present in the marine environment. This response allows photic entrainment as described here in the yellow wrasse. (Chronobiology International, 17(5), 613-622, 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号