首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circadian (~24 h) rhythms of cellular network plasticity in the central circadian clock, the suprachiasmatic nucleus (SCN), have been described. The neuronal network in the SCN regulates photic resetting of the circadian clock as well as stability of the circadian system during both entrained and constant conditions. EphA4, a cell adhesion molecule regulating synaptic plasticity by controlling connections of neurons and astrocytes, is expressed in the SCN. To address whether EphA4 plays a role in circadian photoreception and influences the neuronal network of the SCN, we have analyzed circadian wheel‐running behavior of EphA4 knockout (EphA4?/?) mice under different light conditions and upon photic resetting, as well as their light‐induced protein response in the SCN. EphA4?/? mice exhibited reduced wheel‐running activity, longer endogenous periods under constant darkness and shorter periods under constant light conditions, suggesting an effect of EphA4 on SCN function. Moreover, EphA4?/? mice exhibited suppressed phase delays of their wheel‐running activity following a light pulse during the beginning of the subjective night (CT15). Accordingly, light‐induced c‐FOS (FBJ murine osteosarcoma viral oncogene homolog) expression was diminished. Our results suggest a circadian role for EphA4 in the SCN neuronal network, affecting the circadian system and contributing to the circadian response to light.  相似文献   

2.
Light is the dominant environmental cue for entrainment of circadian rhythms. In mammals, light entrains rhythms by resetting the phase of a circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Until recently, the mechanism responsible for pacemaker resetting by light was thought to be exclusively sensitive to photic cues. New experiments indicate, however, that this mechanism is more plastic than once thought; is amenable to conditioned stimulus control; and is capable of acquiring, through conditioning, new response capabilities. These experiments showed that, in rats, a neutral stimulus paired with light in Pavlovian conditioning trials is capable of eliciting cellular and behavioral effects characteristic of circadian clock phase resetting by light, expression of Fos protein in the ventrolateral region of the SCN, and phase shifts of free-running rhythms. These novel results open up a previously unappreciated perspective on photic phase resetting and entrainment of circadian rhythms. Specifically, they suggest that the process normally initiated by light to reset the clock can be modified by learning and events in the environment that reliably precede the onset of light can assume the resetting function of light.  相似文献   

3.
Pigment‐dispersing factor (PDF) is an important neurotransmitter in insect circadian systems. In the cricket Gryllus bimaculatus, it affects nocturnal activity, the free‐running period and photic entrainment. In this study, to investigate whether these effects of PDF occur through a circadian molecular machinery, we measured mRNA levels of clock genes period (per) and timeless (tim) in crickets with pdf expression knocked‐down by pdf RNAi. The pdf RNAi decreased per and tim mRNA levels during the night to reduce the amplitude of their oscillation. The phase of the rhythm advanced by about 4 h in terms of trough and/or peak phases. On the other hand, pdf mRNA levels were little affected by per and tim RNAi treatment. These results suggest that PDF affects the circadian rhythm at least in part through the circadian molecular oscillation while the circadian clock has little effect on the pdf expression.  相似文献   

4.
Loss of Dexras1 in gene-targeted mice impairs circadian entrainment to light cycles and produces complex changes to phase-dependent resetting responses (phase shifts) to light. The authors now describe greatly enhanced and phase-specific nonphotic responses induced by arousal in dexras1?/? mice. In constant conditions, mutant mice exhibited significant arousal-induced phase shifts throughout the subjective day. Unusual phase advances in the late subjective night were also produced when arousal has little effect in mice. Bilateral lesions of the intergeniculate leaflet (IGL) completely eliminated both the nonphotic as well as the light-induced phase shifts of circadian locomotor rhythms during the subjective day, but had no effect on nighttime phase shifts. The expression of FOS-like protein in the suprachiasmatic nucleus (SCN) was not affected by either photic or nonphotic stimulation in the subjective day in either genotype. Therefore, the loss of Dexras1 (1) enhances nonphotic phase shifts in a phase-dependent manner, and (2) demonstrates that the IGL in mice is a primary mediator of circadian phase-resetting responses to both photic and nonphotic events during the subjective day, but plays a different functional role in the subjective night. Furthermore, (3) the change in FOS level does not appear to be a critical step in the entrainment pathways for either light or arousal during the subjective day. The cumulative evidence suggests that Dexras1 regulates multiple photic and nonphotic signal-transduction pathways, thereby playing an essential role modulating species-specific characteristics of circadian entrainment. (Author correspondence: )  相似文献   

5.
6.
We know that entrainment, a stable phase relationship with an environmental cycle, must be established for a biological clock to function properly. Phase response curves (PRCs), which are plots of phase shifts that result as a function of the phase of a stimulus, have been created to examine the mode of entrainment. In circadian rhythms, single-light pulse PRCs have been obtained by giving a light pulse to various phases of a free-running rhythm under continuous darkness. This successfully explains the entrainment to light-dark cycles. Some organisms show circannual rhythms. In some of these, changes in photoperiod entrain the circannual rhythms. However, no single-pulse PRCs have been created. Here we show the PRC to a long-day pulse superimposed for 4 weeks over constant short days in the circannual pupation rhythm in the varied carpet beetle Anthrenus verbasci. Because the shape of that PRC closely resembles that of the Type 0 PRC with large phase shifts in circadian rhythms, we suggest that an oscillator having a common feature in the phase response with the circadian clock, produces a circannual rhythm.  相似文献   

7.
8.
9.
10.
Despite the considerable literature on circadian entrainment, there is little information on this subject in diurnal mammals. Contributing to this lack of understanding is the problem of separating photic from nonphotic (behavioral) phase-resetting events in diurnal species. In the present study, photic phase resetting was obtained in diurnal common marmosets held under constant dim light (DimDim; <0.5 lx) by using a 20-s pulse of bright light to minimize time available for behavioral arousal. This stimulus elicited phase advances at circadian time (CT) 18-22 and phase delays at CT9-12. Daily presentation of these 20-s pulses produced entrainment with a phase angle of approximately 11 h (0 h = activity onset). Nonphotic phase resetting was obtained under DimDim with the use of a 1-h-induced activity pulse, consisting of intermittent cage agitation and water sprinkling, delivered in total darkness to minimize photic effects. This stimulus caused phase delays at CT20-24, and entrainment to a scheduled daily regimen of these pulses occurred with a phase angle of approximately 0 h. These results indicate that photic and nonphotic phase-response curves (PRCs) of marmosets are similar to those of nocturnal rodents and that nonphotic PRCs are keyed to the phase of the suprachiasmatic nucleus pacemaker, not to the phase of the activity-rest cycle.  相似文献   

11.
Circadian rhythms of animals are reset by exposure to light as well as dark; however, although the parameters of photic entrainment are well characterized, the phase-shifting actions of dark pulses are poorly understood. Here, we determined the tonic and phasic effects of short (0.25 h), moderate (3 h), and long (6-9 h) duration dark pulses on the wheel-running rhythms of hamsters in constant light. Moderate- and long-duration dark pulses phase dependently reset behavioral rhythms, and the magnitude of these phase shifts increased as a function of the duration of the dark pulse. In contrast, the 0.25-h dark pulses failed to evoke consistent effects at any circadian phase tested. Interestingly, moderate- and long-dark pulses elevated locomotor activity (wheel-running) on the day of treatment. This induced wheel-running was highly correlated with phase shift magnitude when the pulse was given during the subjective day. This, together with the finding that animals pulsed during the subjective day are behaviorally active throughout the pulse, suggests that both locomotor activity and behavioral activation play an important role in the phase-resetting actions of dark pulses. We also found that the robustness of the wheel-running rhythm was weakened, and the amount of wheel-running decreased on the days after exposure to dark pulses; these effects were dependent on pulse duration. In summary, similarly to light, the resetting actions of dark pulses are dependent on both circadian phase and stimulus duration. However, dark pulses appear more complex stimuli, with both photic and nonphotic resetting properties.  相似文献   

12.
There is increasing evidence that the circadian clock is a significant driver of photosynthesis that becomes apparent when environmental cues are experimentally held constant. We studied whether the composition of photosynthetic pigments is under circadian regulation, and whether pigment oscillations lead to rhythmic changes in photochemical efficiency. To address these questions, we maintained canopies of bean and cotton, after an entrainment phase, under constant (light or darkness) conditions for 30–48 h. Photosynthesis and quantum yield peaked at subjective noon, and non‐photochemical quenching peaked at night. These oscillations were not associated with parallel changes in carbohydrate content or xanthophyll cycle activity. We observed robust oscillations of Chl a/b during constant light in both species, and also under constant darkness in bean, peaking when it would have been night during the entrainment (subjective nights). These oscillations could be attributed to the synthesis and/or degradation of trimeric light‐harvesting complex II (reflected by the rhythmic changes in Chl a/b), with the antenna size minimal at night and maximal around subjective noon. Considering together the oscillations of pigments and photochemistry, the observed pattern of changes is counterintuitive if we assume that the plant strategy is to avoid photodamage, but consistent with a strategy where non‐stressed plants maximize photosynthesis.  相似文献   

13.
Summary The nature of the circadian rhythms of the optic lamina-medulla compound eye complex was examined in male crickets Gryllus bimaculatus by recording the multiple unit activity from the optic lobe in situ and in vitro. In most in situ preparations, the neural activity of the complex was higher during the subjective night than during the subjective day, both under constant light and dark. The same pattern was also obtained from nymphal crickets, suggesting that the properties of the pacemaker are common to both nymphs and adults. In a few cases, both diurnal and nocturnal increments in the activity were simultaneously observed, indicating there are two neuronal groups conveying different circadian information. The circadian rhythm was also demonstrated in the optic lobes in vitro, providing evidence that the optic lobe contains the circadian pacemaker that is capable of generating the rhythmicity without any neural or humoral factors from the rest of the animal.Abbreviations DD constant darkness - JST Japanese standard time - LD light to dark cycle - LL constant light  相似文献   

14.
Mangrove crickets have a circatidal activity rhythm (~12.6 h cycles) with a circadian modulation under constant darkness (DD), whereby activity levels are higher during subjective night low tides than subjective day low tides. This study explored the locomotor activity rhythm of mangrove crickets under constant light (LL). Under LL, the crickets also exhibited a clear circatidal activity rhythm with a free-running period of 12.6 ± 0.26 h (mean ± SD, n = 6), which was not significantly different from that observed under DD. In contrast, activity levels were almost the same between subjective day and night, unlike those under DD, which were greater during subjective night. The loss of circadian modulation under LL may be explained by the suspension of the circadian clock in these conditions. These results strongly suggest that the circatidal activity rhythm is driven by its own clock system, distinct from the circadian clock.  相似文献   

15.
The cricket Modicogryllus siamensis Chopard shows photoperiod‐dependent changes in the duration of nymphal development: nymphs become adult within 60 days after hatching, undergoing seven moults under long‐day conditions, whereas, under short‐day conditions, nymphal development takes much longer (approximately 180 days) with an increased number of moults. Because removal of the compound eyes alters this photoperiodic response, the eyes may be involved in light detection during the photoperiodic response. The role of opsins, expressed in the compound eye, is examined in the present study with reference to the photoperiodic response. Molecular cloning identifies cDNAs of three opsins, opsin‐Ultra Violet (Ms'op‐UV), opsin‐Blue (Ms'op‐B) and opsin‐Long Wave (Ms'op‐LW), and in situ hybridization reveals that the opsin genes are expressed in specific regions of the compound eye in a gene‐specific manner. RNA interference (RNAi) technology using the opsin genes results in a partial disruption in the long‐day responses; most of the treated crickets showed eight or more moults and up to 23.5% show a prolonged nymphal period that is typical of short‐day responses. Under short‐day conditions, op‐UV RNAi crickets show earlier adult development, whereas no distinct alterations are observed in op‐B and op‐LW RNAi insects. The results suggest that the opsin genes may play differential roles in the photoperiodic response in the cricket and that the results can be at least partially explained in terms of the external coincidence model of photoperiodic time measurement.  相似文献   

16.
Loss of Dexras1 in gene-targeted mice impairs circadian entrainment to light cycles and produces complex changes to phase-dependent resetting responses (phase shifts) to light. The authors now describe greatly enhanced and phase-specific nonphotic responses induced by arousal in dexras1(-/-) mice. In constant conditions, mutant mice exhibited significant arousal-induced phase shifts throughout the subjective day. Unusual phase advances in the late subjective night were also produced when arousal has little effect in mice. Bilateral lesions of the intergeniculate leaflet (IGL) completely eliminated both the nonphotic as well as the light-induced phase shifts of circadian locomotor rhythms during the subjective day, but had no effect on nighttime phase shifts. The expression of FOS-like protein in the suprachiasmatic nucleus (SCN) was not affected by either photic or nonphotic stimulation in the subjective day in either genotype. Therefore, the loss of Dexras1 (1) enhances nonphotic phase shifts in a phase-dependent manner, and (2) demonstrates that the IGL in mice is a primary mediator of circadian phase-resetting responses to both photic and nonphotic events during the subjective day, but plays a different functional role in the subjective night. Furthermore, (3) the change in FOS level does not appear to be a critical step in the entrainment pathways for either light or arousal during the subjective day. The cumulative evidence suggests that Dexras1 regulates multiple photic and nonphotic signal-transduction pathways, thereby playing an essential role modulating species-specific characteristics of circadian entrainment.  相似文献   

17.
Light exposure during the early and late subjective night generally phase delays and advances circadian rhythms, respectively. However, this generality was recently questioned in a photic entrainment study in Octodon degus. Because degus can invert their activity phase preference from diurnal to nocturnal as a function of activity level, assessment of phase preference is critical for computations of phase reference [circadian time (CT) 0] toward the development of a photic phase response curve. After determining activity phase preference in a 24-h light-dark cycle (LD 12:12), degus were released in constant darkness. In this study, diurnal (n = 5) and nocturnal (n = 7) degus were randomly subjected to 1-h light pulses (30-35 lx) at many circadian phases (CT 1-6: n = 7; CT 7-12: n = 8; CT 13-18: n = 8; and CT 19-24: n = 7). The circadian phase of body temperature (Tb) onset was defined as CT 12 in nocturnal animals. In diurnal animals, CT 0 was determined as Tb onset + 1 h. Light phase delayed and advanced circadian rhythms when delivered during the early (CT 13-16) and late (CT 20-23) subjective night, respectively. No significant phase shifts were observed during the middle of the subjective day (CT 3-10). Thus, regardless of activity phase preference, photic entrainment of the circadian pacemaker in Octodon degus is similar to most other diurnal and nocturnal species, suggesting that entrainment mechanisms do not determine overt diurnal and nocturnal behavior.  相似文献   

18.
Yellow wrasses (Halichoeres chrysus) show clear daily activity patterns. The fish hide in the substrate at (subjective) night, during the distinct rest phase. Initial entrainment in a 12h:12h light-dark (12:12 LD) cycle (mean period 24.02h, SD 0.27h, n = 16 was followed by a free run (mean period 24.42h, SD 1.33h) after transition into constant dim light conditions. Light pulses of a comparable intensity as used in the light part of the LD cycles did not result in significant phase shifts of the free-running rhythm in constant darkness. Application of much brighter 3h light pulses resulted in a phase-response curve (PRC) for a fish species, with pronounced phase advances during late subjective night. The PRCs differed from those mainly obtained in other vertebrate taxa by the absence of significant phase delays in the early subjective night. At that circadian phase, significant tonic effects of the light pulses caused a shortening of the circadian period length. Entrainment to skeleton photoperiods of 1:11 LD was observed in five of six wrasses exposed, also after a 3h phase advance of this LD cycle. Subsequently, a 1:11.25 LD cycle resulted in entrainment in four of the six fish. It is suggested that the expression of the circadian system in fish can be interpreted as a functional response to a weak natural zeitgeber, as present in the marine environment. This response allows photic entrainment as described here in the yellow wrasse. (Chronobiology International, 17(5), 613–622, 2000)  相似文献   

19.
ELF3 modulates resetting of the circadian clock in Arabidopsis   总被引:6,自引:0,他引:6       下载免费PDF全文
The Arabidopsis early flowering 3 (elf3) mutation causes arrhythmic circadian output in continuous light, but there is some evidence of clock function in darkness. Here, we show conclusively that normal circadian function occurs with no alteration of period length in elf3 mutants in dark conditions and that the light-dependent arrhythmia observed in elf3 mutants is pleiotropic on multiple outputs normally expressed at different times of day. Plants overexpressing ELF3 have an increased period length in both constant blue and red light; furthermore, etiolated ELF3-overexpressing seedlings exhibit a decreased acute CAB2 response after a red light pulse, whereas the null mutant is hypersensitive to acute induction. This finding suggests that ELF3 negatively regulates light input to both the clock and its outputs. To determine whether ELF3's action is phase dependent, we examined clock resetting by using light pulses and constructed phase response curves. Absence of ELF3 activity causes a significant alteration of the phase response curve during the subjective night, and constitutive overexpression of ELF3 results in decreased sensitivity to the resetting stimulus, suggesting that ELF3 antagonizes light input to the clock during the night. The phase of ELF3 function correlates with its peak expression levels in the subjective night. ELF3 action, therefore, represents a mechanism by which the oscillator modulates light resetting.  相似文献   

20.
Abstract

The mammalian circadian pacemaker can be phase shifted by photic, pharmacological, and behaviorally‐derived stimuli. The phase‐response curves (PRCs) characterizing these diverse stimuli may comprise two distinct families; a photic PRC typified by the response to brief light pulses, and a non‐photic PRC, typified by the response to dark pulses and to behavioral activation. The present study examined the phase shifting effects of acute systemic treatment with the alpha2‐adrenoceptor agonist, clonidine, in Syrian hamsters. Clonidine injections (0.25 mg/kg, ip) delivered during subjective night mimicked the phase shifting effects of light pulses in animals housed in both constant darkness (DD) and constant red light (RR), but similar effects were not seen in saline‐treated controls. Both clonidine and saline injections resulted in phase advances during subjective day, but only in RR‐housed animals. Clonidine‐induced phase shifting was dose‐dependent, but rather high doses were required to induce phase shifts. Pretreatment with the selective noradrenergic neurotoxin, DSP‐4, blocked clonidine‐induced phase shifting. These results suggest that clonidine acts at presynaptic alpha2‐adrenergic autoreceptors to disinhibit spontaneous and/or evoked activity in the photic entrainment pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号