首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Mammalian epidermis is maintained by stem cells that have the ability to self-renew and generate daughter cells that differentiate along the lineages of the hair follicles, interfollicular epidermis and sebaceous gland. As stem cells divide infrequently in adult mouse epidermis, they can be visualised as DNA label-retaining cells (LRC). With whole-mount labelling, we can examine large areas of interfollicular epidermis and many hair follicles simultaneously, enabling us to evaluate stem cell markers and examine the effects of different stimuli on the LRC population. LRC are not confined to the hair follicle, but also lie in sebaceous glands and interfollicular epidermis. LRC reside throughout the permanent region of the hair follicle, where they express keratin 15 and lie in a region of high alpha6beta4 integrin expression. LRC are not significantly depleted by successive hair growth cycles. They can, nevertheless, be stimulated to divide by treatment with phorbol ester, resulting in near complete loss of LRC within 12 days. Activation of Myc stimulates epidermal proliferation without depleting LRC and induces differentiation of sebocytes within the interfollicular epidermis. Expression of N-terminally truncated Lef1 to block beta-catenin signalling induces transdifferentiation of hair follicles into interfollicular epidermis and sebocytes and causes loss of LRC primarily through proliferation. We conclude that LRC are more sensitive to some proliferative stimuli than others and that changes in lineage can occur with or without recruitment of LRC into cycle.  相似文献   

2.
We previously demonstrated that keratin 15 expressing cells present in the bulge region of hair follicles exhibit properties of adult stem cells. We have now established and characterized an immortalized adult epithelial stem cell line derived from cells isolated from the human hair follicle bulge region. Telogen hair follicles from human skin were microdissected to obtain an enriched population of keratin 15 positive skin stem cells. By expressing human papillomavirus 16 E6/E7 genes in these stem cells, we have been able to culture the cells for >30 passages and maintain a stable phenotype after 12 mo of continuous passage. The cell line was compared to primary stem cells for expression of stem cell specific proteins, for in vitro stem cell properties, and for their capacity to differentiate into different cell lineages. This new cell line, named Tel-E6E7 showed similar expression patterns to normal skin stem cells and maintained in vitro properties of stem cells. The cells can differentiate into epidermal, sebaceous gland, and hair follicle lineages. Intact beta-catenin dependent signaling, which is known to control in vivo hair differentiation in rodents, is maintained in this cell line. The Tel-E6E7 cell line may provide the basis for valid, reproducible in vitro models for studies on stem cell lineage determination and differentiation.  相似文献   

3.
Tissues contain distinct stem cell niches, but whether cell turnover is coordinated between niches during growth is unknown. Here, we report that in mouse skin, hair growth is accompanied by sebaceous gland and interfollicular epidermis expansion. During hair growth, cells in the bulge and outer root sheath temporarily upregulate the glutamate transporter SLC1A3, and the number of SLC1A3+ basal cells in interfollicular epidermis and sebaceous gland increases. Fate mapping of SLC1A3+ cells in mice revealed transient expression in proliferating stem/progenitor cells in all three niches. Deletion of slc1a3 delays hair follicle anagen entry, uncouples interfollicular epidermis and sebaceous gland expansion from the hair cycle, and leads to reduced fur density in aged mice, indicating a role of SLC1A3 in stem/progenitor cell activation. Modulation of metabotropic glutamate receptor 5 activity mimics the effects of SLC1A3 deletion or inhibition. These data reveal that stem/progenitor cell activation is synchronized over distinct niches during growth and identify SLC1A3 as a general marker and effector of activated epithelial stem/progenitor cells throughout the skin.  相似文献   

4.
To assess whether Smad signaling affects skin development, we generated transgenic mice in which a Smad antagonist, Smad7, was induced in keratinocytes, including epidermal stem cells. Smad7 transgene induction perturbed hair follicle morphogenesis and differentiation, but accelerated sebaceous gland morphogenesis. Further analysis revealed that independent of its role in anti-Smad signaling, Smad7 bound beta-catenin and induced beta-catenin degradation by recruiting an E3 ligase, Smurf2, to the Smad7/beta-catenin complex. Consequently, Wnt/beta-catenin signaling was suppressed in Smad7 transgenic hair follicles. Coexpression of the Smurf2 and Smad7 transgenes exacerbated Smad7-induced abnormalities in hair follicles and sebaceous glands. Conversely, when endogenous Smad7 was knocked down, keratinocytes exhibited increased beta-catenin protein and enhanced Wnt signaling. Our data reveal a mechanism for Smad7 in antagonizing Wnt/beta-catenin signaling, thereby shifting the skin differentiation program from forming hair follicles to sebaceous glands.  相似文献   

5.
6.
The skin epidermis is a stratified epithelium that forms a barrier that protects animals from dehydration, mechanical stress, and infections. The epidermis encompasses different appendages, such as the hair follicle (HF), the sebaceous gland (SG), the sweat gland, and the touch dome, that are essential for thermoregulation, sensing the environment, and influencing social behavior. The epidermis undergoes a constant turnover and distinct stem cells (SCs) are responsible for the homeostasis of the different epidermal compartments. Deregulation of the signaling pathways controlling the balance between renewal and differentiation often leads to cancer formation.  相似文献   

7.
The dental follicle is an ectomesenchymally derived connective tissue harboring precursor cells for the tooth supporting apparatus. In this study, we examined gene expression of freshly isolated human dental follicle cells during osteogenic differentiation in vitro. These plastic adherent fibroblastic cells express Notch-1, nestin and vimentin. We differentiated dental follicle cells with dexamethasone or insulin-based protocols into membrane-like structures containing mineralizing foci. An analysis of mineralized tissue with atomic force microscopy illustrated a bone and cementum-like structure. A real-time RT-PCR analysis was developed to investigate expression of typical osteoblast or cementoblast related genes during differentiation. Gene expressions of osteocalcin (OCN), bone morphogenic protein (BMP)-2 and nestin were increased during the both differentiation approaches. Our work demonstrates differentiation of dental follicle cells with an insulin-based protocol for the first time.  相似文献   

8.

Background  

Skin stem cells contribute to all three major lineages of epidermal appendages, i.e., the epidermis, the hair follicle, and the sebaceous gland. In hair follicles, highly proliferative committed progenitor cells, called matrix cells, are located at the base of the follicle in the hair bulb. The differentiation of these early progenitor cells leads to specification of a central hair shaft surrounded by an inner root sheath (IRS) and a companion layer. Multiple signaling molecules, including bone morphogenetic proteins (BMPs), have been implicated in this process.  相似文献   

9.
Cell death and survival of neural progenitor (NP) cells are determined by signals that are largely unknown. We have analyzed pro-apoptotic signaling in individual NP cells that have been derived from mouse embryonic stem cells. NP formation was concomitant with elevated apoptosis and increased expression of ceramide and prostate apoptosis response 4 (PAR-4). Morpholino oligonucleotide-mediated antisense knockdown of PAR-4 or inhibition of ceramide biosynthesis reduced stem cell apoptosis, whereas PAR-4 overexpression and treatment with ceramide analogs elevated apoptosis. Apoptotic cells also stained for proliferating cell nuclear antigen (a nuclear mitosis marker protein), but not for nestin (a marker for NP cells). In mitotic cells, asymmetric distribution of PAR-4 and nestin resulted in one nestin(-)/PAR-4(+) daughter cell, in which ceramide elevation induced apoptosis. The other cell was nestin(+), but PAR-4(-), and was not apoptotic. Asymmetric distribution of PAR-4 and simultaneous elevation of endogenous ceramide provides a possible mechanism underlying asymmetric differentiation and apoptosis of neuronal stem cells in the developing brain.  相似文献   

10.
The neural differentiation of human embryonic stem cells (ESCs) is a potential tool for elucidating the key mechanisms involved in human neurogenesis. Nestin and β-III-tubulin, which are cytoskeleton proteins, are marker proteins of neural stem cells (NSCs) and neurons, respectively. However, the expression patterns of nestin and β-III-tubulin in neural derivatives from human ESCs remain unclear. In this study, we found that neural progenitor cells (NPCs) derived from H9 cells express high levels of nestin and musashi-1. In contrast, β-III-tubulin was weakly expressed in a few NPCs. Moreover, in these cells, nestin formed filament networks, whereas β-III-tubulin was distributed randomly as small particles. As the differentiation proceeded, the nestin filament networks and the β-III-tubulin particles were found in both the cell soma and the cellular processes. Moreover, the colocalization of nestin and β-III-tubulin was found mainly in the cell processes and neurite-like structures and not in the cell soma. These results may aid our understanding of the expression patterns of nestin and β-III-tubulin during the neural differentiation of H9 cells.  相似文献   

11.
Vitamin A and its derivatives (retinoids) are critically important in the development and maintenance of multiple epithelial tissues, including skin, hair, and sebaceous glands, as shown by the detrimental effects of either vitamin A deficiency or toxicity. Thus, precise levels of retinoic acid (RA, active metabolite) are needed. These precise levels of RA are achieved by regulating several steps in the conversion of dietary vitamin A (retinol) to RA and RA catabolism. This review discusses the localization of RA synthesis to specific sites within the hair follicle and sebaceous gland, including their stem cells, during both homeostasis and disease states. It also discusses what is known about the specific roles of RA within the hair follicle and sebaceous gland. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.  相似文献   

12.
Human dental follicle cells (DFCs) derived from wisdom teeth are precursor cells for cementoblasts. In this study, we recognized that naïve DFCs express constitutively the early neural cell marker β-III-tubulin. Interestingly, DFCs formed β-III-tubulin-positive neurosphere-like cell clusters (NLCCs) on low-attachment cell culture dishes in serum-replacement medium (SRM). For a detailed examination of the neural differentiation potential, DFCs were cultivated in different compositions of SRM containing supplements such as N2, B27, G5 and the neural stem cell supplement. Moreover, these cell culture media were combined with different cell culture substrates such as gelatin, laminin, poly-l-ornithine or poly-l-lysine. After cultivation in SRM, DFCs differentiated into cells with small cell bodies and long cellular extrusions. The expression of nestin, β-III-tubulin, neuron-specific enolase (NSE) and neurofilament was up-regulated in SRM supplemented with G5, a cell culture supplement for glial cells, and the neural stem cell supplement. DFCs formed NLCCs and demonstrated an increased gene expression of neural cell markers β-III-tubulin, NSE, nestin and for small neuron markers such as neuropeptides galanin (GAL) and tachykinin (TAC1) after cultivation on poly-l-lysine. For a further neural differentiation NLCC-derived cells were sub-cultivated on laminin and poly-l-ornithine cell culture substrate. After 2 weeks of differentiation, DFCs exposed neural-like cell morphology with small neurite-like cell extrusions. These cells differentially express neurofilament and NSE, but only low levels of β-III-tubulin and nestin. In conclusion, we demonstrated the differentiation of human DFCs into neuron-like cells after a two-step strategy for neuronal differentiation.  相似文献   

13.
14.
Beck B  Blanpain C 《The EMBO journal》2012,31(9):2067-2075
The skin epidermis contains different appendages such as the hair follicle and the sebaceous glands. Recent studies demonstrated that several types of stem cells (SCs) exist in different niches within the epidermis and maintain discrete epidermal compartments, but the exact contribution of each SC populations under physiological conditions is still unclear. In addition, the precise mechanisms controlling the balance between proliferation and differentiation of epidermal SC still remain elusive. Recent studies provide new insights into these important questions by showing the contribution of hair follicle SC to the sebaceous lineage and the importance of chromatin modifications and micro-RNAs (miRs) in regulating epidermal SCs renewal and differentiation. In this review, we will discuss the importance of these papers to our understanding of the mechanisms that control epidermal SC functions.  相似文献   

15.
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells. Nestin-expressing cells were initially identified in the hair follicle bulge area (BA) using a transgenic mouse model in which the nestin promoter drives the green fluorescent protein (ND-GFP). The hair-follicle ND-GFP-expressing cells are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells and melanocytes in vitro. Subsequently, we showed that the nestin-expressing stem cells could affect nerve and spinal cord regeneration after injection in mouse models. In the present study, we separated the mouse vibrissa hair follicle into three parts (upper, middle and lower). Each part of the follicle was cultured separately in DMEM-F12 containing B-27 and 1% methylcellulose supplemented with basic FGF. After 2 mo, the nestin-expressing cells from each of the separated parts of the hair follicle proliferated and formed spheres. Upon transfer of the spheres to RPMI 1640 medium containing 10% FBS, the nestin-expressing cells in the spheres differentiated to neurons, as well as glia, keratinocytes, smooth muscle cells and melanocytes. The differentiated cells were produced by spheres which formed from nestin-expressing cells from all segments of the hair follicle. However, the differentiation potential is greatest in the upper part of the follicle. This result is consistent with trafficking of nestin-expressing cells throughout the hair follicle from the bulge area to the dermal papilla that we previously observed. The nestin-expressing cells from the upper part of the follicle produced spheres in very large amounts, which in turn differentiated to neurons and other cell types. The results of the present study demonstrate that multipotent, nestin-expressing stem cells are present throughout the hair follicle and that the upper part of the follicle can produce the stem cells in large amounts that could be used for nerve and spinal cord repair.  相似文献   

16.
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells. Nestin-expressing cells were initially identified in the hair follicle bulge area (BA) using a transgenic mouse model in which the nestin promoter drives the green fluorescent protein (ND-GFP). The hair-follicle ND-GFP-expressing cells are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells and melanocytes in vitro. Subsequently, we showed that the nestin-expressing stem cells could affect nerve and spinal cord regeneration after injection in mouse models. In the present study, we separated the mouse vibrissa hair follicle into three parts (upper, middle and lower). Each part of the follicle was cultured separately in DMEM-F12 containing B-27 and 1% methylcellulose supplemented with basic FGF. After 2 mo, the nestin-expressing cells from each of the separated parts of the hair follicle proliferated and formed spheres. Upon transfer of the spheres to RPMI 1640 medium containing 10% FBS, the nestin-expressing cells in the spheres differentiated to neurons, as well as glia, keratinocytes, smooth muscle cells and melanocytes. The differentiated cells were produced by spheres which formed from nestin-expressing cells from all segments of the hair follicle. However, the differentiation potential is greatest in the upper part of the follicle. This result is consistent with trafficking of nestin-expressing cells throughout the hair follicle from the bulge area to the dermal papilla that we previously observed. The nestin-expressing cells from the upper part of the follicle produced spheres in very large amounts, which in turn differentiated to neurons and other cell types. The results of the present study demonstrate that multipotent, nestin-expressing stem cells are present throughout the hair follicle and that the upper part of the follicle can produce the stem cells in large amounts that could be used for nerve and spinal cord repair.  相似文献   

17.
Zhang L  Li WH  Anthonavage M  Eisinger M 《Peptides》2006,27(2):413-420
Melanocortin receptors (MC1R-MC5R) and their ligands (melanocyte-stimulating hormone (MSH) and adrenocorticotrophin hormone (ACTH)) have been shown to influence physiological functions of cells and organs, including exocrine glands. Since relatively little is known about MC5R expression and function in the human sebaceous gland, we examined expression of MC5R by immunohistochemistry and RT-PCR in human sebaceous cells in vivo and in vitro. In human skin, MC5R was detected only in differentiating, lipid-laden sebaceous cells but not in basal, undifferentiated sebaceous cells. Similarly, in cultured human sebocytes MC5R was only detectable at the onset of differentiation and in fully differentiated cells displaying prominent lipid granules. The lipid profile of the cultured and differentiated human sebocytes was shown to be human sebum-specific using (14)C-acetate labeling and high performance thin layer chromatography. Our studies suggest that MC5R is a marker of human sebocyte differentiation.  相似文献   

18.
Epidermal Stem Cells   总被引:1,自引:0,他引:1  
Epidermis contains a compartment of stem cells but currently there is no common criterion to recognize individual stem cells with any confidence. Epidermis appears to contain stem cells of different levels of maturity and it is very likely that the main repository of epidermal stem cells is located in the hair follicle from which cells can emigrate into epidermis and also give rise to follicular and sebaceous keratinocytes. Epidermis consists of proliferative units containing stem and transit-amplifying cells, but the exact size of a proliferative unit cannot be measured accurately. The available data suggest that populations of stem and transit-amplifying cells are not discrete but represent a continuum from cells with a high self-renewal capacity and a low probability of differentiation to those with low self-renewal capacities and high commitments to differentiation. Stem cells occupy a special niche that provides a microenvironment, including an adhesion of stem cells to the basal membrane and their paracrine interactions with neighbor epidermal and mesenchymal cells. The fate of an epidermal stem cell depends on its prehistory and microenvironment.  相似文献   

19.
CNS stem cells express a new class of intermediate filament protein.   总被引:263,自引:0,他引:263  
U Lendahl  L B Zimmerman  R D McKay 《Cell》1990,60(4):585-595
Multipotential CNS stem cells receive and implement instructions governing differentiation to diverse neuronal and glial fates. Exploration of the mechanisms generating the many cell types of the brain depends crucially on markers identifying the stem cell state. We describe a gene whose expression distinguishes the stem cells from the more differentiated cells in the neural tube. This gene was named nestin because it is specifically expressed in neuroepithelial stem cells. The predicted amino acid sequence of the nestin gene product shows that nestin defines a distinct sixth class of intermediate filament protein. These observations extend a model in which transitions in intermediate filament gene expression reflect major steps in the pathway of neural differentiation.  相似文献   

20.
Epidermal Notch signalling: differentiation, cancer and adhesion   总被引:3,自引:0,他引:3  
The Notch pathway plays an important role in regulating epidermal differentiation. Notch ligands, receptors and effectors are expressed in a complex and dynamic pattern in embryonic and adult skin. Genetic ablation or activation of the pathway reveals that Notch signalling promotes differentiation of the hair follicle, sebaceous gland and interfollicular epidermal lineages and that Notch acts as an epidermal tumour suppressor. Notch signalling interacts with a range of other pathways to fulfil these functions and acts via RBP-Jkappa dependent and independent mechanisms. The effects on differentiation can be cell autonomous and non-autonomous, and Notch contributes to stem cell clustering via modulation of cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号