首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescence generalized polarization (GP) of 2-dimethylamino-6-lauroylnaphthalene (Laurdan) reveals different effects of cholesterol on the phase behavior of phospholipid bilayers. Phospholipid vesicles composed of gel, liquid-crystalline, and coexisting domains of the two phases have been studied at temperatures from 1 to 65 degrees C, without cholesterol and with cholesterol concentrations of 3-50 mol %. Laurdan GP measurements show the general effect of cholesterol of increasing the molecular dynamics of the gel and of decreasing the molecular dynamics of the liquid-crystalline phase. In the liquid-crystalline phase, the increased order yields Laurdan GP values close to those obtained in the gel phase. At cholesterol concentrations > 15 mol % a phase transition cannot be detected. Using the wavelength dependence of the excitation and emission GP spectra we determine that differences between the two phospholipid phases cannot be detected. In particular, in vesicles composed of coexisting gel and liquid-crystalline phases the GP wavelength dependence characteristic of coexisting domains cannot be observed at cholesterol concentrations > or = 15 mol %. Cholesterol causes the decrease in both the polarity and the dipolar relaxation effects on the neighborhood of the fluorescent naphthalene moiety of Laurdan. Probably because of a cholesterol-induced increase in the bilayer packing, these effects do not occur continuously with the increase of cholesterol concentration in the bilayer. Cholesterol concentrations inducing higher Laurdan GP values have been determined at about 5, 10, 15, 30, and 45 mol % with respect to phospholipids. We propose that the formation of ordered molecular microdomains at critical cholesterol concentrations can explain the occurrence of the observed discontinuities.  相似文献   

2.
The organization of lipids surrounding membrane proteins can influence their properties. We have used 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan) to study phase coexistence and phase interconversion in membrane model systems. The fluorescence properties of Laurdan provide a unique possibility to study lipid domains because of the different excitation and emission spectra of this probe in the gel and in the liquid-crystalline phase. The difference in excitation spectra allows photoselection of Laurdan molecules in one of the two phases. Using the difference in emission spectra it is then possible to observe interconversion between the two phases. We have performed experiments in dipalmitoyl-phosphatidylcholine (DPPC) vesicles at different temperatures, in particular in the region of the phase transition, where phase coexistence and interconversion between phases is likely to be maximal. We have also studied vesicles of different lipids and mixtures dilauroyl-phosphatidylcholine (DLPC), DPPC, and 50% DLPC in DPPC. Both steady-state fluorescence intensity and polarization data have been collected. To quantitate phase coexistence and interconversion we have introduced the concept of "generalized polarization." We have also performed time-resolved experiments to directly prove the interconversion process. We have found that in DLPC-DPPC mixtures, at 20 degrees C, phase interconversion occurs in approximately 30-40 ns.  相似文献   

3.
Fluorescence spectral features of 6-propionyl-2-dimethylaminonaphthalene (Prodan) in phospholipid vesicles of different phase states are investigated. Like the spectra of 6-lauroyl-2-dimethylaminonaphthalene (Laurdan), the steady-state excitation and emission spectra of Prodan are sensitive to the polarity of the environment, showing a relevant shift due to the dipolar relaxation phenomenon. Because of the different lengths of their acyl residues, the partitioning of the two probes between water and the membrane bilayer differs profoundly. To account for the contribution of Prodan fluorescence arising from water, we introduce a three-wavelength generalized polarization method that makes it possible to separate the spectral properties of Prodan in the lipid phase and in water, and to determine the probe partitioning between phospholipid and water and between the gel and the liquid-crystalline phases of phospholipids. In contrast to Laurdan, Prodan preferentially partitions in the liquid-crystalline phase with respect to the gel and is sensitive to the polar head pretransition, and its partition coefficient between the membrane and water depends on the phase state, i.e., on the packing of the bilayer. Prodan is sensitive to polarity variations occurring closer to the bilayer surface than those detected by Laurdan.  相似文献   

4.
Apolipoprotein A-I (apoA-I) interaction with specific cell lipid domains was suggested to trigger cholesterol and phospholipid efflux. We analyzed here apoA-I interaction with dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) bilayers at a temperature showing phase coexistence. Solid and liquid-crystalline domains were visualized by two-photon fluorescence microscopy on giant unilamellar vesicles (GUVs) labeled with 6-dodecanoyl-2-dimethyl-amino-naphthalene (Laurdan). A decrease of vesicle size was detected as long as they were incubated with lipid-free apoA-I, together with a shape deformation and a relative enrichment in DSPC. Selective lipid removal mediated by apoA-I from different domains was followed in real time by changes in the Laurdan generalized polarization. The data show a selective interaction of apoA-I with liquid-crystalline domains, from which it removes lipids, at a molar ratio similar to the domain compositions. Next, apoA-I was incubated with DMPC/DSPC small unilamellar vesicles, and products were isolated and quantified. Protein solubilized both lipids but formed complexes relatively enriched in the liquid component. We also show changes in the GUV morphology when cooling down. Our results suggest that the most efficient reaction between apoA-I and DMPC/DSPC occurs in particular bilayer conditions, probably when small fluid domains are nucleated within a continuous gel phase and interfacial packing defects are maximal.  相似文献   

5.
The sensitivity of the fluorescent probe Laurdan to the phase state of lipids has been utilized to detect modifications in the composition and physical state of cell membranes during cell growth. In phospholipid vesicles, the Laurdan emission spectrum shows a 50-nm red shift by passing from the gel to the liquid-crystalline phase. The Generalized Polarization (GP) value has been used for the data treatment instead of the ratiometric method common in investigations utilizing other fluorescent probes that display spectral sensitivity to medium properties. The GP value can be measured easily and quickly and possesses all the properties of "classical" polarization, including the additivity rule. Once Laurdan limiting GP values have been established for the gel and the liquid-crystalline phase of lipids, the quantitative determination of coexisting phases in natural samples is possible. In the present work the observation of a relevant decrease in the fractional intensity of the liquid-crystalline phase in K562 cell membranes during 5 days of asynchronous growth is reported. A decrease in the "fluidity" of cell membranes in K562 cells kept in culture for several months is also reported. The procedure developed for labeling cell membranes with Laurdan is reported and the influence of cell metabolism on fluorescence parameters is discussed. Also discussed is the influence of cholesterol on Laurdan GP.  相似文献   

6.
In this study, we report the effect of cholesterol content on the dynamic and structural properties of a dimyristoyl-phosphatidylcholine and distearoyl-phosphatidylcholine mixture in large unilamellar vesicles. The range of cholesterol concentrations studied varied around approximately 33.3 mol%, where it has been postulated that an abrupt change in bilayer organization occurs. Steady-state fluorescence measurements demonstrated a typical behavior; at low temperatures in the main phase transition, the cholesterol concentration did not affect the gel phase, but at 37.5 °C (phase coexistence) and in the liquid crystalline phase, the presence of cholesterol produced an increase in the fluorescence anisotropy of DPH and the generalized polarization of Laurdan. The greater effect was observed in the liquid crystalline phase, in which the bilayer became a mixture of fluid-like and liquid-ordered phases. The results obtained at approximately 33.3 mol% of Cholesterol demonstrated that the Generalized Polarization of Laurdan, the DPH lifetime, the limiting anisotropy and the rotational correlation time, as well as the fluorescence quenching of DPH by TEMPO, are at maxima, while the fluorescence intensity of dehydroergosterol and the lipid solubility in TritonX-100 are at minima. These results correlate well with the hypothesis of domain segregation in the DMPC/DSPC/Cholesterol LUV system. In this context, we postulate that at 33.3 mol% of Cho, the proportion of ordered domains reaches a maximum.  相似文献   

7.
The sensitivity of Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) excitation and emission spectra to the physical state of the membrane arises from dipolar relaxation processes in the membrane region surrounding the Laurdan molecule. Experiments performed using phospholipid vesicles composed of phospholipids with different polar head groups show that this part of the molecule is not responsible for the observed effects. Also, pH titration in the range from pH 4 to 10 shows that the spectral variations are independent of the charge of the polar head. A two-state model of dipolar relaxation is used to qualitatively explain the behavior of Laurdan. It is concluded that the presence of water molecules in the phospholipid matrix are responsible for the spectral properties of Laurdan in the gel phase. In the liquid crystalline phase there is a relaxation process that we attribute to water molecules that can reorientate during the few nanoseconds of the excited state lifetime. The quantitation of lipid phases is obtained using generalized polarization which, after proper choice of excitation and emission wavelengths, satisfies a simple addition rule.  相似文献   

8.
Two-photon excitation microscopy shows coexisting regions of different generalized polarization (GP) in phospholipid vesicles, in red blood cells, in a renal tubular cell line, and in purified renal brushborder and basolateral membranes labeled with the fluorescent probe laurdan. The GP function measures the relative water content of the membrane. In the present study we discuss images obtained with polarized laser excitation, which selects different molecular orientations of the lipid bilayer corresponding to different spatial regions. The GP distribution in the gel-phase vesicles is relatively narrow, whereas the GP distribution in the liquid-crystalline phase vesicles (DOPC and DLPC) is broad. Analysis of images obtained with polarized excitation of the liquid-crystalline phase vesicles leads to the conclusion that coexisting regions of different GP must have dimensions smaller than the microscope resolution (approximately 200 nm radially and 600 nm axially). Vesicles of an equimolar mixture of DOPC and DPPC show coexisting rigid and fluid domains (high GP and low GP), but the rigid domains, which are preferentially excited by polarized light, have GP values lower than the pure gel-phase domains. Cholesterol strongly modifies the domain morphology. In the presence of 30 mol% cholesterol, the broad GP distribution of the DOPC/DPPC equimolar sample becomes narrower. The sample is still very heterogeneous, as demonstrated by the separations of GP disjoined regions, which are the result of photoselection of regions of different lipid orientation. In intact red blood cells, microscopic regions of different GP can be resolved, whereas in the renal cells GP domains have dimensions smaller than the microscope resolution. Preparations of renal apical brush border membranes and basolateral membranes show well-resolved GP domains, which may result from a different local orientation, or the domains may reflect a real heterogeneity of these membranes.  相似文献   

9.
The fluorescent membrane probe 6-propionyl-2-dimethylaminonaphthalene (Prodan) displays a high sensitivity to the polarity and packing properties of lipid membrane. Contrary to 6-lauroyl-2-dimethylaminonaphthalene (Laurdan), Prodan can also monitor the properties of the membrane surface, i.e., the polar-head pretransition. In bilayers composed of coexisting gel and liquid-crystalline phases, Prodan shows a preferential partitioning in the latter, so that the detected membrane properties mainly belong to fluid domains. In the presence of cholesterol, the packing properties of the gel phase phospholipids are modified in such a way that Prodan can penetrate and label the membrane. Although Prodan labeling of the gel phase is a function of cholesterol concentration, 3 mol percent cholesterol is sufficient for a 60% Prodan labeling with respect to the maximum labeling reached at 15 mol percent cholesterol. We present steady-state and dynamical fluorescence measurements of Prodan in bilayers in the presence of cholesterol. Our results fit the liquid-ordered/liquid-disordered phase model for cholesterol-containing membranes and show that the presence of cholesterol, in addition to modification to the phase state of the hydrophobic portion of the bilayer, strongly affects the packing and the polarity of the membrane hydrophobic-hydrophilic interface.  相似文献   

10.
Using the sectioning effect of the two-photon fluorescence microscope, we studied the behavior of phospholipid giant unilamellar vesicles (GUVs) composed of pure diacylphosphatidylcholine phospholipids during the gel-to-liquid crystalline phase transition. We used the well-characterized excitation generalized polarization function (GP(ex)) of 6-dodecanoyl-2-dimethylamine-naphthalene (LAURDAN), which is sensitive to the changes in water content in the lipid vesicles, to monitor the phase transition in the GUVs. Even though the vesicles do not show temperature hysteresis at the main phase transition, we observed different behaviors of the vesicle shape, depending on how the GUV sample reaches the main phase transition. During the cooling cycles, we observed an increase in the vesicle diameter at the phase transition ( approximately 0.5-1%), followed by a decrease in the diameter when the vesicle reached the gel phase. During the heating cycles and close to the phase transition temperature, a surprising behavior is observed, showing a sequence of different vesicle shapes as follows: spherical-polygonal-ellipsoidal. We attribute these changes to the effect of lipid domain coexistence on the macroscopic structure of the GUVs. The "shape hysteresis" in the GUVs is reversible and largely independent of the temperature scan rate. In the presence of 30 mol% of cholesterol the events observed at the phase transition in the GUVs formed by pure phospholipids were absent.  相似文献   

11.
The effect of alpha-tocopherol on the thermotropic phase transition behaviour of aqueous dispersions of dimyristoylphosphatidylethanolamine was examined using synchrotron X-ray diffraction methods. The temperature of gel to liquid-crystalline (Lbeta-->Lalpha) phase transition decreases from 49.5 to 44.5 degrees C and temperature range where gel and liquid-crystalline phases coexist increases from 4 to 8 degrees C with increasing concentration of alpha-tocopherol up to 20 mol%. Codispersion of dimyristoylphosphatidylethanolamine containing 2.5 mol% alpha-tocopherol gives similar lamellar diffraction patterns as those of the pure phospholipid both in heating and cooling scans. With 5 mol% alpha-tocopherol in the phospholipid, however, an inverted hexagonal phase is induced which coexists with the lamellar gel phase at temperatures just before transition to liquid-crystalline lamellar phase. The presence of 10 mol% alpha-tocopherol shows a more pronounced inverted hexagonal phase in the lamellar gel phase but, in addition, another non-lamellar phase appears with the lamellar liquid-crystalline phase at higher temperature. This non-lamellar phase coexists with the lamellar liquid-crystalline phase of the pure phospholipid and can be indexed by six diffraction orders to a cubic phase of Pn3m or Pn3 space groups and with a lattice constant of 12.52+/-0.01 nm at 84 degrees C. In mixed aqueous dispersions containing 20 mol% alpha-tocopherol, only inverted hexagonal phase and lamellar phase were observed. The only change seen in the wide-angle scattering region was a transition from sharp symmetrical diffraction peak at 0.43 nm, typical of gel phases, to broad peaks centred at 0.47 nm signifying disordered hydrocarbon chains in all the mixtures examined. Electron density calculations through the lamellar repeat of the gel phase using six orders of reflection indicated no difference in bilayer thickness due to the presence of 10 mol% alpha-tocopherol. The results were interpreted to indicate that alpha-tocopherol is not randomly distributed throughout the phospholipid molecules oriented in bilayer configuration, but it exists either as domains coexisting with gel phase bilayers of pure phospholipid at temperatures lower than Tm or, at higher temperatures, as inverted hexagonal phase consisting of a defined stoichiometry of phospholipid and alpha-tocopherol molecules.  相似文献   

12.
The effect of the excitation or emission wavelengths on Laurdan generalized polarization (GP) can be evaluated by GPS, a quantitative, simplified determination of the GP spectrum slope, the thermotropic dependence of which allows the assessment of phospholipid lamellar membrane phase, as shown in a recent publication of our laboratory [J.B. Velázquez, M.S. Fernández, Arch. Biochem. Biophys. 455 (2006) 163-174]. In the present work, we applied Laurdan GPS to phase transition studies of mixed, two-phosphatidylcholine liposomes prepared from variable proportions of dimyristoyl- and dipalmitoylphosphatidylcholine (DMPC and DPPC, respectively). We have found that the GPS function reports a clear limit between the gel/liquid-crystalline phase coexistence region and the liquid-crystalline state, not only at a certain temperature Tc for liposomes of constant composition submitted to temperature scans, but also at a defined mole fraction Xc, for two-component liposomes of variable composition at constant temperature. The Tc or the Xc values obtained from GPS vs. temperature or GPS vs. composition plots, respectively, allow the construction of a partial phase diagram for the DMPC-DPPC mixtures, showing the boundary between the two-phase coexisting region and the liquid-crystalline state. Likewise, at the onset of the transition region, i.e., the two-phase coexisting region as detected by GPS, it is possible to determine, although with less precision, a temperature To or a mole fraction Xo defining a boundary located below but near the limit between the gel and ripple phase, reported in the literature. These GPS results are consistent with the proposal by several authors that a fraction of Lα phospholipids coexists with gel phospholipids in the rippled phase.  相似文献   

13.
In this study, free cholesterol (FC) efflux mediated by human HDL was investigated using fluorescence methodologies. The accessibility of FC to HDL may depend on whether it is located in regions rich in unsaturated phospholipids or in domains containing high levels of FC and sphingomyelin, known as "lipid rafts." Laurdan generalized polarization and two-photon microscopy were used to quantify FC removal from different pools in the bilayer of giant unilamellar vesicles (GUVs). GUVs made of POPC and FC were observed after incubation with reconstituted particles containing apolipoprotein A-I and POPC [78A diameter reconstituted high density lipoprotein (rHDL)]. Fluorescence correlation spectroscopy data show an increase in rHDL size during the incubation period. GUVs made of two "raft-like" mixtures [DOPC/DPPC/FC (1:1:1) and POPC/SPM/FC (6:1:1)] were used to model liquid-ordered/liquid-disordered phase coexistence. Through these experiments, we conclude that rHDL preferentially removes cholesterol from the more fluid phases. These data, and their extrapolation to in vivo systems, show the significant role that phase separation plays in the regulation of cholesterol homeostasis.  相似文献   

14.
Cochleates are lipid-based delivery system that have found application in drug and gene delivery. They are precipitates, formed as a result of interaction between cations (e.g. Ca2+) and negatively charged phospholipids such as phosphatidylserine (PS). In the present study, we investigated the utility of fluorescent probe Laurdan (6-dodecanoyl-2-dimethylamino naphthalene) to monitor cochleate phase formation. Following addition of Ca2+ to Laurdan labeled lipid vesicles comprised of brain phosphatidylserine (BPS), a significant blue shift in the emission peak maximum of Laurdan was observed and the spectral features were distinct from those observed for the gel and liquid-crystalline (LC) phases. This is consistent with the formation of anhydrous cochleate cylinders that was further confirmed by electron microscopy studies. Due to dipolar relaxation, excitation and emission generalized polarization (GPEx and GPEm) indicate transition from a LC to a rigid and dehydrated (RD) cochleate phase. These spectral changes were utilized to monitor the influence of lipid composition, ionic strength and lamellarity on the formation of cochleate phase. The results indicated that the presence of phosphatidylcholine (PC) and bulk Na+ concentration influenced the formation of cochleate structures from small unilamellar vesicles (SUV) and multilamellar vesicles (MLV) composed of PS. The presence of PC and higher bulk Na+ concentration stabilized the PS vesicles against collapse and total loss of contents, intermediate molecular events in the formation of cochleate structures. From these studies, we conclude that Laurdan fluorescence is a sensitive and a rapid method to detect cochleate phase formation.  相似文献   

15.
(+)-Totarol, a highly hydrophobic diterpenoid isolated from Podocarpus spp., is inhibitory towards the growth of diverse bacterial species. (+)-Totarol decreased the onset temperature of the gel to liquid-crystalline phase transition of DMPC and DMPG membranes and was immiscible with these lipids in the fluid phase at concentrations greater than 5 mol%. Different (+)-totarol/phospholipid mixtures having different stoichiometries appear to coexist with the pure phospholipid in the fluid phase. At concentrations greater than 15 mol% (+)-totarol completely suppressed the gel to liquid-crystalline phase transition in both DMPC and DMPG vesicles. Incorporation of increasing amounts of (+)-totarol into DEPE vesicles induced the appearance of the H(II) hexagonal phase at low temperatures in accordance with NMR data. At (+)-totarol concentrations between 5 and 35 mol% complex thermograms were observed, with new immiscible phases appearing at temperatures below the main transition of DEPE. Steady-state fluorescence anisotropy measurements showed that (+)-totarol decreased and increased the structural order of the phospholipid bilayer below and above the main gel to liquid-crystalline phase transition of DMPC respectively. The changes that (+)-totarol promotes in the physical properties of model membranes, compromising the functional integrity of the cell membrane, could explain its antibacterial effects.  相似文献   

16.
To understand the role of sphingomyelinase (SMase) in the function of biological membranes, we have investigated the effect of conversion of sphingomyelin (SM) to ceramide (Cer) on the assembly of domains in giant unilamellar vesicles (GUVs). The GUVs were prepared from mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), N-palmitoly-D-erythro-sphingosine (C16Cer), N-palmitoyl-D-erythro-sphingosylphosphorylcholine (C16SM) and cholesterol. The amounts of DOPC, sum of C16Cer and C16SM, and cholesterol were kept constant (the ratio of these four lipids is shown as 1:X:1-X:1 (molar ratio), i.e., X is C16Cer/(C16Cer+C16SM)). Shape and distribution of domains formed in the GUVs were monitored by a fluorescent lipid, Texas Red 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (0.1 mol%). In GUVs containing low C16Cer (X=0 and 0.25), round-shaped domains labeled by the fluorescent lipid were present, suggesting coexistence of liquid-ordered and disordered domains. In GUVs containing intermediate Cer concentration (X=0.5), the fluorescent domain covered most of GUV surface, which was surrounded by gel-like domains. Differential scanning calorimetry of multilamellar vesicles prepared in the presence of higher Cer concentration (X>or=0.5) suggested existence of a Cer-enriched gel phase. Video microscopy showed that the enzymatic conversion of SM to Cer caused rapid change in the domain structure: several minutes after the SMase addition, the fluorescent region spread over the GUV surface, within which regions with darker contrast existed. Image-based measurement of generalized polarization (GP) of 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan), which is related to the acyl chain ordering of the lipids, was performed. Before the SMase treatment domains with high (0.65) and low (below 0.4) GP values coexisted, presumably reflecting the liquid-ordered and disordered domains; after the SMase treatment regions with intermediate GP values (0.5) and smaller regions with higher GP values (0.65) were present. Generation of Cer thus caused a phase transition from liquid-ordered and disordered phases to a gel and liquid phase.  相似文献   

17.
Through the analysis of the ESR spectra of spin labels, we investigated the thermotropic properties of dioctadecyl dimethylammonium bromide (DODAB) liposomes, in low and high ionic strength, with different cholesterol contents. The cationic lipid gel phase is stabilized by the presence of ions, the bilayer having a higher gel/fluid transition temperature (Tm) in high ionic strength. As found for low ionic strength [Benatti, C.R., Feitosa, E., Fernandez, R.M., Lamy-Freund, M.T., 2001. Structural and thermal characterization of dioctadecyldimethylammonium bromide dispersions by spin labels. Chem. Phys. Lipids, 111, 93-104], high salt DODAB membranes also present a clear coexistence of the two phases around Tm. Cholesterol solubility in DODAB bilayers seems to be rather low, as the coexistence of DODAB and cholesterol-rich domains can be clearly detected by spin labels, for cholesterol concentration as low as 15 mol% of the total lipid. For lower cholesterol concentrations, the effect of cholesterol in DODAB bilayers is similar to that in phospholipids. For concentrations at or above 45 mol% of cholesterol, spin labels do not detect the coexistence of structurally different domains.  相似文献   

18.
Changes in the cholesterol (Chol) content of biological membranes are known to alter the physicochemical properties of the lipid lamella and consequently the function of membrane-associated enzymes. To characterize these changes, we used steady-state and time resolved fluorescence spectroscopy and two photon-excitation microscopy techniques. The membrane systems were chosen according to the techniques that were used: large unilamellar vesicles (LUVs) for cuvette and giant unilamellar vesicles (GUVs) for microscopy measurements; they were prepared from dipalmitoyl phosphatidylcholine (DPPC) and dioctadecyl phosphatidylcholine (DOPC) in mixtures that are well known to form lipid domains. Two fluorescent probes, which insert into different regions of the bilayer, were selected: 1,6-diphenyl-1,3,5-hexatriene (DPH) was located at the deep hydrophobic core of the acyl chain regions and 2-dimethylamino-6-lauroylnaphthalene (Laurdan) at the hydrophilic-hydrophobic membrane interface. Our spectroscopy results show that (i) the changes induced by cholesterol in the deep hydrophobic phospholipid acyl chain domain are different from the ones observed in the superficial region of the hydrophilic-hydrophobic interface, and these changes depend on the state of the lamella and (ii) the incorporation of cholesterol into the lamella induces an increase in the orientation dynamics in the deep region of the phospholipid acyl chains with a corresponding decrease in the orientation at the region close to the polar lipid headgroups. The microscopy data from DOPC/DPPC/Chol GUVs using Laurdan generalized polarization (Laurdan GP) suggest that a high cholesterol content in the bilayer weakens the stability of the water hydrogen bond network and hence the stability of the liquid-ordered phase (Lo).  相似文献   

19.
Methyl-β-cyclodextrins (MβCDs) are molecules that are extensively used to remove and to load cholesterol (Chol) from artificial and natural membranes; however, the mechanism of Chol extraction by MβCD from pure lipids or from complex mixtures is not fully understood. One of the outstanding questions in this field is the capability of MβCD to remove Chol from lipid domains having different packing. Here, we investigated the specificity of MβCD to remove Chol from coexisting macrodomains with different lipid packing. We used giant unilamellar vesicles (GUVs) made of 1,2-dioleoylphosphatidylcholine:1,2-dipalmitoylphatidylcholine:free cholesterol, 1:1:1 molar ratio at 27°C. Under these conditions, individual GUVs present Chol distributed into l o and l d phases. The two phases can be distinguished and visualized using Laurdan generalized polarization and two-photon excitation fluorescence microscopy. Our data indicate that MβCD removes Chol preferentially from the more disordered phase. The process of selective Chol removal is dependent on the MβCD concentration. At high concentrations, MβCD also removes phospholipids.  相似文献   

20.
The physical properties of organized system (bilayers and monolayers at the air water interface) composed of bovine lipid extract surfactant (BLES) were studied using correlated experimental techniques. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN)-labeled giant unilamelar vesicles (mean diameter approximately 30 microm) composed of BLES were observed at different temperatures using two-photon fluorescence microscopy. As the temperature was decreased, dark domains (gel-like) appeared at physiological temperature (37 degrees C) on the surface of BLES giant unilamelar vesicles. The LAURDAN two-photon fluorescent images show that the gel-like domains span the lipid bilayer. Quantitative analysis of the LAURDAN generalized polarization function suggests the presence of a gel/fluid phase coexistence between 37 degrees C to 20 degrees C with low compositional and energetic differences between the coexisting phases. Interestingly, the microscopic scenario of the phase coexistence observed below 20 degrees C shows different domain's shape compared with that observed between 37 degrees C to 20 degrees C, suggesting the coexistence of two ordered but differently organized lipid phases on the bilayer. Epifluorescence microscopy studies of BLES monomolecular films doped with small amounts of fluorescent lipids showed the appearance and growth of dark domains (liquid condensed) dispersed in a fluorescent phase (liquid expanded) with shapes and sizes similar to those observed in BLES giant unilamelar vesicles. Our study suggests that bovine surfactant lipids can organize into discrete phases in monolayers or bilayers with equivalent temperature dependencies and may occur at physiological temperatures and surface pressures equivalent to those at the lung interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号