首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-throughput screening (HTS), a major component of lead identification, often utilizes fluorescence-based assay technologies. For example, HTS kinase assays are formatted using a variety of fluorescence-based assay technologies including, but not limited to, dissociation enhanced lanthanide fluoroimmunoassay (DELFIA), time-resolved fluorescence resonance energy transfer (TR-FRET), and fluorescence polarization (FP). These assays offer tremendous advantages such as a nonradioactive format, ease of automation, and excellent reproducibility. Fluorescence-based assays frequently used for lead identification can also be useful for structure activity relationship (SAR) studies during lead optimization. An important issue when assessing an assay to be used for SAR is the ability of the assay to discriminate high-affinity small molecule inhibitors (pM-nM) from low-affinity inhibitors (microM-mM). The purpose of this study was to utilize HTS-friendly assay formats for SAR by developing TR-FRET, FP, and DELFIAassays measuring Src kinase activity and to define the theoretical lower limit of small molecule inhibitor detection achievable with these assay formats. The authors show that 2 homogeneous assay formats, TR-FRET and FP, allowed for the development of Src kinase assays with a lower limit of detection of K(i) = 0.01 nM. This study indicates that assay technologies typically used for HTS can be used during lead optimization by providing quantitative measurements of compound activity critical to driving SAR studies.  相似文献   

2.
High-throughput screening (HTS) of large chemical libraries has become the main source of new lead compounds for drug development. Several specialized detection technologies have been developed to facilitate the cost- and time-efficient screening of millions of compounds. However, concerns have been raised, claiming that different HTS technologies may produce different hits, thus limiting trust in the reliability of HTS data. This study was aimed to investigate the reliability of the authors most frequently used assay techniques: scintillation proximity assay (SPA) and homogeneous time-resolved fluorescence resonance energy transfer (TR-FRET). To investigate the data concordance between these 2 detection technologies, the authors screened a large subset of the Schering compound library consisting of 300,000 compounds for inhibitors of a nonreceptor tyrosine kinase. They chose to set up this study in realistic HTS scale to ensure statistical significance of the results. The findings clearly demonstrate that the choice of detection technology has no significant impact on hit finding, provided that assays are biochemically equivalent. Data concordance is up to 90%. The little differences in hit findings are caused by threshold setting but not by systematic differences between the technologies. The most significant difference between the compared techniques is that in the SPA format, more false-positive primary hits were obtained.  相似文献   

3.
Despite a large body of references on assay development, assay optimization, strategies, and methodologies for high-throughput screening (HTS), there have been few reports on investigations of the efficiency of primary screening in a systematic and quantitative manner for a typical HTS process. Recently, the authors investigated the primary hit comparison and the effect of measurement variability by screening a library of approximately 25,000 random compounds in multiple replicate tests in a nuclear receptor recruitment assay with 2 different assay detection technologies. In this report, we utilized these sets of multiple replicate screening data from a different perspective and conducted a systematic data analysis in order to gain some insights into the hit-finding efficiency of a typical primary screening process. Specifically, hit confirmation, false-positive (declaration) rates, and false-negative rates at different hit cutoff limits were explored and calculated from the 2 different assay formats. Results and analyses provided some quantitative estimation regarding the reliability and efficiency of the primary screening process. For the 2 assay formats tested in this report, the confirmation rate (activity repeated at or above a certain hit limit) was found to be 65% or above. It was also suggested that, at least in this case, applying some hit-selection strategies, it is possible to decrease the number of false-negative or false-positive hits without significantly increasing the efforts in primary screening.  相似文献   

4.
In today's high-throughput screening (HTS) environment, an increasing number of assay detection technologies are routinely utilized in lead finding programs. Because of the relatively broad applicability of several of these technologies, one is often faced with a choice of which technology to utilize for a specific assay. The aim of this study was to address the question of whether the same compounds would be identified from screening a set of samples in three different versions of an HTS assay. Here, three different versions of a tyrosine kinase assay were established using scintillation proximity assay (SPA), homogeneous time-resolved fluorescence resonance energy transfer (HTR-FRET), and fluorescence polarization (FP) technologies. In this study, 30,000 compounds were evaluated in each version of the kinase assay in primary screening, deconvolution, and dose-response experiments. From this effort, there was only a small degree of overlap of active compounds identified subsequent to the deconvolution experiment. When all active compounds were then profiled in all three assays, 100 and 101 active compounds were identified in the HTR-FRET and FP assays, respectively. In contrast, 40 compounds were identified in the SPA version of the kinase assay, whereas all of these compounds were detected in the HTR-FRET assay only 35 were active in the FP assay. Although there was good correlation between the IC(50) values obtained in the HTR-FRET and FP assays, poor correlations were obtained with the IC(50) values obtained in the SPA assay. These findings suggest that significant differences can be observed from HTS depending on the assay technology that is utilized, particularly in assays with high hit rates.  相似文献   

5.
Kinases are important drug discovery targets for a wide variety of therapeutic indications; consequently, the measurement of kinase activity remains a common high-throughput screening (HTS) application. Recently, enzyme-coupled luciferase-kinase (LK) format assays have been introduced. This format measures luminescence resulting from metabolism of adenosine triphosphate (ATP) via a luciferin/luciferase-coupled reaction. In the research presented here, 1536-well format time-resolved fluorescence resonance energy transfer (TR-FRET) and LK assays were created to identify novel Rho-associated kinase II (ROCK-II) inhibitors. HTS campaigns for both assays were conducted in this miniaturized format. It was found that both assays were able to consistently reproduce the expected pharmacology of inhibitors known to be specific to ROCK-II (fasudil IC50: 283 +/- 27 nM and 336 +/- 54 nM for TR-FRET and LK assays, respectively; Y-27632 IC50: 133 +/- 7.8 nM and 150 +/- 22 nM for TR-FRET and LK assays, respectively). In addition, both assays proved robust for HTS efforts, demonstrating excellent plate Z' values during the HTS campaign (0.84 +/- 0.03; 0.72 +/- 0.05 for LK and TR-FRET campaigns, respectively). Both formats identified scaffolds of known and novel ROCK-II inhibitors with similar sensitivity. A comparison of the performance of these 2 assay formats in an HTS campaign was enabled by the existence of a subset of 25,000 compounds found in both our institutional and the Molecular Library Screening Center Network screening files. Analysis of the HTS campaign results based on this subset of common compounds showed that both formats had comparable total hit rates, hit distributions, amount of hit clusters, and format-specific artifact. It can be concluded that both assay formats are suitable for the discovery of ROCK-II inhibitors, and the choice of assay format depends on reagents and/or screening technology available.  相似文献   

6.
The demand to increase throughput in HTS programs, without a concomitant addition to costs, has grown significantly during the past few years. One approach to handle this demand is assay miniaturization, which can provide greater throughput, as well as significant cost savings through reduced reagent costs. Currently, one of the major challenges facing assay miniaturization is the ability to detect the assay signal accurately and rapidly in miniaturized formats. Digital imaging is a detection method that can measure fluorescent or luminescent signals in these miniaturized formats. In this study, an imaging system capable of detecting the signal from a fluorescent protease assay in multiple plate formats was used to evaluate this detection method in an HTS environment. A direct comparison was made between the results obtained from the imaging system and a fluorescent plate reader by screening 8,800 compounds in a 96-well plate format. The imaging system generated similar changes in relative signal for each well in the screen, identified the same active compounds, and yielded similar IC(50) values as compared to the plate reader. When a standard protease inhibitor was evaluated in 96-, 384-, 864-, and 1536-well plates using imaging detection, similar IC(50) values were obtained. Furthermore, similar dose-response curves were generated for the compound in 96- and 384-well assay plates read in a plate reader. These results provide support for digital imaging as an accurate and rapid detection method for high-density microtiter plates.  相似文献   

7.
Many assay technologies currently exist to develop high-throughput screening assays, and the number of choices continues to increase. Results from a previous study comparing assay technologies in our laboratory do not support the common assumption that the same hits would be found regardless of which assay technology is used. To extend this investigation, a nuclear receptor antagonist assay was developed using 3 assay formats: AlphaScreen, time-resolved fluorescence (TRF), and time-resolved fluorescence resonance energy transfer (TR-FRET). Compounds ( approximately 42000) from the Novartis library were evaluated in all 3 assay formats. A total of 128 compounds were evaluated in dose-response experiments, and 109 compounds were confirmed active from all 3 formats. The AlphaScreen, TRF, and TR-FRET assay technologies identified 104, 23, and 57 active compounds, respectively, with only 18 compounds active in all 3 assay formats. A total of 128 compounds were evaluated in a cell-based functional assay, and 35 compounds demonstrated activity in this cellular assay. Furthermore, 34, 11, and 16 hits that were originally identified in the dose-response experiment by AlphaScreen, TRF, and TR-FRET assay technologies, respectively, were functionally active. The results of the study indicated that AlphaScreen identified the greatest number of functional antagonists.  相似文献   

8.
During the past few years, high-throughput screening (HTS) has provided a useful resource to researchers involved in the development of kinase inhibitors as a novel therapeutic modality. However, with all the choices among kinase assays, there is not yet a one-size-fits-all assay. Therefore, selection of a specific kinase assay is a daunting task. HTS assays should be homogeneous, cost effective, use nonradioactive reagents, generic and not time consuming. Here, we report an improved method of assaying protein kinase activity using a zinc cocktail in a fluorescence polarization-(FP) based format. Assay conditions were standardized manually and validated in a HTS format using a liquid handler. We validated this assay for both serine/threonine and tyrosine (receptor/nonreceptor) kinases. The results obtained in the HTS assay system were comparable to the commercially available fluorescence-based assay. We suggest that the reported assay is a cost-effective alternative to the IMAP-based generic kinase assay.  相似文献   

9.
A novel competitive binding assay for protein kinase inhibitors has been developed for high-throughput screening (HTS). Unlike functional kinase assays, which are based on detection of substrate phosphorylation by the enzyme, this novel method directly measures the binding potency of compounds to the kinase ATP binding site through competition with a conjugated binding probe. The binding interaction is coupled to a signal amplification system based on complementation of beta-galactosidase enzyme fragments, a homogeneous, nonisotopic assay technology platform developed by DiscoveRx Corp. In the present study, staurosporine, a potent, nonselective kinase inhibitor, was chemically conjugated to a small fragment of beta-galactosidase (termed ED-SS). This was used as the binding probe to the kinase ATP binding pocket. The binding potencies of several inhibitors with diverse structures were assessed by displacement of ED-SS from the kinase. The assay format was specifically evaluated with GSK3alpha, an enzyme previously screened in a radioactive kinase assay (i.e., measurement of [(33)P]-gamma-ATP incorporation into the kinase peptide substrate). Under optimized assay conditions, nonconjugated staurosporine inhibited ED-SS binding in a concentration-dependent manner with an apparent potency (IC(50)) of 11 nM, which was similar to the IC(50) value determined in a radioactive assay. Furthermore, 9 kinase inhibitors with diverse structures, previously identified from chemical compound library screening, were screened using the competitive binding assay. The potencies in the binding assay were in very good agreement with those obtained previously in the isotopic functional activity assay. The binding assay was adapted for automated HTS using selected compound libraries in a 384-well microtiter plate format. The HTS assay was observed to be highly robust and reproducible (Z' factors > 0.7) with high interassay precision (R(2) > 0.96). Interference of compounds with the beta-galactosidase signal readout was negligible. In conclusion, the DiscoveRx competitive kinase binding assay, termed ED-NSIP trade mark, provides a novel method for screening kinase inhibitors. The format is homogeneous, robust, and amenable to automation. Because there is no requirement for substrate-specific antibodies, the assay is particularly applicable to Ser/Thr kinase assay, in which difficulties in identifying a suitable substrate and antibody preclude development of nonisotopic assays. Although the nonselective kinase inhibitor, staurosporine, was used here, chemically conjugating the ED fragment to other small molecule enzyme inhibitors is also feasible, suggesting that the format is generally applicable to other enzyme systems.  相似文献   

10.
High-throughput screening (HTS) is used in modern drug discovery to screen hundreds of thousands to millions of compounds on selected protein targets. It is an industrial-scale process relying on sophisticated automation and state-of-the-art detection technologies. Quality control (QC) is an integral part of the process and is used to ensure good quality data and mini mize assay variability while maintaining assay sensitivity. The authors describe new QC methods and show numerous real examples from their biologist-friendly Stat Server HTS application, a custom-developed software tool built from the commercially available S-PLUS and Stat Server statistical analysis and server software. This system remotely processes HTS data using powerful and sophisticated statistical methodology but insulates users from the technical details by outputting results in a variety of readily interpretable graphs and tables. It allows users to visualize HTS data and examine assay performance during the HTS campaign to quickly react to or avoid quality problems.  相似文献   

11.
As a result of the increasing size of chemical libraries, more rapid and highly sensitive strategies are needed to accelerate the process of drug discovery without increasing the cost. One means of accomplishing this is to miniaturize the assays that enter high-throughput screening (HTS). Miniaturization requires an assay design that has few steps, has a large degree of separation between the signal and background, and has a low well to well signal variation. Fluorescence polarization (FP) is an assay type that, in many cases, meets all of the above requirements. FP is a homogenous method that allows interactions between molecules to be measured directly in solution. This article demonstrates the application of FP in a miniaturized HTS format, using 1536-well plates, to measure direct binding between cyclin-dependent kinase 2/cyclin E complex (CDK2/E) and an 8-mer-peptide kinase inhibitor. The data indicate that low variability and high specificity allow rapid and precise identification of antagonist compounds affecting CDK2/E-peptide interactions.  相似文献   

12.
Homogeneous time-resolved fluorescence resonance energy transfer (TR-FRET) assays represent a highly sensitive and robust high-throughput screening (HTS) method for the quantification of kinase activity. Traditional TR-FRET kinase assays detect the phosphorylation of an exogenous substrate. The authors describe the development and optimization of a TR-FRET technique that measures the autophosphorylation of vascular endothelial growth factor receptor 2 (VEGFR-2) kinase and extend its applicability to a variety of other kinases. The VEGFR-2 assay demonstrated dose-dependent inhibition by compounds known to modulate the catalytic activity of this receptor. In addition, kinetic analysis of a previously characterized VEGFR-2 inhibitor was performed using the method, and results were consistent with those obtained using a different assay format. Because of the known involvement of VEGFR-2 in angiogenesis, this assay should facilitate HTS for antiangiogenic agents. In addition, this general technique should have utility for the screening for inhibitors of kinases as potential therapeutic agents for many other disease indications.  相似文献   

13.
Aberrant regulation of phosphoinositide 3-kinase (PI3K) activity is implicated in various diseases such as cancer and diabetes. Thus, high-throughput screening (HTS) of small-molecule inhibitors for PI3 kinases is an appealing strategy for drug development. Despite the attractiveness of lipid kinases as drug targets, screening for inhibitors for PI3K activities has been hampered by limited assay formats adaptable for HTS. The authors describe a homogeneous, direct, and nonradioactive assay for highly sensitive detection of PI3Kalpha, beta, delta, and gamma activities, which is suitable for HTS. The assay is based on fluorescence superquenching of a conjugated polymer upon metal-ion-mediated association of phosphorylated and dye-labeled substrates. As a result of phosphorylation, quencher and polymer are brought into proximity, and fluorescent energy transfer occurs. This event can be monitored as either fluorescence quench of the polymer or as enhanced emission from the quencher. Ratiometric analysis of the wavelengths eliminates interferences from autofluorescing compounds, which are present in HTS libraries. The platform has been adapted for the 384-well microplate format and delivers Z factors of > 0.6 at substrate conversions as low as 7%. Using this assay platform, several unreported inhibitors and activators of PI3Ks were identified in an 84- compound screen.  相似文献   

14.
As higher density formats become more and more common in HTS labs, the expectations for maintaining faster, lower cost screens puts great pressure on traditional 96-well screens. In some cases higher density formats are not compatible with the assay. This seems especially true in cell-based assays. In our case, the nature of the cells' response forced us to remain in 96-well plates. In this paper, we describe the development of a luminescence reporter assay and its performance in two detection modes, flash and glow. The advantages in cost and throughput for each technique are explored, along with automation considerations. An additional new technology, the use of pins for low-volume transfers, is also briefly described because of its dramatic effect on our screen's throughput. However, it will be more thoroughly presented in a future publication. Comparing the technologies available for HTS aids in designing automated systems that meet the unique needs of each assay.  相似文献   

15.
Using a simple test for rapid identification and quantification of pesticide multiresidues in food and environmental samples is a long-cherished approach for practical monitoring purposes. Here two gold-based lateral-flow strips (strip A and strip B) were investigated for simultaneous detection of carbofuran and triazophos. For the strip A format, a bispecific monoclonal antibody (BsMcAb) against both carbofuran and triazophos was employed to prepare the immunogold probe. For the strip B format, anti-carbofuran monoclonal antibody (McAb) and anti-triazophos McAb separately labeled with colloidal gold were combined as detector reagents. By comparison of visual results from pesticide standard tests between the two formats, the strip B assay manifested higher sensitivities for both pesticides. Analysis of spiked water samples by the preferable strip indicated that the detection limits for carbofuran and triazophos were 32 and 4 μg/L, respectively. The strength of the portable one-step strip assay was in the simultaneous screening for two pesticides within a short time (8-10 min) without any equipment.  相似文献   

16.
High-content screening, typically defined as automated fluorescence microscopy combined with image analysis, is now well established as a means to study test compound effects in cellular disease-modeling systems. In this work, the authors establish several high-content screening assays in the 384-well format to measure the activation of the CC-type chemokine receptors 2B and 3 (CCR2B, CCR3). As a cellular model system, the authors use Chinese hamster ovary cells, stably transfected with 1 of the respective receptors. They characterize receptor stimulation by human monocyte chemoattractant protein-1 for CCR2B and by human eotaxin-1 for CCR3: Receptor internalization and receptor-induced phosphorylation of ERK1/2 (pERK) were quantified using fluorescence imaging and image analysis. The 4 assay formats were robust, displayed little day-to-day variability, and delivered good Z' statistics for both CCRs. For each of the 2 receptors, the authors evaluated the potency of inhibitory compounds in the internalization format and the pERK assay and compared the results with those from other assays (ligand displacement binding, Ca(2+) mobilization, guanosine triphosphate exchange, chemotaxis). Both physiological agonists and test compounds differed significantly with respect to potencies and efficacies in the various profiling assays. The diverse assay formats delivered partially overlapping and partially complementary information, enabling the authors to reduce the probability of test compound-related technology artifacts and to specify the mode of action for individual test compounds. Transfer of the high-content screening format to a fully automated medium-throughput screening platform for CCR3 enabled the profiling of large compound numbers with respect to G protein signaling and possible tolerance-inducing liabilities.  相似文献   

17.
Just-in-time cell supply for cell-based high-throughput screening (HTS) is frequently problematic. In addition to scheduling and logistical issues, quality issues and variability due to passage effect, cell cycle, or confluency contribute to day-to-day signal variability in the course of cell-based HTS campaigns. Cell division-arrest and cryopreservation technologies permit the use of cells as assay-ready reagents for HTS and other cell-based profiling and structure-activity studies. In this report, the authors compare division-arrested and dividing cells in 2 assay types that are dependent on movement of proteins within or through cell membranes: a receptor tyrosine kinase assay involving A431 cells responsive to epidermal growth factor, and a secretion reporter assay, which measures secretion of a reporter gene, secreted alkaline phosphatase. In both assays, dividing and division-arrested cells yielded similar basal and maximal signals at a given cell density. Similar IC50s were obtained for reference inhibitors in each assay, type in both dividing and division-arrested cells. In addition, for the secretion reporter assay, when comparing IC50s obtained from 44 compounds randomly chosen from a primary screening hit list, the rank order of potency obtained from dividing cells and division-arrested cells was essentially identical. Furthermore, the results show that, under certain assay conditions, data generated using division-arrested cells are less variable than those generated using dividing cells. In summary, the results suggest that, in many cases, division-arrested cells can substitute for dividing cells and offer certain advantages for cell-based assays.  相似文献   

18.
This article discusses the development of homogeneous, miniaturized assays for the identification of novel kinase inhibitors from very large compound collections. In particular, the suitability of time-resolved fluorescence resonance energy transfer (TR-RET) based on phospho-specific antibodies, an antibody-independent fluorescence polarization (FP) approach using metal-coated beads (IMAP technology), and the determination of adenosine triphosphate consumption through chemiluminescence is evaluated. These readouts are compared with regard to assay sensitivity, compound interference, reagent consumption, and performance in a 1536-well format, and practical considerations for their application in primary screening or in the identification of kinase substrates are discussed. All of the tested technologies were found to be suitable for miniaturized high-throughput screening (HTS) in principle, but each of them has distinct limitations and advantages. Therefore, the target-specific selection of the most appropriate readout technology is recommended to ensure maximal relevance of HTS campaigns.  相似文献   

19.
A M Steff  M Fortin  C Arguin  P Hugo 《Cytometry》2001,45(4):237-243
BACKGROUND: Reliable assessment of cell death is now pivotal to many research programs aiming at generating new anti-tumor compounds or at screening cDNA libraries. Such approaches need to rely on reproducible, easy-to-handle, and rapid microplate-based cytotoxicity assays that are amenable to high-throughput screening (HTS) technologies. We describe a method for the direct measurement of cell death, based on the detection of a decrease in fluorescence observed following death induction in cells expressing enhanced green fluorescent protein (EGFP). METHODS: Cell death was induced by a variety of apoptotic stimuli in various EGFP-expressing mammalian cell lines, including those routinely used in anti-cancer drug screening. Decrease in fluorescence was assessed either by flow cytometry (and compared with other apoptotic markers) or by a fluorescence microplate reader. RESULTS: Cells expressing EGFP exhibited a decrease in fluorescence when treated by various agents, such as chemotherapeutic drugs, UV irradiation, or caspase-independent cell death inducers. Kinetics and sensitivity of this EGFP-based assay were comparable to those of traditional apoptosis markers such as annexin-V binding, propidium iodide incorporation, or reactive oxygen species production. We also show that the decrease in EGFP fluorescence is directly quantifiable in a fluorescence-based microplate assay. Furthermore, analysis of EGFP protein content in cells undergoing cell death demonstrates that the decrease in fluorescence does not arise from degradation of the protein. CONCLUSIONS: This novel GFP-based microplate assay combines sensitivity and rapidity, is easily amenable to HTS setups, making it an assay of choice for cytotoxicity evaluation.  相似文献   

20.
The measurement of intracellular calcium response transients in living mammalian cells is a popular functional assay for identification of agonists and antagonists to receptors or channels of pharmacological interest. In recent years, advances in fluorescence-based detection techniques and automation technologies have facilitated the adaptation of this assay to 384-well microplate format high-throughput screening (HTS) assays. However, the cost and time required performing the intracellular calcium HTS assays in the 384-well format can be prohibitive for HTS campaigns of greater than 1 x 10(6) wells. For these reasons, it is attractive to miniaturize intracellular calcium functional assays to the 1536-well microplate format, where assay volumes and plate throughput can be decreased by several fold. The focus of the research described in this article is the miniaturization of an intracellular calcium assay to 1536-well plate format. This was accomplished by modifying the hardware and software of a fluorometric imaging plate reader (FLIPR) to enable transfer of nanoliters of test compound directly to a 1536-well assay plate, and measure the resulting calcium response from all 1536 wells simultaneously. An intracellular calcium functional assay against the rat muscarinic acetylcholine receptor subtype 1 (rmAchR1) G-protein coupled receptor (GPCR) was miniaturized and executed on this modified instrument. In experiments measuring the activity of known muscarinic receptor agonists and antagonists, the miniaturized FLIPR assay gave EC(50) and IC(50) values and rank order potency comparable to the 384-well format assays. Calculated Z' factors for the miniaturized agonist and antagonist assays were, respectively, 0.56 +/- 0.21 and 0.53 +/- 0.22, which were slightly higher (Z'(agonist) = 0.55 +/- 0.33) and lower (Z'(antagonist) = 0.70 +/- 0.18) than the corresponding values in the 384-well assays. A mock agonist HTS campaign against the muscarinic receptor in miniaturized format was able to identify all wells spiked with the rmAchR1 agonist carbachol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号