首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Objectives were to evaluate progesterone concentrations after cows had initiated estrous cycles following calving and induction of estrous cycles in postpartum anovular high-producing Holstein dairy cows treated with controlled internal drug releasing (CIDR). In experiment 1 (EXP1), 62 cows that had initiated estrous cycles received a new CIDR (NCIDR) containing 1.38 g of progesterone or a 7-d used autoclaved CIDR (UCIDR) 48h after luteolysis for 7 d. Ovaries were examined by ultrasonography, and plasma analyzed for concentrations of progesterone. In experiment 2 (EXP2), 515 cows diagnosed as anestrus were randomly assigned to untreated control, NCIDR or UCIDR for 6d. Plasma was analyzed for concentration of progesterone 12 d after CIDR removal to determine ovulation. In EXP1, milk yield and body condition did not influence progesterone concentrations. Concentration of progesterone tended to increase faster (P=0.10) in cows receiving UCIDR than NCIDR, but both treatments reached a plateau at 90min. Cows receiving the NCIDR had greater (P=0.04) concentrations of progesterone during the 7-d treatment, but they were mostly subluteal (<1.0 ng/mL) after d 2. After removal, concentrations of progesterone were greater for NCIDR than UCIDR for the first 45 min, and were similar thereafter. Multiparous cows had lesser (P=0.004) concentrations than primiparous cows throughout the study. The pattern of ovarian follicular development was not affected by treatment. In EXP2, induction of onset of estrous cycles increased (P<0.01) with progesterone treatments, but was similar between NCIDR and UCIDR. Proportion of cows experiencing shorter than typical length estrous cycles after first AI tended to be greater (P=0.09) for control cows than those receiving the CIDR, and for cows remaining anestrous than those in which onset of estrous cycles was induced. Pregnancy per AI and pregnancy loss were similar among treatments. Cows that resumed estrous cyclicity prior to first AI had greater (P=0.01) pregnancy per AI. Treatment of high-producing Holstein cows that had previously initiated onset of estrous cycles with CIDR resulted in subluteal concentrations of progesterone, but in anestrous high-producing cows increased induction of estrous cycles with no effect on fertility at first insemination.  相似文献   

2.
This experiment was conducted to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) after treatment with controlled internal drug release (CIDR)-based protocols to synchronize estrus. Cows assigned to the Show-Me-Synch (n=167) protocol received a CIDR from d 0 to 14, and prostaglandin F(2α) (PGF(2α)) on d 30. Cows assigned to 7-d CO-Synch+CIDR (n=177) received a CIDR and gonadotropin releasing hormone (GnRH) on d 23. On d 30, CIDRs were removed and PGF(2α) was administered. Blood sampling occurred on d -10 and 0 of treatment to determine estrous cyclicity status (progesterone ≥0.5 ng/mL estrous cycling). Treatments were balanced on age, DPP and BCS. Estrous detection was performed using HeatWatch from PGF(2α) to FTAI. Artificial insemination was performed at predetermined fixed times (72 h, Show-Me-Synch; 66h, 7-d CO-Synch+CIDR) and all cows were administered GnRH at FTAI. This experiment was conducted over a two year period; no differences were found between years so the data were pooled for further analysis. Pregnancy rate resulting from FTAI did not differ (P>0.10) between technicians or AI sires. Pregnancy rate resulting from FTAI was similar between treatments (P=0.20); however, cows that exhibited estrus prior to FTAI had a higher pregnancy rate (P<0.01) than for those that did not. Pregnancy rate at the end of the breeding period was similar between treatments (P=0.28). In summary, FTAI pregnancy rates were similar among postpartum beef cows following treatment with either a short- or long-term CIDR-based estrous synchronization protocol.  相似文献   

3.
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group.  相似文献   

4.
The aim of this study was to evaluate the effect of presynchronization with or without the detection of estrus on first service pregnancy per artificial insemination (P/AI) and on Ovsynch outcome in lactating dairy cows. A total of 511 cows were divided randomly but unevenly into 3 treatment groups at 44 to 50 days in milk (DIM). Ovsynch was started at the same time (69 to 75 DIM) in all three groups. Cows in the Ovsynch group (CON, N = 126) received no presynchronization before Ovsynch, and all cows were bred by timed AI (TAI). Cows in the presynchronization with estrus detection (PED) and the presynchronization with only TAI (PTAI) groups received two doses of prostaglandin F (PGF) 14 days apart, starting at 44 to 50 DIM. Ovsynch was initiated 11 days after the second PGF treatment. Cows in the PED group (N = 267) received AI if estrus was detected after either PGF injection. Cows that were not determined to be in estrus after PGF injection received Ovsynch and TAI. Cows in the PTAI group (N = 118) were not inseminated to estrus, with all cows receiving TAI after Ovsynch. The ovulatory response to the first GnRH injection administered as part of Ovsynch differed (P = 0.002) among treatment groups (83.1% in PTAI, 72.6% in PED, and 62.7% in CON). However, the ovulatory response to the second injection of GnRH during Ovsynch did not differ among treatment groups. Of the 267 PED cows, a total of 132 (49.4%) exhibited estrus and were inseminated. The P/AI at the 31-day pregnancy diagnosis was similar between the cows in the PED group with AI after estrus detection (37.9%; 50/132) and those bred with TAI (34.1%; 46/135). The P/AI in the CON group (46.8%; 59/126) was greater (P < 0.05) than that in the PED group (36.0%; 96/267). In addition, the P/AI in the CON group was greater (P = 0.04) than that in the PED cows receiving TAI (34.1%; 46/135) but less than that in the PED cows bred to estrus (37.9%; 50/132) (P = 0.16). At the 31-day pregnancy diagnosis, the cows in the PTAI group had greater P/AI (55.9%; 66/118) than both those in the PED group (P < 0.01; either estrus or TAI) and those in the CON group (P = 0.08). Thus, presynchronization with PGF (PTAI) increased the ovulatory response to Ovsynch and improved P/AI in dairy cows. Interestingly, the breeding of cows to estrus during presynchronization reduced fertility to the TAI and overall fertility, including cows bred to estrus and TAI. These results indicate that maximal fertility is obtained when all cows receive TAI after the presynchronization protocol.  相似文献   

5.
Estrous response and pregnancy rates are decreased for cows given Syncro-Mate-B (SMB) during metestrus (Day 1 to 5 of an estrous cycle). Data indicate these decreases are due, in part, to retention of a functional corpus luteum (CL). Our objective was to determine whether PGF2alpha administered in conjunction with SMB would improve estrous response and pregnancy rates in metestrous cows with no detrimental effects to cows in other stages of the estrous cycle. Three hundred seventy-three suckled beef cows were observed for estrus for 21 d before SMB administration to determine stage of an estrous cycle. Blood samples were collected 14 and 7 d before treatment and at SMB administration. Serum was assayed for concentration of progesterone to verify stage of estrous cycle or noncyclicity. All cows received the standard SMB regime and were allotted by age and stage of cycle to one of two groups. Cows denoted SMB + L received 25 mg of PGF2alpha 8 d after implantation, whereas cows denoted SMB served as controls. On Day 10, SMB implants were removed and females were observed for subsequent estrus. At this time, calves were removed from their dams for 48 h. Artificial insemination was performed 12 hr after observation of a standing estrus. Timed insemination was performed at 48 hr after implant removal for cows not inseminated at 24 or 36 hr after implant removal. Interval to synchronized estrus (within 5 d of implant removal) was lengthened for metestrous cows compared to cows in other stages of the cycle irrespective of treatment (P < 0.001). Cows receiving PGF2alpha had a greater pregnancy rate at 5 d compared to controls (P = .0672). Interval to estrus, estrous response, and pregnancy rate to A1 at d 28 or end of breeding season were not affected by administration of PGF2alpha in conjunction with SMB when compared to the standard SMB protocol.  相似文献   

6.
Multiparous Holstein cows (n=717) from two dairy farms were blocked at calving by parity and previous lactation milk yield and, within each block, randomly assigned to one of two treatments: a diet containing no yeast culture (Control; n=359) or 30 g/d of a culture of Saccharomyces cerevisiae (YC; n=358) from 20 to 140 d postpartum. Only cows calving during months of heat stress, May-August were enrolled. Lameness score (1-5 scale) was evaluated at study enrollment and again at 100 d postpartum. The body condition score (BCS, 1-5 scale) was evaluated at calving, 28, 58 and 140 d postpartum. Cows received two injections of PGF(2alpha) at 37 and 51 d postpartum, and those observed in estrus were inseminated. Cows not in estrus were enrolled in a timed AI protocol at 65 d postpartum and inseminated at 75 d postpartum. Ovaries were examined by ultrasonography at 37 and 51 d postpartum to determine whether estrous cycling had been initiated by the presence of a corpus lutem (CL) in at least one of the two examinations. Pregnancy was diagnosed at 31, 38 and 66 d after the first AI and at 38 and 66 d after the second and third AI. Diet did not affect time of onset of estrous cycles postpartum, and 8.2% of the cows were anovular. Detection of estrus in the 7d after the second injection of PGF(2alpha) was similar for control and YC. For control and YC, conception rates 38 d after AI at first (30.8% and 31.4%), second (39.3% and 35.1%) and third (25.8% and 30.6%) inseminations, and pregnancy losses did not differ, which resulted in similar median days to pregnancy and proportion of pregnant cows at 140 d postpartum. Yeast culture did not affect incidence of lameness, but tended to reduce lameness score. Lame cows and anovular cows had lesser conception rates at first AI, and extended interval from calving to conception. A THI of 71 was identified as the critical point in which fertility was reduced in lactating dairy cows, although the sensitivity and specificity were minimal. Cows exposed to a THI>71 on the day of first AI had a 33% reduction in the rate of pregnancy resulting in extended interval to pregnancy. Feeding a yeast culture of S. cerevisiae had minor effects on lameness score, but no impact on reproduction of multiparous cows under heat stress.  相似文献   

7.
The objective of this study was to determine the efficacy of PGF2 alpha treatment on pregnancy and calving rates in autumn-calving suckler beef cows synchronized with progesterone and eCG. The population studied consisted of 124 Charolais and 130 Limousin cows in 13 and 12 beef herds, respectively. In each herd, pairs of cows were formed according to parity, body condition score and calving difficulty. Group 1 received a progesterone releasing intravaginal device (PRID) for 12 d with a capsule containing 10 mg estradiol benzoate at implant insertion and 500 IU eCG at PRID removal (Day 0). Group 2 received the same treatment plus 25 mg i.m. dinoprost at Day -2. Each cow was artificially inseminated 56 h after PRID removal (Day 3). Plasma progesterone concentrations were measured to determine cyclicity prior to treatment in samples take on Days -22 and -12, to confirm the occurrence of ovulation (Day 13) and to determine the early pregnancy rate (Day 26). Serum pregnancy-specific protein B (PSPB) concentrations were determined to assess pregnancy rate at Day 39. The effects of variation factors on pregnancy and calving rates after treatment were studied using logistic mixed models and a Cox model, respectively. There were no significant differences between groups or breeds for the rate of cyclicity before treatment nor for ovulation rate (means, 74.1 and 95.7%, respectively). Cyclicity was, however, influenced by individual factors such as body condition score (OR = 3.36, P = 0.001), parity (OR = 5.4, P = 0.001) and herd factors such as stocking rate (OR = 5.62, P = 0.001). The use of a prostaglandin injection increased pregnancy rate at Day 26 (71.7 vs 56.7%, P = 0.01) and at 39 d (67.7 vs 54.3%, P = 0.02) and the calving rate at induced estrus (64.5 vs 48.5%, P = 0.01). We observed 9 twin calvings (5.6%) which occurred in cyclic cows only before treatment. Cows in Group 2 had a 1.5 greater chance of calving before 300 d following the first AI than cows in Group 1 (P = 0.03). In conclusion, the addition of PGF2 alpha injection, 48 h before PRID removal, increased reproductive efficiency in autumn-calving Charolais and Limousin suckler beef cows compared to a classical estrus synchronization treatment using a PRID + eCG.  相似文献   

8.
The present study examined the effect of presence of clinical or subclinical endometritis at the initiation of Presynch-Ovsynch estrous synchronization program on the first service pregnancy rate in dairy cows. Lactating Holstein cows (N=275) were given a thorough reproductive examination at 32-38 days in milk, 3 days prior to the scheduled start of Presynch-Ovsynch program. Based on the reproductive exam findings the cows were diagnosed and classified into three groups as clinical endometritis, subclinical endometritis and normal. All cows received two set-up injections of 25mg PGF(2alpha) (Lutalyse((R)), Pfizer Animal Health, New York, NY, USA) i.m., 14 days apart starting at 35-42 days in milk (DIM). All cows received 75microg of GnRH (Cystorelin, Merial, Iselin, NJ, USA) i.m. 14 days after the second pre-synchronization injection of PGF(2alpha), followed by a third injection of 25mg PGF(2alpha) i.m. 7 days later. Cows received a second injection of 75microg of GnRH i.m. 54h after the third PGF(2alpha), and received timed artificial insemination at the time of the second GnRH injection or 24h later. Multivariate logistic regression was used to analyze the odds of pregnancy at the first service. Variables included in the model were endometritis status (clinical endometritis, subclinical endometritis and normal), farm (two), presence of corpus luteum (CL, yes or no), timing of second GnRH in relation to AI (0 or 24h), sire fertility (bulls with greater compared with lesser estimated relative conception rates), parity (primiparous and multiparous) and their interactions. Of all variable included in the model, cows with corpus letuem (OR=1.83 versus OR=1.00; P=0.05) 3 days prior to the scheduled start of Presynch-Ovsynch program and primiparous cows (OR=1.00 versus OR=0.55; P=0.04) had increased odds of becoming pregnant at the first service. No differences were found in the odds of first service pregnancy among clinical, subclinical endometritis and normal cows (P>0.1). In summary, presence of clinical or subclinical endometritis at the initiation of Presynch-Ovsynch estrous synchronization program does not harm the first service pregnancy rate in dairy cows.  相似文献   

9.
Recently a protocol was developed that precisely synchronizes the time of ovulation in lactating dairy cows (Ovsynch; GnRH-7d-PGF2 alpha-2d-GnRH). We evaluated whether initiation of Ovsynch on different days of the estrous cycle altered the effectiveness of this protocol. The percentage of cows (n = 156) ovulating to the first GnRH was 64% and varied (P < 0.01) by stage of estrous cycle. Treatment with PGF2 alpha was effective, with 93% of cows having low progesterone at second GnRH. The overall percentage of cows that ovulated after second GnRH (synchronization rate) was 87% and varied by response to first GnRH (92% if ovulation to first GnRH vs 79% if no ovulation; P < 0.05). There were 6% of cows that ovulated before the second injection of GnRH and 7% with no detectable ovulation by 48 h after second GnRH. Maximal diameter of the ovulatory follicle varied by stage of estrous cycle, with cows in which Ovsynch was initiated at midcycle having the smallest follicles. In addition, milk production and serum progesterone concentration on the day of PGF2 alpha affected (P < 0.05) size of the ovulatory follicle. Using these results we analyzed pregnancy rate at Days 28 and 98 after AI for cows (n = 404) in which Ovsynch was initiated on known days of the estrous cycle. Pregnancy rate was lower for cows expected to ovulate larger follicles than those expected to ovulate smaller follicles (P < 0.05; 32 vs 42%). Thus, although overall synchronization rate with Ovsynch was above 85%, there were clear differences in response according to day of protocol initiation. Cows in which Ovsynch was initiated near midcycle had smaller ovulatory follicles and greater pregnancy rates.  相似文献   

10.
Xu ZZ  Burton LJ 《Theriogenology》1998,50(6):905-915
In a previous study we showed that estrus synchronization with 2 treatments of PGF2 alpha 13 d apart reduced conception rate at the synchronized estrus and that this reduction occurred mainly in cows in the early luteal phase at the second PGF2 alpha treatment. The objective of the present study was to determine the efficacy of a synchronization regimen in which PGF2 alpha was administered during the mid- to late-luteal phase to cows that had previously been synchronized with progesterone. Spring-calving cows from 6 dairy herds were used in this study. On Day -32 (Day 1 = the start of the breeding season), cows that had calved 2 or more weeks ago were randomly assigned to a synchronization (S, n = 732) or control (C, n = 731) group. Cows in Group S were treated with an intravaginal progesterone device (CIDR) for 12 d from Day -32 to Day -20, while those in Group C were left untreated. Similar percentages of cows in Group S (80.6%) and C (82.9%) had cycled by Day -7. The CIDR treatment synchronized the onset of estrus, resulting in 92.9% of cows in estrus being detected within 7 d after CIDR removal. Cows in Group S that had cycled by Day -7 were treated with PGF2 alpha (25 mg, i.m., Lutalyse) on Day -2. Cows in both groups that were anestrous on Day -7 were treated with a combination of progesterone and estradiol benzoate (EB) to induce estrus and ovulation (CIDR and a 10 mg EB capsule on Day -7, CIDR removal on Day -2, and injection of 1 mg EB 48 h after CIDR removal). The PGF2 alpha treatment synchronized the onset of estrus in 87.5% of the cows. Group S and C cows had similar conception rates to first (61.0 vs 58.3%) and second (58.4 vs 60.9%) AI; similar pregnancy rates over the AI period (82.8 vs 79.2%) and over the whole breeding season (91.9 vs 90.6%); and required a similar number of services per pregnancy to AI (1.7 vs 1.8). The interval from the start of the breeding season to conception for cows conceiving to AI or to combined AI and natural mating was shorter (P < 0.001) by 5.7 and 6.2 d, respectively, for the Group S cows. It is concluded that the treatment regimen tested in the present study achieved satisfactory estrus synchronization, had no detrimental effect on fertility at the synchronized estrus, and shortened the interval from start of the breeding season to conception.  相似文献   

11.
The objective of this study was to evaluate the reproductive performance of lactating cows in seasonal dairy herds after estrus synchronization with PGF2alpha (PG) with or without supplementation with progesterone (P4). In Trial 1, synchronized cows (S1; n = 521) were compared with untreated control cows (C; n = 518) in 5 herds. Estrus of cows in the S1 group was synchronized with 2 treatments of PG (Lutalyse) 13 d apart. The breeding season started 2 d after the second PG. Cows were first bred by AI for 7 wk and then herd sires were used. Compared with C cows, estrus synchronization in the treated cows reduced the conception rate to first AI (61.1 vs 70.5%; P < 0.01) and the intervals from start of the breeding season to conception for cows conceiving to AI (11.0 vs 14.6 d; P < 0.05) or to both AI and natural mating (16.5 vs 18.4 d; P < 0.05). There was no effect on conception rate to second AI (68.8%), on pregnancy rate by Day 24 (72.3%) or Day 49 (86.3%) of the breeding season, or on the percentage of cows not pregnant at end of the breeding season (5.0%). In Trial 2, effects of P4 supplementation before the second PG on reproductive performance were evaluated in 4 herds. Estrus of each cyclic cow was synchronized with PG as in Trial 1. Half of the cows in each herd were treated with an intravaginal P4 device (CIDR) for 5 d before the second PG (S2+P4, n = 608), whereas the remaining half received no CIDR treatment (S2, n = 593). Compared with S2 cows, P4 treatment increased the estrous response rate to the second PG (89.6 vs 82.9%; P < 0.01), the conception rate to first AI (65.1 vs 59.7%; P = 0.07), the pregnancy rate by Day 6 of the breeding season (59.3 vs 49.0%; P < 0.001), and reduced the intervals from start of the breeding season to conception for cows conceiving to AI (8.6 vs 10.4 d; P < 0.10) or to both AI and natural mating (12.7 vs 16.4 d; P < 0.01). Treatment with a used CIDR from Days 16 to 21 after start of breeding to re-synchronize returns to service had no effect on conception rate to first or second AI but may decrease the conception rate to second AI in cows previously treated with CIDR. In conclusion, estrus synchronization with the double PG system can reduce fertility, while P4 supplementation for 5 d before the second PG can improve estrous response and overall reproductive performance. Stage of the estrous cycle at the time of the second PG can affect fertility following synchronization.  相似文献   

12.
Anestrus is common during the postpartum period in high-producing dairy cows. In a previous investigation, we were able to diagnose persistent follicles of 8 to 12 mm in anestrous cows. This report describes 2 consecutive studies. The objectives of the first were to 1) assess the association of persistent follicles with anestrus; and 2) evaluate 2 therapeutic treatments. In the second study, we compared the effectiveness of the best treatment established in Study 1 with the Ovsynch protocol. For Study 1, anestrous cows were considered to have a persistent follicle if it was possible to observe a single follicular structure > 8 mm in the absence of a corpus luteum or a cyst in 2 ultrasonographic examinations performed at an interval of 7 d. At diagnosis (Day 0), cows were assigned to 1 of 3 treatment groups. Cows in Group GnRH/PGF (n=17) were treated with 100 microg GnRH i.m., and 25 mg PGF2alpha i.m. on Day 14. Cows in Group PRID (n=18) were fitted with a progesterone releasing intravaginal device (PRID, containing 1.55 g of progesterone) for 9 d and were given 100 microg GnRH i.m. at the time of PRID insertion, and 25 mg PGF2alpha i.m. on Day 7. Cows in Group Control (n=18) received no treatment. The animals were inseminated at observed estrus and were monitored weekly by ultrasonography until AI or 5 weeks from diagnosis. Blood samples were also collected on a weekly basis for progesterone determination. The mean size of persistent follicles on Day 0 was 9.4 +/- 0.04 mm. Progesterone levels were < 0.2 ng/mL during the first 35 d in 16 of 18 Control cows. Cows in the PRID group showed a lower persistent follicle rate (16.7% < 70.6% < 88.9%; P < 0.0001; PRID vs GnRH/PGF vs Control, respectively); a higher estrus detection rate (83.3% > 29.4% > 11.1%; P < 0.0001) and a higher pregnancy rate (27.8% > 5.9% > 0%; P = 0.02). For the second study, 145 cows with persistent follicles were randomly assigned to 1 of 2 treatment groups: cows in Group Ovsynch (n=73) were treated with 100 microg GnRH i.m. on Day 0, 25 mg PGF2alpha i.m. on Day 7, and 100 microm GnRH i.m. 32 h later. Cows in this group were inseminated 16 to 20 h after the second GnRH dose (Ovsynch protocol). Cows in Group PRID (n=72) were treated as those in the PRID group of Study 1, and were inseminated 56 h after PRID removal. Cows in the PRID group showed a higher ovulation rate (84.8% > 8.2%: P < 0.0001); a higher pregnancy rate (34.2% > 4.1%; P < 0.0001) and lower follicular persistence rate (22.2% < 63%; P < 0.0001) than those in Ovsynch. Our results indicate that persistent follicles affect cyclic ovarian function in lactating dairy cows. Cows with persistent follicles can be successfully synchronized and time inseminated using progesterone, GnRH and PGF2alpha but show a limited response to treatment with GnRH plus PGF2alpha.  相似文献   

13.
The objective was to compare the timed AI pregnancy rate of Angus-cross beef cows synchronized with a 5-d CO-Synch + CIDR (a progesterone-releasing intravaginal insert) protocol and given two doses of PGF (PGF), with the first dose in conjunction with CIDR withdrawal on Day 5, and the second dose given either early or late relative to the first dose. All cows (N = 1782) at 16 locations received 100 μg of GnRH + CIDR on Day 0. Cows received 25 mg of PGF concurrent with removal of the CIDR on Day 5, and were randomly allocated within locations to receive a second PGF either early (N = 881; from 0.5 to 3.9 h) or late (N = 901; from 4.5 to 8.15 h) relative to the first PGF treatment. On Day 8 (72 h after CIDR removal), all cows were inseminated and concurrently given 100 μg of GnRH. Cows were fitted with a pressure-sensitive mount detection device (Kamar) at CIDR removal. Cows were observed twice daily through Day 7 and at the time of AI on Day 8 for estrus and Kamar status (estrus - red, partial and lost Kamar versus no estrus - white Kamar) was recorded. Accounting for location, season, AI sire, cow observed in estrus or not at or before timed AI, and treatment by cows observed in estrus interaction, timed AI pregnancy rates were greater for the late (6.45 ± 0.03 h) than the early (2.25 ± 0.05 h) interval, 57.2 vs. 52.7%, respectively (P < 0.05). In conclusion, cows that received the second PGF late after the first PGF on the day of CIDR removal in a 5 d CO-Synch + CIDR synchronization protocol had significantly higher timed AI pregnancy rates than those receiving the second PGF early after the first PGF.  相似文献   

14.
Lactating Holstein cows (n=288) were grouped as pairs at parturition and randomly assigned to two treatments (control, C vs intervenient treatment, T). The reproductive management of the Group C cows (n=130) consisted of the intramuscular administration of 500 microg PGF2alpha analogue (PG) on Days 28 and 63 postpartum and breeding on the basis of estrus signs with the a.m.-p.m. rule after Day 63. Cows that were not bred by 77 d postpartum received another injection of PG and were bred at estrus or 84 h after PG treatment. Pregnancy diagnoses were perfomed by palpation of the uterus per rectum 42 to 48 d after AI. Cows in the T group (n=139) received intramuscular injections of 100 microg GnRH 14 d and PG 28 d after calving. On Day 56 postpartum, cows were given a second dose of GnRH followed by PG on Day 63 postpartum and a third GnRH injection 48 h after PG (OvSynch). Cows were inseminated at a fixed time (22+/-1 h) after GnRH. Five days after the fixed-time insemination cows were given 1500 IU hCG i.m.. Group C and T cows that returned to service or were diagnosed as non-pregnant continued to receive PG at intervals of 14 d with breeding at estrus or 84 h after the second PGF2alpha dose. A sustained increase in milk progesterone concentration was observed in 59.0% of T cows after GnRH administration on Day 14. A similar rise in milk progesterone concentrations was observed in 53.8% of C cows. The PG on Day 28 induced luteolysis more in Group T cows (53.2%) than in Group C cows (36.9%). The PG on Day 63 reduced milk progesterone concentrations to basal levels in 50.7% of T and 49.2% of Group C animals. The first service pregnancy rates (T, 40.3% vs C, 36.2%) and the overall pregnancy rates (all services, T, 83.5% vs C, 86.9%) were not different between the two groups. The two treatments did not differ in the interval from first service to pregnancy, calving to pregnancy or in calving interval, number of services per pregnancy or culling rates.  相似文献   

15.
Pregnancy rates were compared in lactating dairy cows (n = 1083) assigned to protocols for resynchronization of ovulation based on stages of the estrous cycle, or presence of ovarian cysts or anestrus. Cows were detected not pregnant by ultrasonography 30 d after a previous AI (study day 0) and classified as diestrus, metestrus, proestrus, with ovarian cysts or anestrus. Cows in diestrus (January-May) were assigned to either Ovsynch (GnRH day 0, PGF2alpha day 7, GnRH day 9, and timed-AI [TAI] 16 h later; n = 96), or Quicksynch (PGF2alpha day 0, estradiol cypionate [ECP] day 1, AI at detected estrus [AIDE] on day 2, or TAI on day 3; n = 96). Cows in diestrus (June-December) were assigned to either Ovsynch (n = 156) or Modified Quicksynch (PGF2alpha day 0, ECP day 1, AIDE days 2 and 3, and to Ovsynch on day 4 if not detected in estrus; n = 142). Cows in metestrus were assigned either to Ovsynch (n = 68), Heatsynch (GnRH day 0, PGF2alpha day 7, ECP day 8, AIDE day 9, or TAI day 10; n = 62), or GnRH + Ovsynch (GnRH on day 0, followed by Ovsynch on day 8; n = 64). Cows in proestrus, with ovarian cysts, or anestrus were assigned to either Ovsynch (proestrus n = 89, ovarian cysts n = 97, anestrus n = 8) or GnRH + Ovsynch (proestrus n = 87, ovarian cysts n = 109, anestrus n = 9). Pregnancy rate was evaluated 30, 55 and 90 d after resynchronized AI. For cows in diestrus (January-May), pregnancy rates were higher for Ovsynch (35.9, 29.2 and 26.0%) than for Quicksynch (21.7, 16.7 and 15.6%). For cows in diestrus (June-December), pregnancy rates were similar for Ovsynch (34.4, 24.0 and 23.6%) and Modified Quicksynch (27.1, 26.2 and 21.6%). For cows in metestrus, pregnancy rates were higher for GnRH + Ovsynch (33.3, 24.5 and 20.3%) than for Heatsynch (20.3, 12.9 and 9.8%). For cows with ovarian cysts, pregnancy rates were higher for GnRH + Ovsynch (30.3, 26.6 and 22.9%) than for Ovsynch (20.2, 18.5 and 14.7%). Assignment to resynchronization protocols based on the stages of the estrous cycle, or presence of ovarian cysts improved pregnancy rates.  相似文献   

16.
The objective was to compare pregnancy rates and pregnancy losses in lactating dairy cows that were diagnosed not pregnant and re-inseminated following either the Ovsynch or Heatsynch protocols. Also evaluated were the effects of stages of the estrous cycle, ovarian cysts and anestrus on pregnancy rates for both treatments. Non-pregnant cows (n = 332) as determined by ultrasonography on day 27 post-AI (study day 0) were divided into two groups. Cows in the Ovsynch group (n = 166) received GnRH on day 0, PGF2alpha on day 7, GnRH on day 9, and timed AI (TAI) 16 h later (day 10). Cows in the Heatsynch group (n = 166) received GnRH on day 0, PGF2alpha on day 7, estradiol cypionate (ECP) on day 8, and TAI 48 h later (day 10). Cows detected in estrus on days 8 and 9 were inseminated and included in the study. On day 0, cows were classified according to different stages of the estrous cycle, or presence of ovarian cysts or anestrus. Pregnancy rates were evaluated 27, 45 and 90 days after resynchronized AI. Overall, there was no difference in pregnancy rates on days 27, 45 and 90 between cows in the Ovsynch (25.2, 17.5, and 13.9%) and Heatsynch (25.8, 19.9, and 16.1%) groups. There was no difference in pregnancy losses from days 27 to 45 and days 45 to 90 for cows in the Ovsynch (25.0 and 17.9%) and Heatsynch (14.7 and 10.3%) groups. However, pregnancy rates were increased when cows in metestrus were subjected to the Heatsynch protocol and cows with ovarian cysts were subjected to the Ovsynch protocol.  相似文献   

17.
Ninety two Friesian cows were used to determine physical properties of cervical mucus collected during normal estrus and estrus induced. Estrus was induced using either progesterone (P4) releasing intravaginal devices (PRID) and/or prostaglandin F2alpha (PGF2alpha). The animals were assigned to 4 groups (no treatment, a PRID for 12 days plus an injection of 1000 IU PMSG at the removal of the PRID, a double injection of 3 mL PGF2alpha 11 days apart, and a PRID for 7 days plus an injection of PGF2alpha 24 h before the removal of PRID). A number of cows with normal estrus exhibited three consecutive estrus cycles after calving. Cows that had not shown estrus for three months after calving had their reproductive system palpated twice at 10-day intervals, to determine their ovarian activity. Then PRID and/or PGF2alpha was administered to cows that were found to have a palpable corpus luteum in one of two palpations (cycling cows). The cows of the three induced estrous groups were artificially inseminated (AI) twice, while those with normal estrus received only a single AI. Cervical mucus samples were collected from all cows 5 to 30 min before the first AI. Additionally, samples of cervical mucus were collected from 20 cows at their first estrus after the induced estrus. The results are summarized as follows: 1) The physical properties of cervical mucus were similar in the first three normal consecutive estrus cycles after calving. 2) The physical properties of cervical mucus in normal estrus after calving were similar to those in the first estrus after an induced estrus. 3) The pH values for normal estrus were similar to those for induced estrus. 4) Viscosity of cervical mucus in the normal estrous group was significantly lower than that in the induced estrus. Furthermore, significant differences were noticed among the three induced estrous groups. 5) Spinnbarkeit, crystallization and receptivity of cervical mucus (penetration test) were significantly higher in the normal estrous group than in the induced estrous groups, while no difference was detected among induced estrus groups. 6) Pregnancy rates in the normal estrus group were the same as in the induced estrus groups. 7) The percentages of cows in the induced estrous groups that produced cervical mucus with similar viscosity, spinnbarkeit and receptivity (penetration test) characteristics as the normal estrus group, was very low.  相似文献   

18.
This study evaluated a novel presynchronization method, using Ovsynch prior to the Ovsynch-timed AI protocol (Double-Ovsynch) compared to Presynch-Ovsynch. Lactating Holstein (n=337) cows, were assigned to two treatment groups: (1) Presynch (n=180), two injections of PGF 14 d apart, followed by the Ovsynch-timed AI protocol 12 d later; (2) Double-Ovsynch (n=157), received GnRH, PGF 7 d later, and GnRH 3 d later, followed by the Ovsynch-timed AI protocol 7 d later. All cows received the same Ovsynch-timed AI protocol: GnRH (G1) at 68+/-3 DIM (mean+/-SEM), PGF 7 d later, GnRH (G2) 56h after PGF, and AI 16 to 20h later. Pregnancy was diagnosed 39-45 d after timed AI. Double-Ovsynch increased the pregnancies per AI (P/AI) compared to Presynch-Ovsynch (49.7% vs 41.7%, P=0.03). Surprisingly, Double-Ovsynch increased P/AI only in primiparous (65.2% vs 45.2%; P=0.02) and not multiparous (37.5% vs 39.3%) cows. In a subset of 87 cows, ovarian ultrasonography and progesterone (P4) measurements were performed at G1 and 7 d later. Double-Ovsynch decreased the percentage of cows with low P4 (<1ng/mL) at G1 (9.4% vs 33.3%) and increased the percentage of cows with high P4 (> or =3ng/mL) at PGF (78.1% vs 52.3%). Thus, presynchronization of cows with Double-Ovsynch increased fertility in primiparous cows compared to a standard Presynch protocol, perhaps due to induction of ovulation in non-cycling cows and improved synchronization of cycling cows. Future studies are needed, with a larger number of cows, to further test the hypothesis of higher fertility with Double-Ovsynch, and to elucidate the physiological mechanisms that underlie apparent changes in fertility with this protocol.  相似文献   

19.
The objectives were to evaluate the pattern of re-insemination, pregnancy outcomes to re-insemination in estrus and at fixed time, and economic outcomes of lactating Holstein cows submitted to three resynchronization protocols. Cows were enrolled in the Experiment at 32 ± 3 d after pre-enrollment Artificial Insemination (AI), 7 d before pregnancy diagnosis, and randomly assigned to three resynchronization protocols. All cows diagnosed not pregnant at 39 ± 3 d after pre-enrollment AI were submitted to the Cosynch72 (Day 0 GnRH, Day 7 prostaglandin F, and Day 10 GnRH and fixed time AI). Cows assigned to the control treatment received no further treatment, cows assigned to the GGPG treatment received a GnRH injection on Day −7, and cows assigned to the CIDR treatment received a controlled internal drug release (CIDR) insert containing 1.38 g of progesterone from Days 0-7. Cows observed in estrus were re-inseminated on the same day. Pregnancy was diagnosed at 39 ± 3 and 67 ± 3 d after re-insemination. Costs of the resynchronization protocols were calculated for individual cows enrolled in the study and pregnancies generated were given a value of $275. The GGPG treatment resulted in the slowest (P ≤ 0.06) rate of re-insemination. Overall pregnancy per AI (P/AI) at 39 ± 3 (P = 0.50) and 67 ± 3 (P = 0.49) d after re-insemination were not affected by treatment. Although cost of the control protocol was (P < 0.01) the smallest, return per cow resynchronized was (P < 0.01) greater for GGPG and CIDR protocols. We concluded that presynchronizing the estrous cycle of cows with GnRH or treating cows with a CIDR insert during resynchronization altered the pattern of re-insemination and improved the economic return of resynchronized cows.  相似文献   

20.
Ninety-two Friesian cows were used to determine the chemical properties of cervical mucus during normal estrus and estrus induced by progesterone (P4)-releasing intravaginal devices (PRID) and/or prostaglandin F2alpha. The animals were assigned to 4 groups (no treatment, a PRID for 12 days plus injection of 1000 IU PMSG at the removal of PRID, a double i.m. injection of PGF2alpha 11 days apart, or PRID for 7 days plus an im injection of PGF2alpha 24 h before the removal of PRID). A number of cows with normal estrus exhibited three consecutive estrous cycles after delivery. Cows that had not shown estrus for 3 months after delivery had their ovaries palpated twice at 10-day intervals, to determine their ovarian activity. Then PRID and/or PGF2alpha was administered in cows that had a palpable corpus luteum in one of the two palpations (cyclic cows). A double artificial insemination (AI) was performed to the cows of the three induced-estrus groups, while the cows with normal estrus received only one AI. Cervical mucus samples were collected from all cows 5 to 30 min before the first AI. Additionally, samples of cervical mucus were collected from 20 cows during their first estrus after the induced one. The results are summarized as follows: 1) The biochemical properties of cervical mucus in the first three estrus periods after delivery were similar. 2) These properties were similar both in normal estrus after delivery and in the first estrus after an induced one. 3) Glucose and fructose concentrations for normal estrus were similar to those for induced estrus groups. 4) Total protein and cholesterol concentrations were significantly lower (P < 0.001) in normal than in induced estrus, while no difference was found among the induced estrus groups. 5) Pregnancy rates of the cows did not differ significantly among the normal and the induced-estrus groups. 6) The percentages of cows in the induced-estrus groups that produced cervical mucus with total protein and cholesterol concentrations similar to those for the normal estrus groups was very low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号