首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
MicroRNAs plays an important role in the ccurrence and development of non–small-cell lung cancer (NSCLC). miR-497-5p has been reported to function as a tumor suppressor in various cancers. However, the role of miR-497-5p in NSCLC remains poorly understood. In this study, we aimed to investigate the biological role and potential molecular mechanism of miR-497-5p in NSCLC. Our results showed that the messenger RNA (mRNA) expression level of miR-497-5p was notably downregulated in human NSCLC tissues and cell lines. miR-497-5p overexpression remarkably inhibited NSCLC cell proliferation and increased cell apoptosis in A549 and H460 cells, whereas inhibition of miR-497-5p had an opposite effect. The ability of cell migration and invasion was inhibited by miR-497-5p overexpression but was increased by miR-497-5p inhibition. Moreover, our findings indicated that SOX5 was a direct target of miR-497-5p. The protein and mRNA expression levels of SOX5 in A549 cells were remarkably inhibited by miR-497-5p overexpression but was upregulated by miR-497-5p inhibition. Furthermore, SOX5 overexpression notably reversed the effect of miR-497-5p mimic on NSCLC cell proliferation, cell apoptosis, cell migration, and invasion. Taken together, these results indicated that miR-497-5p overexpression inhibited NSCLC cell proliferation, migration and invasion, and induced cell apoptosis through inhibiting SOX5 gene expression. It was conceivable that miR-497-5p might serve as a potential molecular target for NSCLC treatment.  相似文献   

2.
Ovarian cancer is the leading cause of death from gynecological malignancies worldwide. Understanding the molecular mechanism underlying ovarian cancer progression facilitates the development of promising strategy for ovarian cancer therapy. Previously, we observed frequent down-regulation of miR-497 expression in ovarian cancer tissues. In this study, we investigated the role of miR-497 in ovarian cancer metastasis. We found that endogenous miR-497 expression was down-regulated in the more aggressive ovarian cancer cell lines compared with the less aggressive cells. Exogenous expression of miR-497 suppressed ovarian cancer cell migration and invasion, whereas reduction of endogenous miR-497 expression induced tumor cell migration and invasion. Mechanistic investigations confirmed pro-metastatic factor SMURF1 as a direct target of miR-497 through which miR-497 ablated tumor cell migration and invasion. Further studies revealed that lower levels of miR-497 expression were associated with shorter overall survival as well as increased SMURF1 expression in ovarian cancer patients. Our results indicate that down-regulation of miR-497 in ovarian cancer may facilitate tumor metastasis. Restoration of miR-497 expression may be a promising strategy for ovarian cancer therapy.  相似文献   

3.
Long noncoding RNAs (lncRNAs) exert key regulators in cancer development and progression. The functional significance of lncRNA small nucleolar RNA host gene 20 (SNHG20) was reported in gastric cancer (GC); however, the underlying molecular mechanism in GC development is largely unknown. Here, our results showed that the lncRNA SNHG20 expression was significantly higher in GC tissues compared with adjacent normal tissues by quantitative real-time PCR (qRT-PCR) analysis. Higher lncRNA SNHG20 expression was highly associated with tumor size and lymphatic metastasis of patients. Patients with higher lncRNA SNHG20 expression predicted a short disease-free survival (DFS) and overall survival (OS). Furthermore, lncRNA SNHG20 expression negatively associated with miR-495-3p expression and regulated miR-495-3p expression. Function assays confirmed that lncRNA SNHG20 knockdown using RNA interference suppressed cell proliferation and invasion of GC by negatively regulating miR-495-3p expression. Moreover, we demonstrated that lncRNA SNHG20 inhibited zinc finger protein X-linked (ZFX) expression by negatively miR-495-3p expression in GC cells. In vivo, the current study also indicated that lncRNA SNHG20 knockdown reduced the tumor growth by downregulating ZFX expression. Thus, our results implied that inhibition of SNHG20/miR-495-3p/ZFX axis may provide valuable target for GC treatment.  相似文献   

4.
The lncRNA ZFAS1 plays a carcinogenic regulatory role in many human tumours, but it is rarely reported in pancreatic cancer. We identify the role and molecular mechanisms of ZFAS1 in pancreatic cancer. The expression of ZFAS1, miR-497-5p and HMGA2 in pancreatic cancer tissues was detected by qRT-PCR. Pancreatic cancer data in The Cancer Genome Atlas were also included in this study. CCK8, EdU, transwell and scratch wound assays were used to investigate the biological effects of ZFAS1 in pancreatic cancer cells. MS2-RIP, RNA pull-down, RNA-ChIP and luciferase reporter assays were used to clarify the molecular biological mechanisms of ZFAS1 in pancreatic cancer. The role of ZFAS1 in vivo was also confirmed via xenograft experiments. ZFAS1 was overexpressed in pancreatic cancer tissues. ZFAS1 promoted the growth and metastasis of pancreatic cancer cells, and miR-497-5p acted as a tumour suppressor gene in pancreatic cancer by targeting HMGA2. We also demonstrated that ZFAS1 exerts its effects by promoting HMGA2 expression through decoying miR-497-5p. We also found that ZFAS1 promoted the progression of pancreatic cancer in vivo by modulating the miR-497-5p/HMGA2 axis. In conclusion, this study revealed a new role for and the molecular mechanisms of ZFAS1 in pancreatic cancer, identifying ZFAS1 as a novel target for the diagnosis and treatment of pancreatic cancer.Subject terms: Oncogenes, Cell invasion, Long non-coding RNAs  相似文献   

5.
Gastric cancer (GC) is one of the most common malignancies worldwide. Emerging evidence has shown that aberrant expression of microRNAs (miRNAs) plays important roles in cancer progression. However, little is known about the potential role of miR-217 in GC. In this study, we investigated the role of miR-217 on GC cell proliferation and invasion. The expression of miR-217 was down-regulated in GC cells and human GC tissues. Enforced expression of miR-217 inhibited GC cells proliferation and invasion. Moreover, Glypican-5 (GPC5), a new ocncogene, was identified as the potential target of miR-217. In addition, overexpression of miR-217 impaired GPC5-induced promotion of proliferation and invasion in GC cells. In conclusion, these findings revealed that miR-217 functioned as a tumor suppressor and inhibited the proliferation and invasion of GC cells by targeting GPC5, which might consequently serve as a therapeutic target for GC patients.  相似文献   

6.
Up to date, the mechanism of gastric cancer (GC) development is poorly understood. This study was to demonstrate the effects of LINC00339 on GC progression. Here, we found that LINC00339 was overexpressed expressed in GC tissues and predicted poor outcome. By CCK8, colony formation and Transwell assays, we showed LINC00339 knockdown suppressed GC cell proliferation, migration, and invasion in vitro. Flow cytometry analysis (FACS) indicated that LINC00339 knockdown induced tumor cell apoptosis. Besides, we utilized the xenograft assay and found that LINC00339 depletion led to decreased tumor growth in vivo. Mechanistically, miR-377-3p was found to be inhibited by LINC00339. And LINC00339 suppressed miR-377-3p to upregulate DCP1A, which consequently promoted GC progression. In conclusion, LINC00339 promotes gastric cancer progression by elevating DCP1A expression via inhibiting miR-377-3p.  相似文献   

7.
Gastric cancer is one of the most common malignancies worldwide; however, the molecular mechanism in tumorigenesis still needs exploration. BCL2L11 belongs to the BCL-2 family, and acts as a central regulator of the intrinsic apoptotic cascade and mediates cell apoptosis.Although miRNAs have been reported to be involved in each stage of cancer development, the role of miR-24 in GC has not been reported yet. In the present study, miR-24 was found to be up-regulated while the expression of BCL2L11 was inhibited in tumor tissues of GC. Studies from both in vitro and in vivo shown that miR-24 regulates BCL2L11 expression by directly binding with 3′UTR of mRNA, thus promoting cell growth, migration while inhibiting cell apoptosis. Therefore, miR-24 is a novel onco-miRNA that can be potential drug targets for future clinical use.  相似文献   

8.
The role of miR-26a in cancer cells seemed controversial in previous studies. Until now, the role of miR-26a in gastric cancer remains undefined. In this study, we found that miR-26a was strongly downregulated in gastric cancer (GC) tissues and cell lines, and its expression levels were associated with lymph node metastasis and clinical stage, as well as overall survival and replase-free survival of GC. We also found that ectopic expression of miR-26a inhibited GC cell proliferation and GC metastasis in vitro and in vivo. We further identified a novel mechanism of miR-26a to suppress GC growth and metastasis. FGF9 was proved to be a direct target of miR-26a, using luciferase assay and western blot. FGF9 overexpression in miR-26a-expressing cells could rescue invasion and growth defects of miR-26a. In addition, miR-26a expression inversely correlated with FGF9 protein levels in GC. Taken together, our data suggest that miR-26a functions as a tumor suppressor in GC development and progression, and holds promise as a prognostic biomarker and potential therapeutic target for GC.  相似文献   

9.
Plasmacytoma variant translocation1 (PVT1) was reported to be upregulated in non-small-cell lung cancer (NSCLC) tissues, serve as a promising biomarker for diagnosis and prognosis of NSCLC, and promoted NSCLC cell proliferation. However, the detailed molecular mechanism of PVT1 involved in the pathogenesis and development of NSCLC remains largely unknown. In this study, the expression levels of PVT1 and miR-497 in NSCLC cells were determined by qRT-PCR. Cell viability, invasion and apoptosis were detected by MTT assay, cell invasion assay and flow cytometry analysis, respectively. RNA immunoprecipitation (RIP) and luciferase reporter assay were performed to confirm whether PVT1 directly interacts with miR-497. A xenograft mouse model was established to confirm the effect of PVT1 on tumor growth in vivo and the underlying molecular mechanism. Our findings indicated that PVT1 was significantly upregulated and miR-497 was markedly downregulated in NSCLC cell lines. si-PVT1 effectively decreased the expression of PVT1 and increased the expression of miR-497. PVT1 knockdown remarkably inhibited cell viability, invasion and promoted apoptosis in NSCLC cells. RIP and luciferase reporter assay demonstrated that PVT1 could directly interact with miR-497. Moreover, PVT1 overexpression reversed the inhibitory effect of miR-497 on cell viability, invasion and promotion effect on apoptosis of NSCLC cells. Furthermore, in vivo experiment showed that knockdown of PVT1 inhibited tumor growth in vivo and promoted miR-497 expression. In conclusion, knockdown of PVT1 inhibited cell viability, invasion and induced apoptosis in NSCLC by regulating miR-497 expression, elucidating the molecular mechanism of the oncogenic role of PVT1 in NSCLC and providing an lncRNA-directed target for NSCLC.  相似文献   

10.
The enzyme deoxyhypusine hydroxylase (DOHH) catalyzes the activation of eukaryotic translation initiation factor (eIF5A), a protein essential for cell growth. Using bioinformatic predictions and reporter gene assays, we have identified a 182-nt element within the DOHH 3′-untranslated region (3′-UTR) that contains a number of target sites for miR-331-3p and miR-642-5p. Quantitative RT-PCR studies demonstrated overexpression of DOHH mRNA and underexpression of miR-331-3p and miR-642-5p in several prostate cancer cell lines compared with normal prostate epithelial cells. Transient overexpression of miR-331-3p and/or miR-642-5p in DU145 prostate cancer cells reduced DOHH mRNA and protein expression and inhibited cell proliferation. We observed synergistic growth inhibition with the combination of miR-331-3p and miR-642-5p and mimosine, a pharmacological DOHH inhibitor. Finally, we identified a significant inverse relationship between the expression of miR-331-3p or miR-642-5p and DOHH in a cohort of human prostate cancer tissues. Our results suggest a novel role for miR-331-3p and miR-642-5p in the control of prostate cancer cell growth via the regulation of DOHH expression and eIF5A activity.  相似文献   

11.
An increasing body of evidence indicates that miR-149 can both suppress and promote tumor growth depending on the tumor type. However, the role of miR-149 in the progression of gastric cancer (GC) remains unknown. Here we report that miR-149 is a tumor suppressor in human gastric cancer. miR-149 expression is decreased in GC cell lines and clinical specimens in comparison to normal gastric epithelial cell and tissues, respectively. The expression levels of miR-149 also correlate with the differentiation degree of GC cells and tissues. Moreover, ectopic expression of miR-149 in gastric cancer cells inhibits proliferation and cell cycle progression by down-regulating ZBTB2, a potent repressor of the ARF-HDM2-p53-p21 pathway, with a potential binding site for miR-149 in its mRNA''s 3′UTR. It is also found that ZBTB2 expression increases in GC cells and tissues compared to normal gastric epithelial cell and tissues, respectively. Silencing of ZBTB2 leads to suppression of cell growth and cell cycle arrest in G0/G1 phase, indicating that ZBTB2 may act as an oncogene in GC. Furthermore, transfection of miR-149 mimics into gastric cancer cells induces down-regulation of ZBTB2 and HDM2, and up-regulation of ARF, p53, and p21 compared to the controls. In summary, our data suggest that miR-149 functions as a tumor suppressor in human gastric cancer by, at least partially through, targeting ZBTB2.  相似文献   

12.
Control of mRNA translation plays a critical role in cell growth, proliferation, and differentiation and is tightly regulated by AKT and RAS oncogenic pathways. A key player in the regulation of this process is the mRNA 5' cap-binding protein, eukaryotic translation initiation factor 4E (eIF4E). eIF4E contributes to malignancy by selectively enabling the translation of a limited pool of mRNAs that generally encode key proteins involved in cell cycle progression, angiogenesis, and metastasis. Several data indicate that the inhibition of eIF4E in tumor cell lines and xenograft models impairs tumor growth and induces apoptosis; eIF4E, therefore, can be considered a valuable target for cancer therapy. Targeting the cap-binding pocket of eIF4E should represent a way to inhibit all the eIF4E cellular functions. We present here the development and validation of different biochemical assays based on fluorescence polarization and surface plasmon resonance techniques. These assays could support high-throughput screening, further refinement, and characterization of eIF4E inhibitors, as well as selectivity assessment against CBP80/CBP20, the other major cap-binding complex of eukaryotic cells, overall providing a robust roadmap for development of eIF4E-specific inhibitors.  相似文献   

13.
Oral squamous cell carcinoma (OSCC) is the most aggressive type of head and neck cancer with an unsatisfactory 5-year survival rate. MicroRNAs are a group of small noncoding RNAs reported to serve important roles in carcinogenesis, inhibiting certain gene expression via targeting the 3′-untranslated region of messenger RNAs (mRNAs). MiR-4282 has been newly discovered to be a tumor suppressor in colorectal cancer, but it has never been studied in OSCC. The present study aimed to uncover the role of miR-4282 in OSCC. We first confirmed that miR-4282 was downregulated in OSCC and validated its prognostic significance. Through gain-of-function assays, miR-4282 was discovered to inhibit proliferation, migration, and epithelial-to-mesenchymal transition, and induce apoptosis. By mechanistic research, we predicted via bioinformatics tools and confirmed by luciferase reporter and pulldown assays that miR-4282 targeted LIN28B, an RNA-binding protein, which has been reported to regulate RNA stability in cancers. Furthermore, we confirmed the interaction between LIN28B and zinc finger and BTB domain containing 2 (ZBTB2), and validated that miR-4282 regulated mRNA stability of ZBTB2 by inhibiting LIN28B. Rescue assays proved that miR-4282 inhibited tumor progression through LIN28B/ZBTB2 axis. In vivo assays proved that miR-4282 inhibited tumor growth in OSCC. In conclusion, the present study revealed that miR-4282 inhibited tumor progression through downregulation of ZBTB2 by targeting LIN28B in OSCC cells, indicating miR-4282 as a novel biomarker for OSC.  相似文献   

14.
There is a continued need for investigating the roles of microRNAs (miRNAs) and their targets on the progression of gastric cancer (GC), especially metastasis. Here, we performed an integrated study to identify dysregulated miRNAs critical for GC development and progression. miR-135b was determined as a promising biomarker for GC. The expression level of miR-135b was increased among GC cell lines, patient tumor tissues, serum samples, and correlation with aggravation of the GC patients. The in vitro functional assays demonstrated overexpression of miR-135b promoted cell proliferation, migration and invasion in GC, while miR-135b inhibition led to the opposite results. CAMK2D was found to be the direct target of miR-135b, serving as a tumor suppressor in GC cells. Based on our and public datasets, we confirmed the attenuation of CAMK2D expression in GC tissues. And, the expression levels of miR-135b and CAMK2D were closely associated with prognosis of GC patients. Ectopic expression of miR-135b resulted in the down-regulation of CAMK2D. Additionally, CAMK2D was a prerequisite for miR-135b to promote GC cells proliferation and migration by regulating the EMT process, which was confirmed by the in vivo experiments. Importantly, in vivo injection of miR-135b antagomir significantly repressed the tumor growth and metastasis of xenograft models, which suggested that the miR-135b antagomir were promising for clinical applications. Taken together, these results indicate that miR-135b/CAMK2D axis drives GC progression by EMT process remodeling, suggesting that miR-135b may be utilized as a new therapeutic target and prognostic marker for GC patients.  相似文献   

15.
16.
Dysregulated long noncoding RNAs (lncRNAs) remains to be explored in tumorigenesis. LncRNA HOXC13 antisense RNA (HOXC13-AS) has been found as an oncogene in many cancers; however, the role of HOXC13-AS in breast cancer still elusive. In this study, the HOXC13-AS levels and its role in cell proliferation was first measured by real-time quantitative polymerase chain reaction, Cell Counting Kit-8 assay, and colony formation assay. It showed that HOXC13-AS was increased in breast cancer tissues compared with the adjacent normal tissues and upregulated HOXC13-AS promoted the growth of breast cancer cells. Then, we found that the miR-497-5p levels were downregulated in cancer tissues compared with the adjacent tissues and miR-497-5p suppressed breast cancer cell proliferation. Further study showed that HOXC13-AS could function as a “sponge” for miR-497-5p then suppress miR-497-5p expression. Moreover, we next identified that Phosphatase and Tensin homolog (PTEN) is the target of miR-497-5p. Overexpression of miR-497-5p by chemical mimics decreased the expression of PTEN, while downregulation of miR-497-5p by HOXC13-AS rescued the expression of PTEN. Finally, we showed that HOXC13-AS promoted the proliferation of breast cancer cells and tumor growth through miR-497-5p/PTEN axis in vitro and in vivo. Hence, we conclude that HOXC13-AS, which is significantly upregulated in breast cancers, promoted cell proliferation through the suppressed miR-497-5p and further upregulated PTEN.  相似文献   

17.
18.
Long intergenic non-coding RNA 152 (LINC00152) was reported to be tightly linked to tumorigenesis and progression in multiple cancers. However, its biological role and modulatory mechanism in papillary thyroid carcinoma (PTC) has not been elucidated. In this study, we determined the expression levels of LINC00152 in PTC tissues and cell lines by quantitative real time polymerase chain reaction (qRT-PCR). Cell proliferation, colony formation, migration, and invasion were measured by a Cell Counting Kit-8 assay, colony formation analysis, wound healing, and transwell invasion assay, respectively. A luciferase reporter assay and qRT-PCR were used to determine whether LINC00152 interacts with miR-497 directly. We established a xenograft mouse model to examine the underlying molecular mechanism and effect of LINC00152 on tumor growth in vivo. We found that LINC00152 expression was significantly increased in PTC tissues and derived cell lines. LINC00152 knockdown significantly inhibited proliferation, colony formation, migration, and invasion in vitro, and impaired tumor growth in vivo. We revealed that LINC00152 functioned as a competing endogenous RNA to the miR-497 sponge, downregulating its downstream target brain-derived neurotrophic factor (BDNF), which is an oncogene in thyroid cancer. These findings suggest that LINC00152 is responsible for PTC cell proliferation and invasion and exerts its function by regulating the miR-497/BDNF axis.  相似文献   

19.
Increasing studies have found that circular RNAs (circRNAs) are aberrantly expressed and play important roles in the occurrence and development of human cancers. However, the function of circRNAs on environmental carcinogen-induced gastric cancer (GC) progression remains poorly elucidated. In the present study, hsa_circ_0110389 was identified as a novel upregulated circRNA in malignant-transformed GC cells through RNA-seq, and subsequent quantitative real-time PCR verified that hsa_circ_0110389 was significantly increased in GC tissues and cells. High hsa_circ_0110389 expression associates with advanced stages of GC and predicts poor prognosis. Knockdown and overexpression assays demonstrated that hsa_circ_0110389 regulates proliferation, migration, and invasion of GC cells in vitro. In addition, hsa_circ_0110389 was identified to sponge both miR-127-5p and miR-136-5p and SORT1 was validated as a direct target of miR-127-5p and miR-136-5p through multiple mechanism assays; moreover, hsa_circ_0110389 sponged miR-127-5p/miR-136-5p to upregulate SORT1 expression and hsa_circ_0110389 promoted GC progression through the miR-127-5p/miR-136-5p–SORT1 pathway. Finally, hsa_circ_0110389 knockdown suppressed GC growth in vivo. Taken together, our findings firstly identify the role of hsa_circ_0110389 in GC progression, which is through miR-127-5p/miR-136-5p–SORT1 pathway, and our study provides novel insight for the identification of diagnostic/prognostic biomarkers and therapeutic targets for GC.Subject terms: Gastrointestinal cancer, Non-coding RNAs  相似文献   

20.
Dysregulated protein synthesis is frequently involved in oncogenesis and cancer progression. Translation initiation is thought to be the rate-limiting step in protein synthesis, and the mRNA 5′ cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) is a pivotal factor that initiates translation. The activities of eIF4E are regulated at multiple levels, one of which is through its phosphorylation at Serine 209 by the mitogen-activated protein kinase-interacting kinases (MNKs, including MNK1 and MNK2). Benefiting from novel mouse genetic tools and pharmacological MNK inhibitors, our understanding of a role for eIF4E phosphorylation in tumor biology and cancer therapy has greatly evolved in recent years. Importantly, recent studies have found that the level of eIF4E phosphorylation is frequently upregulated in a wide variety of human cancer types, and phosphorylation of eIF4E drives a number of important processes in cancer biology, including cell transformation, proliferation, apoptosis, metastasis and angiogenesis. The MNK-eIF4E axis is being assessed as a therapeutic target either alone or in combination with other therapies in different cancer models. As novel MNK inhibitors are being developed, experimental studies bring new hope to cure human cancers that are not responsive to traditional therapies. Herein we review recent progress on our understanding of a mechanistic role for phosphorylation of eIF4E in cancer biology and therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号