首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The human ABCG2 protein is an ATP binding cassette half-transporter, which protects our cells and tissues against various xenobiotics, while overexpression of ABCG2 in tumor cells confers multidrug resistance. It has been documented that single amino acid changes at position 482 resulted in altered drug resistance and transport capacity. In this study, we have generated nine Arg-482 mutants (G, I, M, S, T, D, N, K, Y) of ABCG2, and expressed them in insect cells. All ABCG2 variants showed cell surface expression and, in isolated membranes, an ABCG2-specific ATPase activity. When methotrexate accumulation was measured in inside-out membrane vesicles, this transport was supported only by the wild-type ABCG2. In intact cells, mitoxantrone was transported by all ABCG2 variants, except by R482K. Rhodamine 123 was extruded by most of the mutants, except by R482K, Y and by wild-type ABCG2. Hoechst 33342 was pumped out from cells expressing the wild-type and all Arg-482 variants, but not from those expressing R482K and Y. Our study demonstrates that the substrate specificity of the Arg (wild-type) form is unique and that amino acid replacements at position 482 induce major alterations in both the transport activity and substrate specificity of this protein.  相似文献   

2.
The human ABCG2 protein is an ATP binding cassette half-transporter, which protects our cells and tissues against various xenobiotics, while overexpression of ABCG2 in tumor cells confers multidrug resistance. It has been documented that single amino acid changes at position 482 resulted in altered drug resistance and transport capacity. In this study, we have generated nine Arg-482 mutants (G, I, M, S, T, D, N, K, Y) of ABCG2, and expressed them in insect cells. All ABCG2 variants showed cell surface expression and, in isolated membranes, an ABCG2-specific ATPase activity. When methotrexate accumulation was measured in inside-out membrane vesicles, this transport was supported only by the wild-type ABCG2. In intact cells, mitoxantrone was transported by all ABCG2 variants, except by R482K. Rhodamine 123 was extruded by most of the mutants, except by R482K, Y and by wild-type ABCG2. Hoechst 33342 was pumped out from cells expressing the wild-type and all Arg-482 variants, but not from those expressing R482K and Y. Our study demonstrates that the substrate specificity of the Arg (wild-type) form is unique and that amino acid replacements at position 482 induce major alterations in both the transport activity and substrate specificity of this protein.  相似文献   

3.
Several members of the ATP-binding cassette (ABC) transporter superfamily, including P-glycoprotein and the half-transporter ABCG2, can confer multidrug resistance to cancer cells in culture by functioning as ATP-dependent efflux pumps. ABCG2 variants harboring a mutation at arginine 482 have been cloned from several drug-resistant cell lines, and these variants differ in their substrate transport phenotype. In this study, we changed the wild-type arginine 482 in human ABCG2 to each one of the 19 other standard amino acids and expressed each one transiently in HeLa cells. Using the 5D3 antibody that recognizes a cell surface epitope of ABCG2, we observed that all the mutants were expressed at the cell surface. However, the mutant ABCG2 proteins differed markedly in transport activity. All of the variants were capable of transporting one or more of the substrates used in this study, with the exception of the R482K mutant, which is completely devoid of transport ability. Six of the mutants (R482G, R482H, R482K, R482P, R482T, and R482Y) and the wild-type protein (R482wt) were selected for studies of basal and stimulated ATPase activity and photoaffinity labeling with the substrate analog [125I]iodoarylazidoprazosin. Whereas these seven ABCG2 variants differed markedly in ATPase activity, all were able to specifically bind the substrate analog [125I]iodoarylazidoprazosin. These data suggest that residue 482 plays an important role in substrate transport and ATP turnover, but that the nature of this amino acid may not be important for substrate recognition and binding.  相似文献   

4.
Clinical relevance is implicated between the genetic polymorphisms of the ABC (ATP-binding cassette) transporter ABCG2 (ABC subfamily G, member 2) and the individual differences in drug response. We expressed a total of seven non-synonymous SNP (single nucleotide polymorphism) variants in Flp-In-293 cells by using the Flp (flippase) recombinase system. Of these, ABCG2 F208S and S441N variants were found to be expressed at markedly low levels, whereas their mRNA levels were equal to those of the other SNP variants and ABCG2 WT (wild-type). Interestingly, protein expression levels of the ABCG2 F208S and S441N variants increased 6- to 12-fold when Flp-In-293 cells were treated with MG132, a proteasome inhibitor. Immunoprecipitation followed by immunoblot analysis showed that the ABCG2 F208S and S441N variant proteins were endogenously ubiquitinated in Flp-In-293 cells, and treatment with MG132 significantly enhanced the level of these ubiquitinated variants. Immunofluorescence microscopy demonstrated that MG132 greatly affected the ABCG2 F208S and S441N variants in terms of both protein levels and intracellular distribution. Immunoblot analysis revealed that those variants were N-glycosylated; however, their oligosaccharides were immature compared with those present on ABCG2 WT. The ABCG2 F208S and S441N variant proteins do not appear to be processed in the Golgi apparatus, but undergo ubiquitin-mediated protein degradation in proteasomes, whereas ABCG2 WT is sorted to the plasma membrane and then degraded via the lysosomal pathway. The present study provides the first evidence that certain genetic polymorphisms can affect the protein stability of ABCG2. Control of proteasomal degradation of ABCG2 would provide a novel approach in cancer chemotherapy to circumvent multidrug resistance of human cancers.  相似文献   

5.
The overexpression of the human ATP-binding cassette half-transporter, ABCG2 (placenta-specific ABC transporter, mitoxantrone resistance-associated protein, breast cancer resistance protein), causes multidrug resistance in tumor cells. An altered drug resistance profile and substrate recognition were suggested for wild-type ABCG2 and its mutant variants (R482G and R482T); the mutations were found in drug-selected tumor cells. In order to characterize the different human ABCG2 transporters without possible endogenous dimerization partners, we expressed these proteins and a catalytic center mutant (K86M) in Sf9 insect cells. Transport activity was followed in intact cells, whereas the ATP binding and hydrolytic properties of ABCG2 were studied in isolated cell membranes. We found that the K86M mutant had no transport or ATP hydrolytic activity, although its ATP binding was retained. The wild-type ABCG2 and its variants, R482G and R482T, showed characteristically different drug and dye transport activities; mitoxantrone and Hoechst 33342 were transported by all transporters, whereas rhodamine 123 was only pumped by the R482G and R482T mutants. In each case, ABCG2-dependent transport was blocked by the specific inhibitor, fumitremorgin C. A relatively high basal ABCG2-ATPase, inhibited by fumitremorgin C, was observed in all active proteins, but specific drug stimulation could only be observed in the case of R482G and R482T mutants. We found that ABCG2 is capable of a vanadate-dependent adenine nucleotide trapping. Nucleotide trapping was stimulated by the transported compounds in the R482G and R482T variants but not in the wild-type ABCG2. These experiments document the applicability of the Sf9 expression system for parallel, quantitative examination of the specific transport and ATP hydrolytic properties of different ABCG2 proteins and demonstrate significant differences in their substrate interactions.  相似文献   

6.
The ATP-binding cassette transporter G2/breast cancer resistance protein (ABCG2/BCRP) is an efflux protein involved in the bioavailability and milk secretion of endogenous and exogenous compounds, actively affecting milk composition. A limited number of physiological substrates have been identified. However, no studies have reported the specific effect of this polymorphism on the secretion into milk of compounds implicated in milk quality such as vitamins or endogenous compounds. The bovine ABCG2 Y581S polymorphism is described as a gain-of-function polymorphism that increases milk secretion and decreases plasma levels of its substrates. This work aims to study the impact of Y581S polymorphism on plasma disposition and milk secretion of compounds such as riboflavin (vitamin B2), enterolactone, a microbiota-derived metabolite from the dietary lignan secoisolariciresinol and uric acid. In vitro transport of these compounds was assessed in MDCK-II cells overexpressing the bovine ABCG2 (WT-bABCG2) and its Y581S variant (Y581S-bABCG2). Plasma and milk levels were obtained from Y/Y homozygous and Y/S heterozygous cows. The results show that riboflavin was more efficiently transported in vitro by the Y581S variant, although no differences were noted in vivo. Both uric acid and enterolactone were substrates in vitro of the bovine ABCG2 variants and were actively secreted into milk with a two-fold increase in the milk/plasma ratio for Y/S with respect to Y/Y cows. The in vitro ABCG2-mediated transport of the drug mitoxantrone, as a model substrate, was inhibited by enterolactone in both variants, suggesting the possible in vivo use of this enterolignan to reduce ABCG2-mediated milk drug transfer in cows. The Y581S variant was inhibited to a lesser extent probably due to its higher transport capacity. All these findings point to a significant role of the ABCG2 Y581S polymorphism in the milk disposition of enterolactone and the endogenous molecules riboflavin and uric acid, which could affect both milk quality and functionality.  相似文献   

7.
Human ABCG2 is an efflux protein belonging to the ATP-binding cassette transporter superfamily. It is expressed in the plasma membrane of different cell types performing various physiological functions. It is the most recently discovered MDR transporter and its structure and function are still not well understood. Thus, expression and functional reconstitution of the protein in different variants and from different sources are important steps for its further investigation. In this work we describe a recombinant synthesis of human ABCG2 R482G from S. cerevisiae. We expressed the human ABCG2 R482G variant in S. cerevisiae and purified the protein from total yeast membranes. Using a panel of sixteen detergents, we analyzed the efficiency of extraction of ABCG2 from membranes by SDS–PAGE and immunoblot analysis. Based on these results, three detergents were selected for further purification studies and two of them, n-octyl-β-D-glucopyranoside and n-dodecyl-β-D-maltopyranoside, yielded functional protein after reconstitution into liposomes. We show here the first example of purified and reconstituted ABCG2 expressed in S. cerevisiae retaining drug-stimulated ATPase activity.  相似文献   

8.
9.
Shukla S  Robey RW  Bates SE  Ambudkar SV 《Biochemistry》2006,45(29):8940-8951
The human ATP-binding cassette transporter, ABCG2, confers resistance to multiple chemotherapeutic agents and also affects the bioavailability of different drugs. [(125)I]Iodoarylazidoprazosin (IAAP) and [(3)H]azidopine were used for photoaffinity labeling of ABCG2 in this study. We show here for the first time that both of these photoaffinity analogues are transport substrates for ABCG2 and that [(3)H]azidopine can also be used to photolabel both wild-type R482-ABCG2 and mutant T482-ABCG2. We further used these assays to screen for potential substrates or modulators of ABCG2 and observed that 1,4-dihydropyridines such as nicardipine and nifedipine, which are clinically used as antihypertensive agents, inhibited the photolabeling of ABCG2 with [(125)I]IAAP and [(3)H]azidopine as well as the transport of these photoaffinity analogues by ABCG2. Furthermore, [(3)H]nitrendipine and bodipy-Fl-dihydropyridine accumulation assays showed that these compounds are transported by ABCG2. These dihydropyridines also inhibited the efflux of the known ABCG2 substrates, mitoxantrone and pheophorbide-a, from ABCG2-overexpressing cells, and nicardipine was more potent in inhibiting this transport. Both nicardipine and nifedipine stimulated the ATPase activity of ABCG2, and the nifedipine-stimulated activity was inhibited by fumitremorgin C, suggesting that these agents might interact at the same site on the transporter. In addition, nontoxic concentrations of dihydropyridines increased the sensitivity of ABCG2-expressing cells to mitoxantrone by 3-5-fold. In aggregate, results from the photoaffinity labeling and efflux assays using [(125)I]IAAP and [(3)H]azidopine demonstrate that 1,4-dihydropyridines are substrates of ABCG2 and that these photolabels can be used to screen new substrates and/or inhibitors of this transporter.  相似文献   

10.
The breast cancer resistance protein (BCRP, ABCG2) is among the latest discovered ABC proteins to be involved in MDR phenotype and for which only few inhibitors are known. In continuing our program aimed at discovering efficient multidrug resistance modulators, we conceived and synthesized new acridones as ABCG2 inhibitors. The design of target molecules was based on earlier results dealing with ABCG2 inhibition with flavone and chromone derivatives. The human wild-type (R482) ABCG2-transfected cells were used for rational screening of inhibitory acridones. The synthesis of target compounds, the inhibitory activity against ABCG2, and structure-activity relationships are described. One of the acridones was even more potent than the reference inhibitor, GF120918, as shown by its ability to inhibit mitoxantrone efflux.  相似文献   

11.
The P2X(7)R is an ATP-gated cation channel expressed in hemopoietic cells that participates in both cell proliferation and apoptosis. Expression and function of the P2X(7)R have been associated with the clinical course of patients affected by chronic lymphocytic leukemia (CLL). Functional variants causing loss-of-function of the P2X(7)R have been identified, namely, polymorphisms 1513A>C (E496A), 1729T>A (I568N), and 946G>A (R307Q). Here we investigated other nonsynonymous polymorphisms located either in the extracellular portion of the receptor, such as the 489C>T (H155Y) variant, or in the long cytoplasmic tail of the receptor, such as the 1068G>A (A348T), 1096C>G (T357S), and 1405A>G (Q460R) variants. P2X(7)R function was monitored by measuring ATP-induced Ca(2+) influx in PBL of patients affected by CLL and in recombinant human embryonic kidney (HEK) 293 cells stably transfected with each single P2X(7) allelic variant. Ca(2+) influx was markedly reduced in association with the 1513C allele, whereas variants located in the same intracellular domain, such as the 1068A, 1096G, or 1405G variants, were associated with a minor functional decrease. Significant Ca(2+) flux increase was observed in lymphocytes from CLL patients bearing the 489C/T and 489T/T genotypes in association with the 1513A/A genotype. Functional analysis in recombinant HEK293 cells expressing P2X(7)R confirmed an increased ATP-dependent activation of the P2X(7) 489T mutant with respect to the wild type receptor, as assessed by both by [Ca(2+)](i) influx and ethidium uptake experiments. These data identify the 489C>T as a gain-of-function polymorphism of the P2X(7)R.  相似文献   

12.
ATP-binding cassette transporter G1 (ABCG1) plays an important role in macrophage reverse cholesterol transport in vivo by promoting cholesterol efflux onto lipidated apoA-I. However, the underlying mechanism is unclear. Here, we found that ABCG1 co-immunoprecipitated with caveolin-1 (CAV1) but not with flotillin-1 and -2. Knockdown of CAV1 expression using siRNAs significantly reduced ABCG1-mediated cholesterol efflux without detectable effect on ABCA1-mediated cholesterol efflux. Disruption of the putative CAV1 binding site in ABCG1, through replacement of tyrosine residues at positions 487 and 489 or at positions 494 and 495 with alanine (Y487AY489A and Y494AY495A), impaired the interaction of ABCG1 with CAV1 and significantly decreased ABCG1-mediated cholesterol efflux. The substitution of Tyr494 and Tyr495 with Phe or Trp that resulted in an intact CAV1 binding site had no effect. Furthermore, Y494AY495A affected trafficking of ABCG1 to the cell surface. The mutant protein is mainly located intracellularly. Finally, we found that CAV1 co-immunoprecipitated with ABCG1 and regulated cholesterol efflux to reconstituted HDL in THP-1-derived macrophages upon the liver X receptor agonist treatment. These findings indicate that CAV1 interacts with ABCG1 and regulates ABCG1-mediated cholesterol efflux.  相似文献   

13.
Diop NK  Hrycyna CA 《Biochemistry》2005,44(14):5420-5429
The human ATP-binding cassette half-transporter ABCG2 is a 72 kDa plasma membrane protein that can confer multidrug resistance to cells in culture when overexpressed. Both transiently and stably expressed ABCG2 are glycosylated, and treatment with peptide N-glycosidase F reduces the apparent molecular mass on SDS-PAGE gels to approximately 60 kDa. Sequence analysis revealed three potential N-linked glycosylation sites in human ABCG2 at amino acids 418, 557, and 596. Site-directed mutagenesis experiments, in which each Asn was changed to Gln independently, revealed that only asparagine 596 is N-linked glycosylated. These data provide the first direct identification of the modified residue in ABCG2 and evidence for the localization of loop 5 to the extracellular space, previously only predicted from hydropathy analysis. Immunoblot and pulse-chase analyses revealed that the glycosylation-deficient ABCG2 (N596Q) variant and the glycosylated parent transporter are expressed equivalently at steady state and have similar half-lives. Cell surface analysis of ABCG2 expression showed comparable amounts of the N596Q variant present at the plasma membrane compared to the glycosylated ABCG2 protein. The ABCG2 (N596Q) variant is also functional, demonstrating rhodamine 123 transport in intact cells comparable to that in cells expressing glycosylated ABCG2. Furthermore, in crude membrane preparations, neither the basal nor the prazosin-stimulated ( approximately 2-fold) ATPase activities of ABCG2 (N596Q) were affected compared to glycosylated ABCG2. Although subtle defects in transporter trafficking and function may exist, these data taken together suggest that N-glycosylation at arginine 596 is not essential for the expression, trafficking to the plasma membrane, or the overall function of ABCG2.  相似文献   

14.

Background

BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC) carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism.

Aim

The present study, performed in a panel of NSCLC cell lines expressing different ABCG2 plasma membrane levels, was designed to investigate the effect of the efflux transporter ABCG2 on intracellular gefitinib accumulation, by dissecting the contribution of uptake and efflux processes.

Methods and Results

Our findings indicate that gefitinib, in lung cancer cells, inhibits ABCG2 activity, as previously reported. In addition, we suggest that ABCG2 silencing or overexpression affects intracellular gefitinib content by modulating the uptake rather than the efflux. Similarly, overexpression of ABCG2 affected the expression of a number of drug transporters, altering the functional activities of nutrient and drug transport systems, in particular inhibiting MPP, glucose and glutamine uptake.

Conclusions

Therefore, we conclude that gefitinib is an inhibitor but not a substrate for ABCG2 and that ABCG2 overexpression may modulate the expression and activity of other transporters involved in the uptake of different substrates into the cells.  相似文献   

15.
Purine cyclin-dependent kinase inhibitors have been recognized as promising candidates for the treatment of various cancers; nevertheless, data regarding interaction of these substances with drug efflux transporters is still lacking. Recently, we have demonstrated inhibition of breast cancer resistance protein (ABCG2) by olomoucine II and purvalanol A and shown that these compounds are able to synergistically potentiate the antiproliferative effect of mitoxantrone, an ABCG2 substrate. In this follow up study, we investigated whether olomoucine II and purvalanol A are transported by ABCG2 and ABCB1 (P-glycoprotein). Using monolayers of MDCKII cells stably expressing human ABCB1 or ABCG2, we demonstrated that olomoucine II, but not purvalanol A, is a dual substrate of both ABCG2 and ABCB1. We, therefore, assume that pharmacokinetics of olomoucine II will be affected by both ABCB1 and ABCG2 transport proteins, which might potentially result in limited accumulation of the compound in tumor tissues or lead to drug-drug interactions. Pharmacokinetic behavior of purvalanol A, on the other hand, does not seem to be affected by either ABCG2 or ABCB1, theoretically favoring this drug in the potential treatment of efflux transporter-based multidrug resistant tumors. In addition, we observed intensive sulfatation of olomoucine II in MDCKII cell lines with subsequent active efflux of the metabolite out of the cells. Therefore, care should be taken when performing pharmacokinetic studies in MDCKII cells, especially if radiolabeled substrates are used; the generated sulfated conjugate may largely contaminate pharmacokinetic analysis and result in misleading interpretation. With regard to chemical structures of olomoucine II and purvalanol A, our data emphasize that even drugs with remarkable structure similarity may show different pharmacokinetic behavior such as interactions with ABC transporters or biotransformation enzymes.  相似文献   

16.
Cholesterol and phospholipids are essential to the body, but an excess of cholesterol or lipids is toxic and a risk factor for arteriosclerosis. ABCG1, one of the half-type ABC proteins, is thought to be involved in cholesterol homeostasis. To explore the role of ABCG1 in cholesterol homeostasis, we examined its subcellular localization and function. ABCG1 and ABCG1-K120M, a WalkerA lysine mutant, were localized to the plasma membrane in HEK293 cells stably expressing ABCG1 and formed a homodimer. A stable transformant expressing ABCG1 exhibited efflux of cholesterol and choline phospholipids in the presence of BSA, and the cholesterol efflux was enhanced by the presence of HDL, whereas cells expressing ABCG1-K120M did not, suggesting that ATP binding and/or hydrolysis is required for the efflux. Mass and TLC analyses revealed that ABCG1 and ABCA1 secrete several species of sphingomyelin (SM) and phosphatidylcholine (PC), and SMs were preferentially secreted by ABCG1, whereas PCs were preferentially secreted by ABCA1. These results suggest that ABCA1 and ABCG1 mediate the lipid efflux in different mechanisms, in which different species of phospholipids are secreted, and function coordinately in the removal of cholesterol and phospholipids from peripheral cells.  相似文献   

17.
Glutathione (GSH) transport is vital for maintenance of intracellular and extracellular redox balance. Only a few human proteins have been identified as transporters of GSH, glutathione disulfide (GSSG) and/or GSH conjugates (GS-X). Human epithelial MDA1586, A549, H1975, H460, HN4, and H157 cell lines were exposed to 2′,5′-dihydroxychalcone, which induces a GSH efflux response. A real-time gene superarray for 84 proteins found in families that have a known role in GSH, GSSG, and/or GS-X transport was employed to help identify potential GSH transporters. ABCG2 was identified as the only gene in the array that closely corresponded with the magnitude of 2′,5′-dihydroxychalcone (2′,5′-DHC)-induced GSH efflux. The role of human ABCG2 as a novel GSH transporter was verified in a Saccharomyces cerevisiae galactose-inducible gene expression system. Yeast expressing human ABCG2 had 2.5-fold more extracellular GSH compared with those not expressing ABCG2. GSH efflux in ABCG2-expressing yeast was abolished by the ABCG2 substrate methotrexate (10 μm), indicating competitive inhibition. In contrast, 2′,5′-DHC treatment of ABCG2-expressing yeast increased extracellular GSH levels in a dose-dependent manner with a maximum 3.5-fold increase in GSH after 24 h. In addition, suppression of ABCG2 with short hairpin RNA or ABCG2 overexpression in human epithelial cells decreased or increased extracellular GSH levels, respectively. Our data indicate that ABCG2 is a novel GSH transporter.  相似文献   

18.
ABCG2 confers resistance to cancer cells by mediating the ATP-dependent outward efflux of chemotherapeutic compounds. Recent studies have indicated that the protein contains a number of interconnected drug binding sites. The present investigation examines the coupling of drug binding to ATP hydrolysis. Initial drug binding to the protein requires a high-affinity interaction with the drug binding site, followed by transition and reorientation to the low-affinity state to enable dissociation at the extracellular face. [3H]Daunomycin binding to the ABCG2 R482G isoform was examined in the nucleotide-bound and post-hydrolytic conformations. Binding of [3H]daunomycin was displaced by ATP analogues, indicating transition to a low-affinity conformation prior to hydrolysis. The low-affinity state was observed to be retained immediately post-hydrolysis. Therefore, the dissociation of phosphate and/or ADP is likely to be responsible for resetting of the transporter. The data indicate that, like ABCB1 and ABCC1, the 'power stroke' for translocation in ABCG2 R482G is the binding of nucleotide.  相似文献   

19.
ABCG2 (BCRP/MXR/ABCP) is a half-transporter associated with multidrug resistance that presumably homodimerizes for function. It has a conserved GXXXG motif in its first transmembrane segment, a motif that has been linked with dimerization in other proteins, e.g., glycophorin A. We substituted either or both glycines of this GXXXG motif with leucines to evaluate the impact on drug transport, ATP hydrolysis, cross-linking, and susceptibility to degradation. All mutants also carried the R482G gain-of-function mutation, and all migrated to the cell surface. The mutations resulted in lost transport for rhodamine 123 and impaired mitoxantrone, pheophorbide a, and BODIPY-prazosin transport, particularly in the double leucine mutant (G406L/G410L). Basal ATPase activity of the G406L/G410L mutant was comparable to the empty vector transfected cells with no substrate induction. Despite impaired function, the mutants retained susceptibility to cross-linking using either disuccinimidyl suberate (DSS) or the reducible dithiobis(succinimidyl propionate) (DSP) and demonstrated a high molecular weight complex under nonreducing conditions. Mutations to alanine at the same positions yielded fully functional transporters. Finally, we exposed cells to mitoxantrone to promote folding and processing of the mutant proteins, which in the leucine mutants resulted in increased amounts detected on immunoblot and by immunofluorescence. These studies support a hypothesis that the GXXXG motif promotes proper packing of the transmembrane segments in the functional ABCG2 homodimer, although it does not solely arbitrate dimerization.  相似文献   

20.
The ABC half-transporter, ABCG2, is known to confer resistance to chemotherapeutic agents including indolocarbazole derivatives. MCF7 cells were introduced by either wild type ABCG2 (ABCG2-482R) or mutant ABCG2 (-482T), whose amino acid at position 482 is substituted to threonine from arginine, and their cross-resistance pattern was analyzed. Although this amino acid substitution seems to affect cross-resistance patterns, both 482T- and 482R-transfectants showed strong resistance to indolocarbazoles, confirming that ABCG2 confers resistance to them. For further characterization of ABCG2-mediated transport, we investigated indolocarbazole compound A (Fig. 1) excretion in cell-free system. Compound A was actively transported in membrane vesicles prepared from one of the 482T- transfectants and its uptake was supported by hydrolysis of various nucleoside triphosphates. This transport was inhibited completely by the other indolocarbazole compound, but not by mitoxantrone, implying that the binding site of mitoxantrone or the transport mechanisms for mitoxantrone is different from those of indolocarbazoles. These results showed that ABCG2 confers resistance to indolocarbazoles by transporting them in an energy-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号