首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondrial dysfunction has a significant role in the development and complications of diabetic cardiomyopathy. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) mutations are also associated with different types of cancer and neurodegenerative diseases. The goal of this study was to determine if chronically elevated glucose increase in mtDNA damage contributed to mitochondrial dysfunction and identify the underlying basis for mtDNA damage. H9c2 myotubes (a cardiac-derived cell line) were studied in the presence of 5.5, 16.5, or 33.0 mM glucose for up to 13 days. Tests of mitochondria function (Complex I and IV activity and ATP generation) were all significantly depressed by elevated media glucose. Intramitochondrial superoxide and intracellular superoxide levels were transiently increased during the experimental period. AnnexinV binding (a marker of apoptosis) was significantly increased after 7 and 13 days of high glucose. Thirteen days of elevated glucose significantly increased mtDNA damage globally and across the region encoding for the three subunits of cytochrome oxidase. Using mitochondria isolated from cells chronically exposed to elevated glucose, we observed significant increases in topoisomerase-linked DNA cleavage. Mitochondria-dependent DNA cleavage was significantly exacerbated by H(2)O(2) and that immunoprecipitation of mitochondrial extracts with a mtTOP1 antibody significantly decreased DNA cleavage, indicating that at least part of this activity could be attributed to mtTOP1. We conclude that even mild increases in glucose presentation compromised mitochondrial function as a result of a decline in mtDNA integrity. Separate from a direct impact of oxidative stress on mtDNA, ROS-induced alteration of mitochondrial topoisomerase activity exacerbated and propagated increases in mtDNA damage. These findings are significant in that the activation/inhibition state of the mitochondrial topoisomerases will have important consequences for mitochondrial DNA integrity and the well being of the myocardium.  相似文献   

2.
Mitochondrial topoisomerase I (Top1mt) is a type IB topoisomerase present in vertebrates and exclusively targeted to mitochondria. Top1mt relaxes mitochondrial DNA (mtDNA) supercoiling by introducing transient cleavage complexes wherein the broken DNA strand swivels around the intact strand. Top1mt cleavage complexes (Top1mtcc) can be stabilized in vitro by camptothecin (CPT). However, CPT does not trap Top1mtcc efficiently in cells and is highly cytotoxic due to nuclear Top1 targeting. To map Top1mtcc on mtDNA in vivo and to overcome the limitations of CPT, we designed two substitutions (T546A and N550H) in Top1mt to stabilize Top1mtcc. We refer to the double-mutant enzyme as Top1mt*. Using retroviral transduction and ChIP-on-chip assays with Top1mt* in Top1mt knock-out murine embryonic fibroblasts, we demonstrate that Top1mt* forms high levels of cleavage complexes preferentially in the noncoding regulatory region of mtDNA, accumulating especially at the heavy strand replication origin OH, in the ribosomal genes (12S and 16S) and at the light strand replication origin OL. Expression of Top1mt* also caused rapid mtDNA depletion without affecting mitochondria mass, suggesting the existence of specific mitochondrial pathways for the removal of damaged mtDNA.  相似文献   

3.
There have been many reports of mitochondrial DNA (mtDNA) mutations associated with human malignancies. We have observed allelic instability in UV-induced cutaneous tumors at the mt-Tr locus encoding the mitochondrial tRNA for arginine. We examined the effects of somatic alterations at this locus by modeling the change in a uniform nuclear background by generating cybrids harboring allelic variation at mt-Tr. We utilized the naturally occurring mtDNA variation at mt-Tr within the BALB/cJ (BALB) and C57BL/6J (B6) strains of Mus musculus to transfer their mitochondria into a mouse ρ0 cell line that lacked its own mtDNA. The BALB haplotype containing the mt-Tr 9821insA allele produced significant changes in cellular respiration (resulting in lowered ATP production), but increased rates of cellular proliferation in cybrid cells. Furthermore, the mtDNA genotype associated with UV-induced tumors endowed the cybrid cells with a phenotype of resistance to UV-induced apoptosis and enhanced migration and invasion capabilities. These studies support a role for mtDNA changes in cancer.  相似文献   

4.
Mitochondrial alterations have been documented for many years in the brains of Parkinson’s disease (PD), a disorder that is characterized by the selective loss of dopamine neurons. Recent studies have demonstrated that Parkinson’s disease-associated proteins are either present in mitochondria or translocated into mitochondria in response to stress, further reinforcing the importance of the mitochondrial function in the pathogenesis of Parkinson’s disease. Exposure to environmental chemicals such as pesticides and heavy metals has been suggested as risk factors in the development of Parkinson’s disease. It has been reported that a number of environmental agents including tobacco smoke and perfluorinated compounds, pesticides, as well as metals (Mn2+ and Pb2+) modulate mitochondrial function. However the exact mechanism of mitochondrial alteration has not been defined in the context of the development and progression of Parkinson’s disease. The complexity of the mammalian system has made it difficult to dissect the molecular components involved in the pathogenesis of Parkinson’s disease. In the present study we used the nematode Caenorhabditis elegans (C. elegans) model of neuron degeneration and investigated the effect of environmental chemicals on mitochondrial biogenesis and mitochondrial gene regulation. Chronic exposure to low concentration (2 or 4 μM) of pesticide rotenone, resulted in significant loss of dopamine neuron in C. elegans, a classic feature of Parkinson’s disease. We then determined if the rotenone-induced neuron degeneration is accompanied by a change in mitochondria biogenesis. Analysis of mitochondrial genomic replication by quantitative PCR showed a dramatic decrease in mitochondrial DNA (mtDNA) copies of rotenone-treated C. elegans compared to control. This decreased mitochondrial biogenesis occurred prior to the development of loss of dopamine neurons, and was persistent. The inhibition of mtDNA replication was also found in C. elegans exposed to another neuron toxicant Mn2+ at the concentration 50 or 100 mM. We further examined the mitochondrial gene expression and found significant lower level of mitochondrial complex IV subunits COI and COII in C. elegans exposed to rotenone. These results demonstrate that environmental chemicals cause persistent suppression of mitochondrial biogenesis and mitochondrial gene expression, and suggest a critical role of modifying mitochondrial biogenesis in toxicants-induced neuron degeneration in C. elegans model.  相似文献   

5.
6.
Mitochondrial DNA (mtDNA) contains higher steady-state levels of oxidative damage and mutates at rates significantly greater than nuclear DNA. Oxidative lesions in mtDNA are removed by a base excision repair (BER) pathway. All mtDNA repair proteins are nuclear encoded and imported. Most mtDNA repair proteins so far discovered are either identical to nuclear DNA repair proteins or isoforms of nuclear proteins arising from differential splicing. Regulation of mitochondrial BER is therefore not expected to be independent of nuclear BER, though the extent to which mitochondrial BER is regulated with respect to mtDNA amount or damage is largely unknown. Here we have measured DNA BER activities in lysates of mitochondria isolated from human 143B TK osteosarcoma cells that had been depleted of mtDNA (ρ0) or not (wt). Despite the total absence of mtDNA in the ρ0 cells, a complete mitochondrial BER pathway was present, as demonstrated using an in vitro assay with synthetic oligonucleotides. Measurement of individual BER protein activities in mitochondrial lysates indicated that some BER activities are insensitive to the lack of mtDNA. Uracil and 8-oxoguanine DNA glycosylase activities were relatively insensitive to the absence of mtDNA, only about 25% reduced in ρ0 relative to wt cells. Apurinic/apyrimidinic (AP) endonuclease and polymerase γ activities were more affected, 65 and 45% lower, respectively, in ρ0 mitochondria. Overall BER activity in lysates was also about 65% reduced in ρ0 mitochondria. To identify the limiting deficiencies in BER of ρ0 mitochondria we supplemented the BER assay of mitochondrial lysates with pure uracil DNA glycosylase, AP endonuclease and/or the catalytic subunit of polymerase γ. BER activity was stimulated by addition of uracil DNA glycosylase and polymerase γ. However, no addition or combination of additions stimulated BER activity to wt levels. This suggests that an unknown activity, factor or interaction important in BER is deficient in ρ0 mitochondria. While nuclear BER protein levels and activities were generally not altered in ρ0 cells, AP endonuclease activity was substantially reduced in nuclear and in whole cell extracts. This appeared to be due to reduced endogenous reactive oxygen species (ROS) production in ρ0 cells, and not a general dysfunction of ρ0 cells, as exposure of cells to ROS rapidly stimulated increases in AP endonuclease activities and APE1 protein levels.  相似文献   

7.
Zhang H  Pommier Y 《Biochemistry》2008,47(43):11196-11203
Mitochondrial DNA (mtDNA) is required for mitochondrial activities because it encodes key proteins for oxidative phosphorylation and the production of cellular ATP. We previously reported the existence of a specific mitochondrial topoisomerase gene, Top1mt, in all vertebrates. The corresponding polypeptide contains an N-terminal mitochondrial targeting sequence and is otherwise highly homologous to the nuclear topoisomerase I (Top1). In this study, we provide biochemical evidence of the presence of an endogenous Top1mt polypeptide in human mitochondria. Using novel antibodies against Top1mt, we detected the corresponding 70 kDa polypeptide in mitochondria but not in nuclear fractions. This polypeptide could be trapped to form covalent complexes with mtDNA when mitochondria from human cells were treated with camptothecin. Mapping of Top1mt sites in the regulatory D-loop region of mtDNA in mitochondria revealed the presence of an asymmetric cluster of Top1mt sites confined to a 150 bp segment downstream from, and adjacent to, the site at which replication is prematurely terminated, generating an approximately 650-base (7S DNA) product that forms the mitochondrial D-loop. Moreover, we show that inhibition of Top1mt by camptothecin reduces the level of formation of the 7S DNA. These results suggest novel roles for Top1mt in regulating mtDNA replication.  相似文献   

8.
Various human diseases are associated with mitochondrial DNA (mtDNA) mutations, but heteroplasmy—the coexistence of mutant and wild-type mtDNA—complicates their study. We previously isolated a temperature-lethal mtDNA mutation in Drosophila, mt:CoIT300I, which affects the cytochrome c oxidase subunit I (CoI) locus. In the present study, we found that the decrease in cytochrome c oxidase (COX) activity was ascribable to a temperature-dependent destabilization of cytochrome a heme. Consistently, the viability of homoplasmic flies at 29°C was fully restored by expressing an alternative oxidase, which specifically bypasses the cytochrome chains. Heteroplasmic flies are fully viable and were used to explore the age-related and tissue-specific phenotypes of mt:CoIT300I. The proportion of mt:CoIT300I genome remained constant in somatic tissues along the aging process, suggesting a lack of quality control mechanism to remove defective mitochondria containing a deleterious mtDNA mutation. Using a genetic scheme that expresses a mitochondrially targeted restriction enzyme to induce tissue-specific homoplasmy in heteroplasmic flies, we found that mt:CoIT300I homoplasmy in the eye caused severe neurodegeneration at 29°C. Degeneration was suppressed by improving mitochondrial Ca2+ uptake, suggesting that Ca2+ mishandling contributed to mt:CoIT300I pathogenesis. Our results demonstrate a novel approach for Drosophila mtDNA genetics and its application in modeling mtDNA diseases.  相似文献   

9.
Mitochondrial DNA (mtDNA) is highly polymorphic, and its variations in humans may contribute to individual differences in function as well as susceptibility to various diseases such as Parkinson disease, Alzheimer disease, bipolar disorder, and cancer. However, it is unclear whether and how mtDNA polymorphisms affect intracellular function, such as calcium signaling or pH regulation. Here we searched for mtDNA polymorphisms that have intracellular functional significance using transmitochondrial hybrid cells (cybrids) carrying ratiometric Pericam (RP), a fluorescent calcium indicator, targeted to the mitochondria and nucleus. By analyzing the entire mtDNA sequence in 35 cybrid lines, we found that two closely linked nonsynonymous polymorphisms, 8701A and 10398A, increased the basal fluorescence ratio of mitochondria-targeted RP. Mitochondrial matrix pH was lower in the cybrids with 8701A/10398A than it was in those with 8701G/10398G, suggesting that the difference observed by RP was mainly caused by alterations in mitochondrial calcium levels. Cytosolic calcium response to histamine also tended to be higher in the cybrids with 8701A/10398A. It has previously been reported that 10398A is associated with an increased risk of Parkinson disease, Alzheimer disease, bipolar disorder, and cancer, whereas 10398G associates with longevity. Our findings suggest that these mtDNA polymorphisms may play a role in the pathophysiology of these complex diseases by affecting mitochondrial matrix pH and intracellular calcium dynamics.  相似文献   

10.
Alkbh1 is a mammalian homolog of the Escherichia coli DNA repair enzyme AlkB, an Fe(II) and 2-oxoglutarate dependent dioxygenase that removes alkyl lesions from DNA bases. The human homolog ALKBH1 has been associated with six different enzymatic activities including DNA, mRNA, or tRNA hydroxylation, cleavage at abasic (AP) sites in DNA, as well as demethylation of histones. The reported cellular roles of this protein reflect the diverse enzymatic activities and include direct DNA repair, tRNA modification, and histone modification. We demonstrate that ALKBH1 produced in mammalian cells (ALKBH1293) is similar to the protein produced in bacteria (ALKBH1Ec) with regard to its m6A demethylase and AP lyase activities. In addition, we find that ALKBH1293 forms a covalent adduct with the 5′ product of the lyase product in a manner analogous to ALKBH1Ec. Localization and subcellular fractionation studies with the endogenous protein in two human cell strains confirm that ALKBH1 is primarily in the mitochondria. Two strains of CRISPR/Cas9-created ALKBH1-deficient HEK293 cells showed increases in mtDNA copy number and mitochondrial dysfunction as revealed by growth measurements and citrate synthase activity assays.  相似文献   

11.
Mitochondrial DNA (mtDNA) is different in many ways from nuclear DNA. A key difference is that certain types of DNA damage are not repaired in the mitochondrial genome. What, then, is the fate of such damage? What are the effects? Both questions are important from a health perspective because irreparable mtDNA damage is caused by many common environmental stressors including ultraviolet C radiation (UVC). We found that UVC-induced mtDNA damage is removed slowly in the nematode Caenorhabditis elegans via a mechanism dependent on mitochondrial fusion, fission, and autophagy. However, knockdown or knockout of genes involved in these processes—many of which have homologs involved in human mitochondrial diseases—had very different effects on the organismal response to UVC. Reduced mitochondrial fission and autophagy caused no or small effects, while reduced mitochondrial fusion had dramatic effects.  相似文献   

12.
Mitochondrion is a double membrane organelle that is responsible for cellular respiration and production of most of the ATP in eukaryotic cells. Mitochondrial DNA (mtDNA) is the genetic material carried by mitochondria, which encodes some essential subunits of respiratory complexes independent of nuclear DNA. Normally, mtDNA binds to certain proteins to form a nucleoid that is stable in mitochondria. Nevertheless, a variety of physiological or pathological stresses can cause mtDNA damage, and the accumulation of damaged mtDNA in mitochondria leads to mitochondrial dysfunction, which triggers the occurrence of mitochondrial diseases in vivo. In response to mtDNA damage, cell initiates multiple pathways including mtDNA repair, degradation, clearance and release, to recover mtDNA, and maintain mitochondrial quality and cell homeostasis. In this review, we provide our current understanding of the fate of damaged mtDNA, focus on the pathways and mechanisms of removing damaged mtDNA in the cell.  相似文献   

13.
Mitochondrial dysfunction is an early pathological feature of Alzheimer’s disease (AD). The underlying mechanisms and strategies to repair it remain unclear. Here, we demonstrate for the first time the direct consequences and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in AD. Using cytoplasmic hybrid (cybrid) neurons with incorporated platelet mitochondria from AD and age-matched non-AD human subjects into mitochondrial DNA (mtDNA)-depleted neuronal cells, we observed that AD cybrid cells had significant changes in morphology and function; such changes associate with altered expression and distribution of dynamin-like protein (DLP1) and mitofusin 2 (Mfn2). Treatment with antioxidant protects against AD mitochondria-induced extracellular signal-regulated kinase (ERK) activation and mitochondrial fission-fusion imbalances. Notably, inhibition of ERK activation not only attenuates aberrant mitochondrial morphology and function but also restores the mitochondrial fission and fusion balance. These effects suggest a role of oxidative stress-mediated ERK signal transduction in modulation of mitochondrial fission and fusion events. Further, blockade of the mitochondrial fission protein DLP1 by a genetic manipulation with a dominant negative DLP1 (DLP1K38A), its expression with siRNA-DLP1, or inhibition of mitochondrial division with mdivi-1 attenuates mitochondrial functional defects observed in AD cybrid cells. Our results provide new insights into mitochondrial dysfunction resulting from changes in the ERK-fission/fusion (DLP1) machinery and signaling pathway. The protective effect of mdivi-1 and inhibition of ERK signaling on maintenance of normal mitochondrial structure and function holds promise as a potential novel therapeutic strategy for AD.  相似文献   

14.
Characteristics of mitochondrial (mt) DNA such as gene content and arrangement, as well as mt tRNA secondary structure, are frequently used in comparative genomic analyses because they provide valuable phylogenetic information. However, most analyses do not characterize the relationship of tRNA genes from the same mt genome and, in some cases, analyses overlook possible novel open reading frames (ORFs) when the 13 expected protein-coding genes are already annotated. In this study, we describe the sequence and characterization of the complete mt genome of the silver-lip pearl oyster, Pinctada maxima. The 16,994-bp mt genome contains the same 13 protein-coding genes (PCGs) and two ribosomal RNA genes typical of metazoans. The gene arrangement, however, is completely distinct from that of all other available bivalve mt genomes, and a unique tRNA gene family is observed in this genome. The unique tRNA gene family includes two trnS− AGY and trnQ genes, a trnM isomerism, but it lacks trnS− CUN. We also report the first clear evidence of alloacceptor tRNA gene recruitment (trnP → trnS− AGY) in mollusks. In addition, a novel ORF (orfUR1) expressed at high levels is present in the mt genome of this pearl oyster. This gene contains a conserved domain, “Oxidored_q1_N”, which is a member of Complex I and thus may play an important role in key biological functions. Because orfUR1 has a very similar nucleotide composition and codon bias to that of other genes in this genome, we hypothesize that this gene may have been moved to the mt genome via gene transfer from the nuclear genome at an early stage of speciation of P. maxima, or it may have evolved as a result of gene duplication, followed by rapid sequence divergence. Lastly, a 319-bp region was identified as the possible control region (CR) even though it does not correspond to the longest non-coding region in the genome. Unlike other studies of mt genomes, this study compares the evolutionary patterns of all available bivalve mt tRNA and atp8 genes.  相似文献   

15.
In contrast to the extreme conservation of nuclear-encoded tRNAs, organization of the mitochondrial (mt) tRNA gene family in invertebrates is highly dynamic and rapidly evolving. While gene duplication and loss, gene isomerism, recruitment, and rearrangements have occurred sporadically in several invertebrate lineages, little is known regarding the pattern of their evolution. Comparisons of invertebrate mt genomes at a generic level can be extremely helpful in investigating evolutionary patterns of variation, as intermediate stages of the process may be identified. Variation of mitochondrial tRNA organization among Meretrix clams provides good materials to investigate mt tRNA evolution. We characterized the complete mt genome of the lyrate Asiatic hard clam Meretrix lyrata, re-annotated tRNAs of four previously sequenced Meretrix clams, and undertook an intensive comparison of tRNA gene families in these clams. Our results 1) provide evidence that the commonly observed duplication of trnM may have occurred independently in different bivalve lineages and, based on the higher degree of trnM gene similarity, may have occurred more recently than expected; 2) suggest that “horizontal” evolution may have played an important role in tRNA gene family evolution based on frequent gene duplications and gene recruitment events; and 3) reveal the first case of isoacceptor “vertical” tRNA gene recruitment (VTGR) and present the first clear evidence that VTGR allows rapid evolution of tRNAs. We identify the trnS− UCR gene in Meretrix clams, previously considered missing in this lineage, and speculate that trnS− UCR lacking the D-arm in both M. lyrata and Meretrix lamarckii may represent the ancestral status. Phylogenetic analysis based on 13 concatenate protein-coding genes provided opportunities to detect rapidly evolved tRNA genes via VTGR and gene isomerism processes. This study suggests that evolution of the mt tRNA gene family in bivalves is more complex than previously thought and that comparison of several congeneric species is a useful strategy in investigating evolutionary patterns and dynamics of mt tRNA genes.  相似文献   

16.
Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes.  相似文献   

17.
Hybridization saturation analyses of mitochondrial DNA from 11 petite clones genetically characterized with respect to chloramphenicol and erythromycin resistance markers, have been carried out with 11 individual mitochrondrial transfer RNAs. Mitochondrial tRNA cistrons were lost, retained, or amplified in different petite strains. In some cases hybridization levels corrected for kinetic complexity of the mtDNA3 were two- to threefold greater than that for grande mtDNA indicating selective amplification, or increased number of copies, of the segment of mtDNA containing that tRNA cistron. Hybridization levels corrected for reduced kinetic complexity of petite mtDNAs in many cases were only 1 to 10% of that for grande mtDNA suggesting a low level of intracellular molecular heterogeneity of mtDNA with respect to tRNA cistrons. Some petite clones that retained tRNA genes continued to transcribe mitochondrial tRNAs, since tRNA isolated from these strains could be aminoacylated with Escherichia, coli synthetases and hybridized with mtDNA. Hybridization data allow us to order several of the tRNA cistrons on the mitochondrial genome with respect to the chloramphenicol and erythromycin antibiotic resistance markers.  相似文献   

18.
A severe mitochondrial protein synthesis defect in myoblasts from a patient with mitochondrial myopathy was transferred with myoblast mitochondria into two genetically unrelated mitochondrial DNA (mtDNA)-less human cell lines, pointing to an mtDNA alteration as being responsible and sufficient for causing the disease. The transfer of the defect correlated with marked deficiencies in respiration and cytochrome c oxidase activity of the transformants and the presence in their mitochondria of mtDNA carrying a tRNA(Lys) mutation. Furthermore, apparently complete segregation of the defective genotype and phenotype was observed in the transformants derived from the heterogeneous proband myoblast population, suggesting that the mtDNA heteroplasmy in this population was to a large extent intercellular. The present work thus establishes a direct link between mtDNA alteration and a biochemical defect.  相似文献   

19.
Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle's high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5′ flap structures generated during DNA synthesis. Furthermore, removal of 5′ flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity.  相似文献   

20.
DNA polymerase γ is the only known DNA polymerase in human mitochondria and is essential for mitochondrial DNA replication and repair. It is well established that defects in mtDNA replication lead to mitochondrial dysfunction and disease. Over 160 coding variations in the gene encoding the catalytic subunit of DNA polymerase γ (POLG) have been identified. Our group and others have characterized a number of the more common and interesting mutations, as well as those disease mutations in the DNA polymerase γ accessory subunit. We review the results of these studies, which provide clues to the mechanisms leading to the disease state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号