首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
G‐quadruplexes are characteristic structural arrangements of guanine‐rich DNA sequences that abound in regions with relevant biological significance. These structures are highly polymorphic differing in the number and polarity of the strands, loop composition, and conformation. Furthermore, the cation species present in solution strongly influence the topology of the G‐quadruplexes. Recently, we reported the synthesis and structural studies of new G‐quadruplex forming oligodeoxynucleotides (ODNs) in which the 3′‐ and/or the 5′‐ends of four ODN strands are linked together by a non‐nucleotidic tetra‐end‐linker (TEL). These TEL‐ODN analogs having the sequence TGGGGT are able to form parallel G‐quadruplexes characterized by a remarkable high thermal stability. We report here an investigation about the influence of the reduction of the TEL size on the molecularity, topology, and stability of the resulting TEL‐G‐quadruplexes using a combination of circular dichroism (CD), CD melting, 1H NMR spectroscopy, gel electrophoresis, and molecular modeling data. We found that all TEL‐(TGGGGT)4 analogs, regardless the TEL size and the structural orientation of the ODN branches, formed parallel TEL‐G‐quadruplexes. The molecular modeling studies appear to be consistent with the experimental CD and NMR data revealing that the G‐quadruplexes formed by TEL‐ODNs having the longer TEL (L 1 ‐ 4 ) are more stable than the corresponding G‐quadruplexes having the shorter TEL (S 1 ‐ 4 ). The relative stability of S 1 ‐ 4 was also reported. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 466–477, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
Filamentous amyloid aggregates are central to the pathology of Alzheimer's disease. We use all-atom molecular dynamics (MD) simulations with explicit solvent and multiple force fields to probe the structural stability and the conformational dynamics of several models of Alzheimer's beta-amyloid fibril structures, for both wild-type and mutated amino acid sequences. The structural models are based on recent solid state NMR data. In these models, the peptides form in-register parallel beta-sheets along the fibril axis, with dimers of two U-shaped peptides located in layers normal to the fibril axis. Four different topologies are explored for stacking the beta-strand regions against each other to form a hydrophobic core. Our MD results suggest that all four NMR-based models are structurally stable, and we find good agreement with dihedral angles estimated from solid-state NMR experiments. Asp23 and Lys28 form buried salt-bridges, resulting in an alternating arrangement of the negatively and positively charged residues along the fibril axis that is reminiscent of a one-dimensional ionic crystal. Interior water molecules are solvating the buried salt-bridges. Based on data from NMR measurements and MD simulations of short amyloid fibrils, we constructed structural models of long fibrils. Calculated X-ray fiber diffraction patterns show the characteristics of packed beta-sheets seen in experiments, and suggest new experiments that could discriminate between various fibril topologies.  相似文献   

3.
In this article, we report a structural study, based on NMR and CD spectroscopies, and molecular modelling of all possible d(TG(3)T) and d(TG(4)T) analogues containing two 8-methyl-2'-deoxyguanosine residues (M). Particularly, the potential ability of these modified residues to orientate the strands and then to affect the folding topology of tetramolecular quadruplex structures has been investigated. Oligodeoxynucleotides (ODNs) TMMGT (T12) and TMMGGT (F12) form parallel tetramolecular quadruplexes, characterized by an all-syn M-tetrad at the 5'-side stacked to all-anti M- and G-tetrads. ODNs TMGMT (T13) and TMGGMT (F14) form parallel tetramolecular quadruplexes, in which an all-anti G core is sandwiched between two all-syn M-tetrads at the 5'- and the 3'-side. Notably, the quadruplex formed by T13 corresponds to an unprecedented structure in which the syn residues exceed in number the anti ones. Conversely, ODN TGMGMT (F24) adopts a parallel arrangement in which all-anti G-tetrads alternate with all-syn M-tetrads. Most importantly, all data strongly suggest that ODN TMGMGT (F13) forms an unprecedented anti-parallel tetramolecular quadruplex in which G and M residues adopt anti and syn glycosidic conformations, respectively. This article opens up new understandings and perspectives about the intricate relationship between the quadruplex strands orientation and the glycosidic conformation of the residues.  相似文献   

4.
Using circular dichroism spectroscopy, gel electrophoresis, and ultraviolet absorption spectroscopy, we have studied quadruplex folding of RNA/DNA analogs of the Oxytricha telomere fragment, G(4)T(4)G(4), which forms the well-known basket-type, antiparallel quadruplex. We have substituted riboguanines (g) for deoxyriboguanines (G) in the positions G1, G9, G4, and G12; these positions form the terminal tetrads of the G(4)T(4)G(4) quadruplex and adopt syn, syn, anti, and anti glycosidic geometries, respectively. We show that substitution of a single sugar was able to change the quadruplex topology. With the exception of G(4)T(4)G(3)g, which adopted an antiparallel structure, all the RNA/DNA hybrid analogs formed parallel, bimolecular quadruplexes in concentrated solution at low salt. In dilute solutions ( approximately 0.1 mM nucleoside), the RNA/DNA hybrids substituted at positions 4 or 12 adopted antiparallel quadruplexes, which were especially stable in Na(+) solutions. The hybrids substituted at positions 1 and 9 preferably formed parallel quadruplexes, which were more stable than the nonmodified G(4)T(4)G(4) quadruplex in K(+) solutions. Substitutions near the 3'end of the molecule affected folding more than substitutions near the 5'end. The ability to control quadruplex folding will allow further studies of biophysical and biological properties of the various folding topologies. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 797-806, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

5.
The present study reports on the solution structure of the guanine plus adenine rich d(A(2)G(2)T(4)A(2)G(2)) 12-mer sequence which forms a unique fold in moderate NaCl solution. Proton resonance assignments for this sequence, which contains a pair of AAGG repeats separated by a T(4) linker segment, were aided by site-specific (15)N-labeling of guanine and adenine bases, as well as site-specific incorporation of 2,6-diaminopurine and 8-bromoadenine for adenine, 8-bromoguanine, 7-deazaguanine and inosine for guanine, and uracil and 5-bromouracil for thymine. The solution structure, which was solved by a combined NMR and intensity-refined computational approach, consists of a diamond-shaped architecture formed through dimerization of a pair of d(A(2)G(2)T(4)A(2)G(2)) hairpins. This 2-fold symmetric structure contains a quadruplex core consisting of a pair of symmetry-related G(syn).G(syn).G(anti). G(anti) tetrads, where adjacent strands have both parallel and anti-parallel neighbors and connecting T(4) segments which form diagonal loops. Each of the G(syn).G(syn).G(anti).G(anti) tetrads forms a platform on which stacks a T(anti).[A(syn)-A(anti)] triad containing a novel A(syn)-A(anti) platform step and a reversed Hoogsteen A(syn).T(anti) pair. We observe both base-base and base-sugar stacking interactions, with the latter occuring at a sheared A-G step where the sugar of the A stacks on the purine plane of the G. Unexpectedly, the topology of this sheared A(anti)-G(syn) step has many similarities with the C(anti)-G(syn) step in left-handed Z-DNA. The T.(A-A) triad is sandwiched between the G-tetrad on one side and a reversed Hoogsteen A(anti).T(anti) pair on the other. This intercalative topology is facilitated by a zipper-like motif where the A(anti) residue of the triad is interdigitated within a stretched A(anti)-G(syn) step. Our structural study reports on new aspects of A-A platforms, base triads, zipper-like interdigitation and sheared base steps, together with base-base and base-sugar stacking defining a diamond-like architecture for the d(A(2)G(2)T(4)A(2)G(2)) sequence. One can anticipate that mixed guanine-adenine sequences will exhibit a rich diversity of polymorphic architectures that will provide unique topologies for recognition by both nucleic acids and proteins.  相似文献   

6.
The structure of d(GGAGGAGGAGGA) containing four tandem repeats of a GGA triplet sequence has been determined under physiological K(+) conditions. d(GGAGGAGGAGGA) folds into an intramolecular quadruplex composed of a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad. Four G-G segments of d(GGAGGAGGAGGA) are aligned parallel with each other due to six successive turns of the main chain at each of the GGA and GAGG segments. Two quadruplexes form a dimer stabilized through a stacking interaction between the heptads of the two quadruplexes. Comparison of the structure of d(GGAGGAGGAGGA) with the reported structure of d(GGAGGAN) (N=G or T) containing two tandem repeats of the GGA triplet revealed that although the two structures resemble each other to some extent, the extension of the repeats of the GGA triplet leads to distinct structural differences: intramolecular quadruplex for 12-mer versus intermolecular quadruplex for 7-mer; heptad versus hexad in the quadruplex; and three sheared G:A base-pairs versus two sheared G:A base-pairs plus one A:A base-pair per quadruplex. It was also suggested that d(GGAGGAGGAGGA) forms a similar quadruplex under low salt concentration conditions. This is in contrast to the case of d(GGAGGAN) (N=G or T), which forms a duplex under low salt concentration conditions. On the basis of these results, the structure of naturally occurring GGA triplet repeat DNA is discussed.  相似文献   

7.
P K Patel  A S Koti    R V Hosur 《Nucleic acids research》1999,27(19):3836-3843
The structure of the telomeric DNA has been a subject of extensive investigation in recent years due to the realization that it has important functional roles to play in vivo and the observations that truncated telomeric sequences exhibit a great variety of 3D structures in aqueous solutions. In this context, we describe here NMR structural studies on two truncated human telomeric DNA sequences, d-AG(3)T and d-TAG(3)T in solutions containing K(+)ions. The G(3)stretches in both the oligonucleotides were seen to form parallel-stranded quadruplexes. However, the AG(3)segment as a whole, had different structural characteristics. The structure of d-AG(3)T revealed the formation of a novel A-tetrad, which was not seen in d-TAG(3)T. The A's in the tetrad had syn glycosidic conformation as opposed to the anti conformation of the G's in the G-tetrads. The A-tetrad stacked well over the adjacent G-tetrad and the twist angle at this step was smaller in d-AG(3)T than in d-TAG(3)T. These observations are expected to be significant from the point of view of structural diversity and recognition in telomeres.  相似文献   

8.
Abstract

Guanine rich DNA sequences of regulatory genomic regions form secondary structures known as G-quadruplexes usually stabilized by tetrads of Hoogsteen hydrogen bonded guanines. The in vivo existence of G-quadruplexes ascertains their biological roles. Human telomeric repeats are the most studied G-rich sequences. The four repeat Giardia telomeric sequence (TAGGG)4 differs from its human counterpart (TTAGGG)4, by deletion of one T at the G-tract intervening site of each repeat. We show here that whilst the two repeat Giardia telomeric sequence (TAGGG)2 forms parallel and antiparallel quadruplexes with tetramolecular topology exclusively, the four repeat version (TAGGG)4 forms a tetramolecular (antiparallel) and unimolecular (parallel) quadruplexes in Na+. The tetramolecular (antiparallel) G-quadruplex formed by four repeats of Giardia telomeric sequence is stabilized by the additional Watson-Crick bonding between its intervening TA bases aligned in antiparallel fashion. Four stranded antiparallel quadruplex for four repeats of any telomeric sequence have not been characterized till date. We hypothesize that telomeric association in antiparallel fashion, (via G-overhangs to form tetramolecular quadruplex) could be a biologically relevant molecular event. Further, coexistence of Hoogsteen as well as Watson-Crick base pairing might give insight for recognition of conformationally diverse DNA structures by ligands.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
RNA aptamers against bovine prion protein (bPrP) were obtained, most of the obtained aptamers being found to contain the r(GGAGGAGGAGGA) (R12) sequence. Then, it was revealed that R12 binds to both bPrP and its β-isoform with high affinity. Here, we present the structure of R12. This is the first report on the structure of an RNA aptamer against prion protein. R12 forms an intramolecular parallel quadruplex. The quadruplex contains G:G:G:G tetrad and G(:A):G:G(:A):G hexad planes. Two quadruplexes form a dimer through intermolecular hexad–hexad stacking. Two lysine clusters of bPrP have been identified as binding sites for R12. The electrostatic interaction between the uniquely arranged phosphate groups of R12 and the lysine clusters is suggested to be responsible for the affinity of R12 to bPrP. The stacking interaction between the G:G:G:G tetrad planes and tryptophan residues may also contribute to the affinity. One R12 dimer molecule is supposed to simultaneously bind the two lysine clusters of one bPrP molecule, resulting in even higher affinity. The atomic coordinates of R12 would be useful for the development of R12 as a therapeutic agent against prion diseases and Alzheimer''s disease.  相似文献   

10.
Conformational changes in DNA G-quadruplex (GQ)-forming regions affect genome function and, thus, compose an interesting research topic. Computer modelling may yield insight into quadruplex folding and rearrangement, particularly molecular dynamics simulations. Here, we show that specific parameters, which are distinct from those commonly used in DNA conformational analyses, must be introduced for adequate interpretation and, most importantly, convenient visual representation of the quadruplex modelling results. We report a set of parameters that comprehensively and systematically describe GQ geometry in dynamics. The parameters include those related to quartet planarity, quadruplex twist, and quartet stacking; they are used to quantitatively characterise various types of quadruplexes and rearrangements, such as quartet distortion/disruption or deviation/bulging of a single nucleotide from the quartet plane. Our approach to describing conformational changes in quadruplexes using the new parameters is exemplified by telomeric quadruplex rearrangement, and the benefits of applying this approach to analyse other structures are discussed.  相似文献   

11.
We have studied the formation and structural properties of quadruplexes of the human telomeric DNA sequence G(3)(T(2)AG(3))(3) and related sequences in which each guanine base was replaced by an adenine base. None of these single base substitutions hindered the formation of antiparallel quadruplexes, as shown by circular dichroism, gel electrophoresis, and UV thermal stability measurements in NaCl solutions. Effect of substitution did differ, however, depending on the position of the substituted base. The A-for-G substitution in the middle quartet of the antiparallel basket scaffold led to the most distorted and least stable structures and these sequences preferred to form bimolecular quadruplexes. Unlike G(3)(T(2)AG(3))(3), no structural transitions were observed for the A-containing analogs of G(3)(T(2)AG(3))(3) when sodium ions were replaced by potassium ions. The basic quadruplex topology remained the same for all sequences studied in both salts. As in vivo misincorporation of A for a G in the telomeric sequence is possible and potassium is a physiological salt, these findings may have biological relevance.  相似文献   

12.
Structure-specific ligands are convenient tools for the recognition, targeting or probing of non-canonical DNA structures. Porphyrin derivatives exhibit a preference for interaction with G-quadruplex (G4) structures over canonical duplex DNA and are able to cause photoinducible damage to nucleic acids. Here, we show that Zn(II) 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (ZnP1) interacts with different conformations of the telomeric sequence d(TAGGG(TTAGGG)3) at submicromolar concentrations without any detectible disturbance of the particular fold. Among different folds, potassium (3+1) hybrid G4-structure. reveal the highest affinity to ZnP1. The pattern of guanine oxidation is specific for each telomeric DNA conformation and may serve as an additional tool for probing the G4 topology. The potassium (3+1) and parallel G4 conformations are more susceptible to light-induced oxidation than the sodium G4 conformation or double helix of the telomeric DNA. The major products of the guanine modifications are spiroiminodihydantoin (Sp) and 8-oxoguanine (8-oxoG). ZnP1-induced oxidation of guanines results in the structural rearrangement of parallel and (3+1) G4 conformations yielding an antiparallel-like G4 conformation. The mechanism of the observed light-induced conformational changes is discussed.  相似文献   

13.
Emergence of thousands of crystal structures of noncoding RNA molecules indicates its structural and functional diversity. RNA function is based upon a large variety of structural elements which are specifically assembled in the folded molecules. Along with the canonical Watson‐Crick base pairs, different orientations of the bases to form hydrogen‐bonded non‐canonical base pairs have also been observed in the available RNA structures. Frequencies of occurrences of different non‐canonical base pairs in RNA indicate their important role to maintain overall structure and functions of RNA. There are several reports on geometry and energetic stabilities of these non‐canonical base pairs. However, their stacking geometry and stacking stability with the neighboring base pairs are not well studied. Among the different non‐canonical base pairs, the G:U wobble base pair (G:U W:WC) is most frequently observed in the RNA double helices. Using quantum chemical method and available experimental data set we have studied the stacking geometry of G:U W:WC base pair containing dinucleotide sequences in roll‐slide parameters hyperspace for different values of twist. This study indicates that the G:U W:WC base pair can stack well with the canonical base pairs giving rise to large interaction energy. The overall preferred stacking geometry in terms of roll, twist and slide for the eleven possible dinucleotide sequences is seen to be quite dependent on their sequences. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 328–338, 2015.  相似文献   

14.
Structural knowledge of telomeric DNA is critical for understanding telomere biology and for the utilization of telomeric DNA as a therapeutic target. Very little is known about the structure of long human DNA sequences that may form more than one quadruplex unit. Here, we report a combination of molecular dynamics simulations and experimental biophysical studies to explore the structural and dynamic properties of the human telomeric sequence (TTAGGG)8TT that folds into two contiguous quadruplexes. Five higher order quadruplex models were built combining known single human telomeric quadruplex structures as unique building blocks. The biophysical properties of this sequence in K+ solution were experimentally investigated by means of analytical ultracentrifugation and UV spectroscopy. Additionally, the environments of loop adenines were probed by fluorescence studies using systematic single‐substitutions of 2‐aminopurine for the adenine bases. The comparison of the experimentally determined properties with the corresponding quantities predicted from the models allowed us to test the validity of each of the structural models. One model emerged whose properties are most consistent with the predictions, and which therefore is the most probable structure in solution. This structure features contiguous quadruplex units in an alternating hybrid‐1‐hybrid‐2 conformation with a highly ordered interface composed of loop residues from both quadruplexes © 2010 Wiley Periodicals, Inc. Biopolymers 93:533–548, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
We have determined solution structure of r(GGAGGUUUUGGAGG) (R14) by NMR; the RNA 14-mer forms an intra-strand parallel quadruplex with a G-tetrad and a hexad, in which a G-tetrad core is augmented by association of two A residues. The quadruplex further forms a dimer through stacking interaction between the hexads. In order to obtain insight into the difference between RNA and DNA quadruplexes, we synthesized the corresponding DNA 14-mer, d(GGAGGTTTTGGAGG) (D14), and examined its properties and structure by CD, gel electrophoresis, and NMR. K+ ions increased the thermal stability of both R14 and D14 structures. The binding affinity of K+ ions to R14 was much higher than that to D14. The CD and gel electrophoretic studies suggest that D14 forms a quadruplex entirely different from that of R14 in the presence of K+ ions; two molecules of D14 form a quadruplex with both antiparallel and parallel strand alignments and with diagonal loops at both ends of the stacked G-tetrads. The NMR study also gave results that are consistent with such structure: alternate glycosidic conformation, 5'G(syn)-G(anti)3', and characteristic chemical shift data observed for many quadruplexes containing diagonal TTTT loops.  相似文献   

16.
Loops which are linkers connecting G-strands and supporting the G-tetrad core in G-quadruplex are important for biological roles of G-quadruplexes. TTA loop is a common sequence which mainly resides in human telomeric DNA (hTel) G-quadruplex. A series of molecular dynamics (MD) simulations were carried out to investigate the structural dynamics of TTA loops. We found that (1) the TA base pair formed in TTA loops are very stable, the occupied of all hydrogen bonds are more than 0.95. (2) The TA base pair makes the adjacent G-quartet more stable than others. (3) For the edgewise loop and the diagonal loop, most loop bases are stacking with others, only few bases have considerable freedom. (4) The stabilities of these stacking structures are distinct. Part of the loops, especially TA base pairs, and bases stacking with the G-quartet, maintain certain stable conformations in the simulation, but other parts, like TT and TA stacking structures, are not stable enough. For the first time, spontaneous conformational switches of TTA edgewise loops were observed in our long time MD simulations. (5) For double chain reversal loop, it is really hard to maintain a stable conformation in the long time simulation under present force fields (parm99 and parmbsc0), as it has multiple conformations with similar free energies.  相似文献   

17.
Singh N  Briggs JM 《Biopolymers》2008,89(12):1104-1113
Protein flexibility and conformational diversity is well known to be a key characteristic of the function of many proteins. Human blood coagulation proteins have multiple substrates, and various protein-protein interactions are required for the smooth functioning of the coagulation cascade to maintain blood hemostasis. To address how a protein may cope with multiple interactions with its structurally diverse substrates and the accompanied structural changes that may drive these changes, we studied human Factor X. We employed 20 ns of molecular dynamics (MD) and steered molecular dynamics (SMD) simulations on two different conformational forms of Factor X, open and closed, and observed an interchangeable conformational transition from one to another. This work also demonstrates the roles of various aromatic residues involved in aromatic-aromatic interactions, which make this dynamic transition possible.  相似文献   

18.
Guanine‐rich sequences are able to form quadruplexes consisting of G‐quartet structural units. Quadruplexes play an important role in the regulation of gene expression and have therapeutic and biotechnological potential. The HIV‐1 integrase inhibitor, (GGGT)4, and its variants demonstrate unusually high thermal stability. This property has been exploited in the use of quadruplex formation to drive various endergonic reactions of nucleic acids such as isothermal DNA amplification. Quadruplex stability is mainly determined by cations, which specifically bind into the inner core of the structure. In the present work, we report a systematic study of a variant of the HIV‐1 integrase inhibitor, GGGTGGGTGGGTGGG (G3T), in the presence of alkali and alkaline‐earth cations. We show that Sr2+‐G3T is characterized by the highest thermal stability and that quadruplex formation requires only one Sr2+ ion that binds with low micromolar affinity. These concentrations are sufficient to drive robust isothermal quadruplex priming DNA amplification reaction. The Sr2+‐quadruplexes are also able to form unusually stable dimers through end‐to‐end stacking. The multimerization can be induced by a combination of quadruplex forming cations (i.e., K+ or Sr2+) and non‐specific Mg2+.  相似文献   

19.
Endothelial protein C receptor (EPCR) is a CD1‐like transmembrane glycoprotein with important regulatory roles in protein C (PC) pathway, enhancing PC's anticoagulant, anti‐inflammatory, and antiapoptotic activities. Similarly to homologous CD1d, EPCR binds a phospholipid [phosphatidylethanolamine (PTY)] in a groove corresponding to the antigen‐presenting site, although it is not clear if lipid exchange can occur in EPCR as in CD1d. The presence of PTY seems essential for PC γ‐carboxyglutamic acid (Gla) domain binding. However, the lipid‐free form of the EPCR has not been characterized. We have investigated the structural role of PTY on EPCR, by multiple molecular dynamics (MD) simulations of ligand bound and unbound forms of the protein. Structural changes, subsequent to ligand removal, led to identification of two stable and folded ligand‐free conformations. Compared with the bound form, unbound structures showed a narrowing of the A′ pocket and a high flexibility of the helices around it, in agreement with CD1d simulation. Thus, a lipid exchange with a mechanism similar to CD1d is proposed. In addition, unbound conformations presented a reduced interaction surface for Gla domain, confirming the role of PTY in establishing the proper EPCR conformation for the interaction with its partner protein. Single MD simulations were also obtained for 29 mutant models with predicted structural stability and impaired binding ability. Ligand affinity calculations, based on linear interaction energy method, showed that substitution‐induced conformational changes affecting helices around the A′ pocket were associated to a reduced binding affinity. Mutants responsible for this effect may represent useful reagents for experimental tests. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Human telomeres are composed of duplex TTAGGG repeats and a 3' single-stranded DNA tail. The telomeric DNA is protected and regulated by the shelterin proteins, including the protection of telomeres 1 (POT1) protein that binds telomeric single-stranded DNA. The single-stranded tail can fold into G-quadruplex (G4) DNA. Both POT1 and G4 DNA play important roles in regulating telomere length homeostasis. To date, most studies have focused on individual quadruplexes formed by four TTAGGG repeats. Telomeric tails in human cells have on average six times as many repeats, and no structural studies have examined POT1 binding in competition with G4 DNA folding. Using single molecule atomic force microscopy imaging, we observed that the majority of the telomeric tails of 16 repeats formed two quadruplexes even though four were possible. The result that physiological telomeric tails rarely form the maximum potential number of G4 units provides a structural basis for the coexistence of G4 and POT1 on the same DNA molecule, which is observed directly in the captured atomic force microscopy images. We further observed that POT1 is significantly more effective in disrupting quadruplex DNA on long telomeric tails than an antisense oligonucleotide, indicating a novel POT1 activity beyond simply preventing quadruplex folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号