首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
研究了玉米连作10年、小麦连作8年 棉花连作10年、棉花连作15年和棉花6年 6年小麦/油葵轮作4种种植方式对土壤过氧化氢酶、蔗糖酶、芳基硫酸酯酶、脱氢酶和蛋白酶活性的影响,并分析了土壤细菌、真菌、氨氧化古菌与氨氧化细菌对北疆绿洲农田不同种植方式的响应.结果表明: 不同种植方式对土壤过氧化氢酶、芳基硫酸酯酶、脱氢酶和蛋白酶活性影响明显,但对蔗糖酶无显著影响;对氨氧化古菌多样性指数有显著影响,对土壤细菌、真菌和氨氧化细菌多样性指数无明显影响.土壤真菌和氨氧化细菌群落结构对不同种植方式的响应较细菌和氨氧化古菌敏感.长期棉花连作使绿洲农田土壤酶活性下降,微生物群落多样性降低,而轮作可提高土壤酶活性和微生物群落结构多样性.
  相似文献   

2.
利用变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)技术分析渤海N油田注水和未注水油藏中细菌和古菌群落结构组成及分布特征,试分析注水过程对油藏微生物群落丰度和种群的影响,为开展目标油田本源微生物采油试验提供技术支持。结果显示,注水采油井中细菌丰度和种类明显高于未注水采油井,其中注水采油井中的细菌主要为固氮螺菌属(Azospira sp.)、铜绿假单胞菌(Pseudomonas sp.)、陶厄氏菌属(Thauera sp.);注水井古菌的丰度和种类与未注水井也存在一定差异,主要为热自养甲烷热杆菌(Methanothermobacter thermautotrophicus)、甲烷鬃毛菌属(Methanosaeta)、嗜泉古菌(Crenarchaeote)。注水井和未注水井中的细菌、古菌种类分布有限,但丰度较高,主要为提高原油采收率有益的采油菌种,显示该区块具备开展本源微生物微生物采油技术实施的条件。  相似文献   

3.
冯莉  许楹  周宁一 《微生物学通报》2018,45(8):1611-1620
【背景】细菌、酵母或植物来源的超氧化物歧化酶(Superoxide dismutase,SOD)编码基因在异源宿主中表达并提高宿主耐盐性的研究已有一些报道,其异源宿主也多为植物,而古菌来源的超氧化物歧化酶编码基因在细菌中成功表达并提高其耐盐性的研究尚无报道。【目的】寻找嗜盐古菌Haloferax sp.D1227中的超氧化物歧化酶编码基因并鉴定其功能,将其在4-硝基苯酚降解细菌Burkholderia sp.SJ98中表达,研究该古菌的超氧化物歧化酶对菌株SJ98耐盐性和降解4-硝基苯酚功能的影响。【方法】通过生物信息学方法寻找嗜盐古菌D1227中潜在的超氧化物歧化酶编码基因,利用表达载体p ET-28a和广泛宿主载体p BBR1MCS-2将其分别在E.coli BL21(DE3)和4-硝基苯酚的降解菌株SJ98中异源表达,检测细胞抽提液和纯化蛋白的超氧化物歧化酶比活力。分别以葡萄糖和4-硝基苯酚为碳源,在M9培养基和添加500 mmol/L Na Cl(Na Cl含量约3%)的M9培养基中分别培养细菌SJ98的重组菌株和空载体重组菌株,利用全自动生长曲线分析仪和高效液相色谱等方法检测重组菌株的生长能力和对4-硝基苯酚的降解能力。【结果】通过生物信息学分析,在嗜盐古菌D1227基因组中发现了潜在的超氧化物歧化酶编码基因sod A,其在E.coli BL21(DE3)和菌株SJ98中分别异源表达均具有超氧化物歧化酶活力[细胞抽提液的比活力分别为21.07±0.02 U/mg和84.56±0.16 U/mg,从BL21(DE3)菌株纯化的蛋白Sod AD1227比活力为179.46±3.43 U/mg]。在添加500 mmol/L Na Cl的M9培养基中培养时,以葡萄糖为碳源,重组菌株SJ98[p BBR-sod A]仍可正常生长,而空载体对照菌株SJ98[p BBR1MCS-2]几乎丧失了生长能力;以4-硝基苯酚为碳源,菌株SJ98[p BBR-sod A]保持了利用底物生长和降解底物的能力,而菌株SJ98[p BBR1MCS-2]的生长和降解能力几乎丧失。用软件Phyre2模拟分析Sod AD1227的单体结构,该蛋白拥有Fe/Mn-SOD家族的典型结构特征,推测其属于Fe/Mn-SOD家族。【结论】本研究为利用古菌SOD对细菌进行改造以适应高盐环境中降解有机污染物的应用提供了潜在的可行性。  相似文献   

4.
454高通量焦磷酸测序法鉴定膜生物反应器膜污染优势菌种   总被引:10,自引:0,他引:10  
【目的】对诱发膜-生物反应器(Membrane bioreactors,MBR)膜污染的优势菌种进行研究。【方法】利用454高通量焦磷酸测序法对MBR污泥混合液样品与膜污染物样品中微生物信息进行统计,并对两组样品的Chao丰度指数与Shannon生物多样性指数计算,对测序结果进行系统发育学分析。【结果】从污泥混合液样品与膜污染物样品中获得9 353与7 504条优化序列,发现膜污染物中微生物丰度与多样性均高于污泥混合样品。借助基因频谱对OTU分布特点进行统计,表明源于污泥混合液中的微生物在膜表面定殖生长过程中发生了种群变化,在膜面污染物样品中,β-变形菌纲丰度显著降低,α-变形菌纲、γ-变形菌纲与Phycisphaerae在微生物种群结构中比重增加。【结论】454焦磷酸测序分析表明,黄色单胞菌(Xanthomonadaceae),嗜热厌氧杆菌(Thermoanaerobacter),Phycisphaera以及2株尚未培养出的细菌(Candidate_division_TM7及Candidate_division_OD1)是诱发MBR膜污染的优势菌种(微生物丰度1%)。诱发膜污染的细菌既包括了黏性高、表面疏水的种类(如γ-变形菌),从而引发细菌在膜表面的定殖,也包括了代谢能力强的物种(如Candidate_division_OD1)可以确保种间递氢顺畅。  相似文献   

5.
应用PCR-DGGE、DNA测序等方法,在室内驯化条件下研究了8种来源于中国不同地区土壤样品细菌种群结构对氯嘧磺隆胁迫的响应。结果表明:在氯嘧磺隆100~500mg·L-1浓度梯度下,土壤细菌群落组成有明显的更迭现象,多样性发生明显变化,驯化至10周,绝大部分细菌种群消失,样品的细菌种群结构趋于简单并呈现趋同效应;DNA测序结果表明,在驯化第10周可培养Methylophilus sp.、Beta proteobacterium、uncultured bacterium成为优势菌属,所获细菌种群出现的16个优势种群中有10个与已知的具有有机污染物降解功能和有机污染环境修复功能细菌的相似性大于97%;其中5个与嗜甲基菌16S rDNA部分序列相似性达98%以上。获得了一组对氯嘧磺隆具有降解作用的细菌菌系,可在5d内将100mg·L-1氯嘧磺隆降解67%;其主要组成为嗜甲基菌属(Methylophilus sp.)、丛毛单胞菌属(Comamonas sp.)、鞘酯杆菌属(Sphingobacterium sp.)和嗜氢菌属(Hydrogenophi-lus sp.)。  相似文献   

6.
蚯蚓可摄食污泥中的有机物,其肠道微生物群落在其分解过程中起着主要的作用。利用赤子爱胜蚓(Eisenia foetida)和人工湿地基质构建蚯蚓-污泥系统,添加氯霉素、四环素、链霉素和青霉素4种抗生素,研究不同抗生素对污泥和蚓粪的细菌群落结构的影响。采用高通量测序技术比较分析污泥和蚓粪的细菌多样性及群落结构变化。结果表明,外加抗生素能够导致污泥的Chao1和ACE指数降低,同时降低拟杆菌门和变形菌门的相对丰度,加入氯霉素和青霉素会增加厚壁菌门的相对丰度,降低酸杆菌门、放线菌门和绿弯菌门的相对丰度,加入四环素和链霉素则与之相反。蚓粪样品中,添加氯霉素和链霉素导致Chao1和ACE指数降低,而添加四环素和青霉素则导致Chao1和ACE指数升高,外加抗生素可降低拟杆菌门的相对丰度,增加放线菌门、变形菌门和疣微菌门的相对丰度。主成分分析(PCA)和聚类分析表明,氯霉素和青霉素对污泥细菌群落影响作用相似,四环素与链霉素效果类似;氯霉素对蚓粪群落结构的影响小于其他抗生素。研究结果显示,抗生素可影响污泥和蚓粪的细菌多样性及群落结构,不同抗生素对污泥和蚓粪的影响程度存在差异。  相似文献   

7.
【目的】本文旨在了解生物浸矿反应器中的微生物种群结构及其中可培养微生物的特征。【方法】通过构建微生物冶金反应器中矿浆原样的16S rRNA基因文库,测定16S rRNA基因序列,分析矿浆中种群结构。同时在不同培养条件下,对样品进行富集培养,分离获得纯菌株;并对各个菌株的16S rRNA基因序列,生理生化特征及对不同矿物的氧化能力进行了分析。【结果】研究中所选生物浸矿反应器中主要的微生物物种有细菌:Leptospirillum sp.,Sulfobacillus sp.,Acidithiobacillus sp.,Spingomonas sp.及古菌Sulfolobus sp.,Ferroplasma sp.等菌属。同时分离出5株纯菌株,这些菌分别与Acidithiobacillus thiooxidans,Acidithiobacillus caldus,Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum,Sulfobacillus thermosul fidooxidans相似。分离获得的菌株具有氧化硫或二价铁和不同硫化矿的能力。【结论】生物浸矿反应器是个微生物种类相对简单的生境,利用非培养和培养技术全面地了解生物浸矿体系中的微生物群落及其生理、浸矿特性,有利于洞察生物浸矿过程中微生物种群结构,强化控制种群组成及浸矿活性,从而提高生物湿法冶金的效率。  相似文献   

8.
以序批式气提生物反应器(SABR)为平台,研究了苯胺和氯苯胺类有毒有机废水处理过程好氧污泥颗粒化。结果表明,通过缩短污泥沉降时间、逐步提升目标污染物进水负荷,反应器连续运行3个月,最终在污泥沉降时间5min、COD负荷1.0~3.6kg/(m3.d)、苯胺和氯苯胺负荷1kg/(m3.d)条件下实现污泥颗粒化,COD、苯胺和氯苯胺去除率分别稳定在90%、99.9%以上;获得的成熟好氧颗粒粒径在0.45~2.5mm,SOUR稳定在150mgDO/(gVSS·h)以上,颗粒污泥EPS中PN含量为28.0±1.9mg/gVSS,PN/PS比值为6.5mg/mg,苯胺类比降解速率达0.18g/(g·d);应用PCR-DGGE分子指纹图谱技术分析了稳定运行的颗粒化反应器内好氧污泥微生物种群结构,结果表明好氧颗粒内主要细菌分属β-Proteobacteria、γ-Proteobacteria及Flavobacteria等类群,优势菌为Pseudomonas sp.、Flavobacterium sp.;与已获得的降解氯苯胺好氧颗粒相比,苯胺存在下培养获得的好氧颗粒污泥微生物菌群结构更为丰富。  相似文献   

9.
为了研究有机物对Anammox菌群的影响,以及微生物与脱氮的关系,为工艺改进提供依据。使用SBR厌氧氨氧化反应器,从反应器不同TOC/NH_4~+-N阶段采集活性污泥样品,利用聚合酶链式反应—变性梯度凝胶电泳(PCR-DGGE)技术,分析了样品中微生物种群结构。结果表明反应器中主要微生物包含变形菌门(Proteobacteria)、浮霉菌门(Planctomycetes)、厚壁菌门(Firmicutes)和绿菌门(Chlorobi);其中变形菌门(β-变形菌和γ-变形菌)为优势菌群。TOC/NH_4~+-N从0逐渐增加至2.0的过程中,反应器中的反硝化菌(变形菌门)不断增长,Anammox菌群在TOC/NH_4~+-N为0.4阶段得到最大程度的富集,此时反应器内部微生物多样性也最高;随着有机物含量增加,Anammox菌生长受到严重抑制,反应器微生物物种多样性也逐渐下降。荧光定量(qPCR)分析表明Anammox菌含量从1.30×10~(11) copies/mL下降至3.18×10~9 copies/mL,而DB含量从1.57×10~9copies/mL增加至3.74×10~(10) copies/mL。说明随着C/N的增加,反应器脱氮能力逐渐从Anammox过渡到反硝化过程。通过测定反应器内壁附着污泥,还发现其微生物丰度和含量均高于同时期反应器内部活性污泥样品,推测厌氧微生物菌群更适宜在静态基质生长。  相似文献   

10.
为揭示亚热带人工林常见造林树种对森林土壤微生物群落的影响,本研究选取马尾松、米老排、枫香、冬青、火力楠、麻栎和光皮桦7个树种为研究对象,采用16S rRNA高通量测序和实时荧光定量PCR技术,探究不同树种土壤细菌的多样性、群落构成以及微生物功能群基因丰度。结果表明: 变形菌门、酸杆菌门和放线菌门是亚热带造林树种的优势细菌门,不同树种细菌多样性和丰富度指数无显著差异。冗余分析表明,土壤容重、土壤C/N、凋落物氮和凋落物C/N是影响土壤细菌组成的主要环境因子。不同造林树种土壤中氨氧化古菌、氨氧化细菌和完全氨氧化菌amoA基因丰度均具有显著差异。完全氨氧化菌在数量上占据优势地位,但只有氨氧化古菌amoA基因丰度与土壤硝态氮呈显著正相关关系,表明氨氧化古菌在亚热带酸性森林土壤自养硝化作用中可能发挥主要作用。相关分析表明,凋落物氮是不同树种影响氨氧化微生物丰度变化的关键驱动因子。本研究表明,土壤微生物功能群对树种的响应比细菌群落结构更加敏感,未来应从微生物功能群角度深入探究不同造林树种对森林生态系统功能的影响机制。  相似文献   

11.
Qiao W  Peng C  Wang W  Zhang Z 《Bioresource technology》2011,102(21):9904-9911
The supernatant of hydrothermally treated sludge was treated by an upflow anaerobic sludge blanket (UASB) reactor for a 550-days running test. The hydrothermal parameter was 170 °C for 60 min. An mesophilic 8.6 L UASB reactor was seeded with floc sludge. The final organic loading rate (OLR) could reach 18 kg COD/m3 d. At the initial stage running for 189 days, the feed supernatant was diluted, and the OLR reached 11 kg COD/m3 d. After 218 days, the reactor achieved a high OLR, and the supernatant was pumped into the reactor without dilution. The influent COD fluctuated from 20,000 to 30,000 mg/L and the COD removal rate remained at approximately 70%. After 150 days, granular sludge was observed. The energy balance calculation show that heating 1.0 kg sludge needs 0.34 MJ of energy, whereas biogas energy from the supernatant of the heated sludge is 0.43 MJ.  相似文献   

12.
Improvement in post-treatment of digested swine wastewater   总被引:3,自引:1,他引:2  
The performance of sequencing batch reactor (SBR) during post-treatment of digested effluent of swine wastewater was investigated. While operating SBR to treat the digested effluent directly, the performance was very poor with COD removal rate about 10%, and NH4+-N removal rate nearly 50%, with a scarce removal of total phosphorus. The performance apparently improved after adding raw swine wastewater or alkali to digested effluent. Although similar results for NH4+-N removal were achieved adopting both measures, the addition of raw wastewater proved superior in removing total nitrogen and total phosphorus. The addition of raw wastewater obtained effluent COD around 300 mg/L which was lower than that after alkali addition i.e. around 550 mg/L. Judged from the investment, oxygen demand, sludge yield, biogas production and running cost, the traditional combined anaerobic-SBR process is unfeasible to treat swine wastewater, while the combined anaerobic-SBR process with addition of raw swine wastewater can be a suitable biotechnology.  相似文献   

13.
Co-degradation of resorcinol and catechol was studied in a catechol acclimated up flow anaerobic sludge blanket (UASB) reactor. Synthetic binary aqueous solution having a total concentration of 1000 mg/L with the resorcinol/catechol (R/C) ratio of 1/19, 1/9, 3/17, 1/4, 1/3, 3/7, 2/3 and then 1/3 was fed at various time intervals to the UASB reactor with a fixed organic loading rate of 5.7 kg COD/m(3) d and hydraulic retention time of 8h. The reactor was operated over a period of 145 days after its acclimation with catechol bearing synthetic wastewater at a constant feed rate of 1.2 L/h. When the resorcinol concentration was increased to have a R/C ratio of 1/4, the COD removal efficiency and the biogas production increased to the maximum levels. Pseudo steady state condition for COD removal was achieved at each of the stepped-up loading condition. An increase in the R/C ratio above 1/4 in the binary feed solution led to a decrease in the COD removal efficiency and the biogas production rate.  相似文献   

14.
The start-up tests of treating soybean protein wastewater by the integrated two-phase anaerobic reactor were studied. The results showed that the soybean protein wastewater could be successfully processed around 30 days when running under the situation of dosing seed sludge with the influent of approximately 2000 mg/L and an HRT of 40 h. When the start-up was finished, the removal rate of COD by the reactor was about 80%. In the zone I, biogas mainly revealed carbon dioxide (CO2) and hydrogen (H2). Methane was the main component in the zone 2 which ranged from 53% to 59% with an average of 55%. The methane content in biogas increased from the zone I to II. It indicated that the methane-producing capacity of the anaerobic sludge increased. It was found that the uniquely designed two-phase integrated anaerobic reactor played a key role in treating soybean protein wastewater. The acidogenic fermentation bacteria dominated in the zone I, while methanogen became dominant in the zone II. It realized the relatively effective separation of hydrolysis acidification and methanogenesis process in the reactor, which was benefit to promote a more reasonable space distribution of the microbial communities in the reactor. There were some differences between the activities of the sludge in the two reaction zones of the integrated two-phase anaerobic reactor. The activity of protease was higher in the reaction zone I. And the coenzyme F420 in the reaction zone II was twice than that in the reaction zone I, which indicated that the activity of the methanogens was stronger in the reaction zone II.  相似文献   

15.
Two lab-scale anaerobic hybrid reactors (AHR) were operated to investigate the effect of recirculated biogas on the development of biomass on supporting media during the start-up. The reactor comprised of two distinct zones; sludge bed on the bottom and packed bed using nylon fiber as the media on the upper half of the reactor. Both reactors were continuously fed with cassava starch wastewater. The organic loading rate (OLR) was increased from 0.3 to 5.5 g COD/L/day by gradually decreasing the hydraulic retention time (HRT) from 37 to 3.5 days in two months. The biogas at 2.6 L/L/day was recirculated merely in the first month of the operation in order to allow the attached biomass to grow according to the organic matters present in the reactor at the final stage of the start up. Chemical oxygen demand (COD) removal efficiency of over 80% was achieved throughout the study. The result demonstrated a better COD removal efficiency for the reactor with biogas recirculation, especially at low HRTs. The amounts of biomass accumulated on the media in both reactors were slightly different with 11.9 gVSS found on the one with biogas recirculation compared to 9.8 gVSS on the other. In addition, 16.3% increase of the sludge bed was achieved with biogas recirculation as opposed to 9% in the control one. The attached biomass activity test indicated a greater amount and more favorable ratio of the methanogenic bacterial group on the media with the recirculation correlating well to a relatively higher methane content in biogas. As a result, the recirculation of biogas has a potential of improving the characteristics of the AHR especially in terms of biomass accumulation.  相似文献   

16.
The performance of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated by microbial analysis and kinetic modelling. The microbial community present in the granular sludge was detected using fluorescent in situ hybridization (FISH) and further confirmed using polymerase chain reaction. A group of 16S rRNA based fluorescent probes and primers targeting Archaea and Eubacteria were selected for microbial analysis. FISH results indicated the presence and dominance of a significant amount of Eubacteria and diverse group of methanogenic Archaea belonging to the order Methanococcales, Methanobacteriales, and Methanomicrobiales within in the UASB reactor. The influent brewery wastewater had a relatively high amount of volatile fatty acids chemical oxygen demand (COD), 2005 mg/l and the final COD concentration of the reactor was 457 mg/l. The biogas analysis showed 60–69 % of methane, confirming the presence and activities of methanogens within the reactor. Biokinetics of the degradable organic substrate present in the brewery wastewater was further explored using Stover and Kincannon kinetic model, with the aim of predicting the final effluent quality. The maximum utilization rate constant U max and the saturation constant (K B) in the model were estimated as 18.51 and 13.64 g/l/day, respectively. The model showed an excellent fit between the predicted and the observed effluent COD concentrations. Applicability of this model to predict the effluent quality of the UASB reactor treating brewery wastewater was evident from the regression analysis (R 2?=?0.957) which could be used for optimizing the reactor performance.  相似文献   

17.
The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
Two shock loads of a commercial detergent (I-150 mg chemical oxygen demand (COD)/L, fed for 56 h; II-300 mg COD/L fed for 222 h) were applied in a lab-scale Expanded Granular Sludge Blanket (EGSB) reactor, fed with 1,500 mg COD/L of ethanol. The impact of the surfactant was assessed in terms of granular sludge morphology, specific methanogenic activity (SMA) in the presence of individual substrates, and reactor performance. COD removal efficiency remained unaffected in the shock I, but 80 h after starting exposure to the shock II, the COD removal efficiency decreased drastically from 75 to 17%. In the first 8 h of operation of shock I, the SMA was stimulated and decreased afterwards, being recovered 5 days after the end of exposure time. Concerning to shock II, the SMA was immediately and persistently reduced during the exposure time, although, the inhibition of SMA in presence of H(2)/CO(2) showed a trend to increase after the exposure time. Acetoclastic bacteria were observed as the most sensitive to the toxic effects of surfactant whereas the hydrogenotrophic bacteria were less affected. The inhibitory effects were dependent on surfactant concentration and exposure time. The ratio filaments length per total aggregates area (LfA) was an early-warning indicator of biomass washout, since it increased 3 and 5 days before effluent volatile suspended solids (VSS) rise, respectively, in shocks I and II.  相似文献   

19.
Principal component analysis (PCA) was applied to datasets gathering morphological, physiological and reactor performance information, from three toxic shock loads (SL1 - 1.6 mg(detergent)/L; SL2 - 3.1mg(detergent)/L; SL3 - 40 mg(solvent)/L) applied in an expanded granular sludge bed (EGSB) reactor. The PCA allowed the visualization of the main effects caused by the toxics, by clustering the samples according to its operational phase, exposure or recovery. The aim was to investigate the variables or group of variables that mostly contribute for the early detection of operational problems. The morphological parameters showed to be sensitive enough to detect the operational problems even before the COD removal efficiency decreased. As observed by the high loadings in the plane defined by the first and second principal components. PCA defined a new latent variable t[1], gathering the most relevant variability in dataset, that showed an immediate variation after the toxics were fed to the reactors. t[1] varied 262%, 254% and 80%, respectively, in SL1, SL2 and SL3. The high loadings/weights of the morphological parameters associated with this new variable express its influence in shock load monitoring and control, and consequently in operational problems recognition.  相似文献   

20.
实验室模拟高负荷SPAC厌氧反应器运行   总被引:6,自引:1,他引:5  
采用模拟废水, 对新型高负荷螺旋式自循环(Spiral automatic circulation, SPAC)厌氧反应器的运行性能进行了实验室模拟研究。结果表明: 在30oC, 水力停留时间(HRT)为12 h, 进水COD浓度从8000 mg/L升至20 000 mg/L的条件下, 反应器的COD去除率为91.1%~95.7%, 平均去除率为93.6%。在进水浓度为20 000 mg/L, HRT由5.95 h缩短至1.57 h的工况下, COD去除率从96.0%降低至78.7%, 反应器达到最高容积负荷率306 g COD/(L·d), 最大容积COD去除率240 g/(L·d), 最高容积产气率131 L/(L·d)。该反应器对基质浓度的连续提升具有良好的适应能力。进水COD浓度由8000 mg/L提升至20 000 mg/L时, 出水COD浓度一直处在较低水平(平均为852?mg/L), 容积COD去除率和容积产气率分别提高162%和119%。该反应器对HRT的连续缩短也有良好的适应能力。HRT由5.95 h缩短至1.57 h时,反应器容积COD去除率和容积产气率分别升高191%和195%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号