首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrocarbon and wax ester components of cuticular lipids of the braconid parasitoid Habrobracon hebetor Say reared at 25 degrees C on larvae of a pyralid moth have been identified by GC-MS and analyzed with respect to adult age, mating status, and diet. The hydrocarbons range in carbon number from C(21) to C(45) and consist of a homologous series of n-alkanes, 11-, 13-, and 15-methyl alkanes, 13,17-dimethyl alkanes, and Z-5, Z-7, and Z-9-alkenes. The wax esters found in the cuticular lipid fraction are a series of homologous compounds with the acid portion being short chain, unbranched, even carbon number acids from C(8) to C(20) (predominately C(8) to C(16)). The alcohol portions of the esters are secondary alcohols with carbon number from C(22) to C(25) (predominately C(23) and C(25)) with the hydroxyl function located at C(6), C(7), C(8), and C(9). Gender, age, and nutritional states were significant factors for variation in several of the individual esters, but mating status did not affect wax ester composition. Ontogenetic examinations indicated that prepupal, and early pupal cuticular lipids contain only hydrocarbons. Low levels of wax esters are detectable in late stage pupae, and somewhat greater quantities of wax esters are present on newly eclosed adults. When pharate adults emerge from the cocoon, however, their cuticular lipids consist of approximately equal amounts of hydrocarbons and wax esters, and 6d post emergence from the cocoon, wax esters are the predominant lipid component.  相似文献   

2.
The venom apparatus of four hymenopterous parasitoids, including two bethylids, C. tarsalis (Ashmead) and C. waterstoni (Gahan), and two pteromalids, A. calandrae (Howard) and P. cerealellae (Ashmead), were removed and the associated Dufour glands characterized with respect to their external morphology and chemistry. Dufour glands in all four species have a characteristic translucent appearance that apparently results from their lipid content. The stalked Dufour glands of C. tarsalis and C. waterstoni are pear-shaped and have overall lengths of approximately 0.2 and 0.15 mm, respectively. The thin venom glands are bifurcate and insert through a fine duct into the transparent ovoid- to pear-shaped venom reservoir in these bethylids. In A. calandrae and P. cerealellae the Dufour glands are elongated, tubular structures of ca. 0.35 and 0.8 mm in length, respectively, that constrict to a short stalk that empties into the common oviduct. The venom glands in these pteromalids are simple elongated structures that insert into the sac-like venom reservoir through a fine duct. The chemistry of the volatile contents of the Dufour gland in these four species differs considerably. C. tarsalis Dufour glands contain the same hydrocarbon components as found on the cuticle of this species (Ann. Entomol. Soc. Am. 91:101-112 (1998)), and no other chemicals. The Dufour glands of C. waterstoni also contain only hydrocarbons, most of which are the same as the cuticular hydrocarbons (Ann. Entomol. Soc. Am. 85:317-325 (1992)), but in addition the Dufour gland contains ca. 3% of a mixture of 2,17- and 2,19-dimethyl C(23). A. calandrae Dufour gland chemistry is somewhat more complex than that of either of the two bethylids, but like the bethylids, only hydrocarbons are present. The carbon number range is from C(30) to C(39) and consists of a mixture of n-alkanes (C(30)-C(38)); 3-, 5-, 7-, 9-, 11-, 12-, 13-, 14-, 15- and 17-methyl alkanes; 3,7- and 3,11-dimethyl alkanes; 5,9- and 5,17-dimethyl alkanes; 7,11-, 9,13-, 13,17-, 14,18- and 15,19-dimethyl alkanes; 3,7,11- and 3, 9,15-trimethyl alkanes; and 3,7,11,15-tetramethyl alkanes. The cuticular hydrocarbons of this species have not been previously reported, but they are the same as the Dufour gland hydrocarbons. The Dufour glands of P. cerealellae contain both hydrocarbons and two long-chain aldehydes. Most of the hydrocarbons are identical to those found on the cuticle of this species (Ann. Entomol. Soc. Am. 94:152-158 (2001)), but in addition, 5,9-dimethyl C(27), 5,13-, 5,17- and 5,19-dimethyl C(35), 12- and 14-methyl C(36), 12,16- and 13,17-dimethyl C(36), 13-methyl C(37) and 13,17-dimethyl C(37) are present. The two aldehydes detected in glands from P. cerealellae are n-tetracosanal (C(23)CHO) and n-hexacosanal (C(25)CHO).  相似文献   

3.
The Dufour gland secretion and cuticle lipids of foundresses of Polistes dominulus have been chemically analysed. The gland secretion (analysed for the first time in a polistine species) contains a complex mixture of hydrocarbons, which are the same as those found on the cuticle. The cuticular hydrocarbon mixture and gland secretion differ, however, in the proportions of components: in the first, linear hydrocarbons are more abundant, while in the second we found a higher quantity of dimethylalkanes. Multivariate statistical analysis has shown that foundresses belonging to different colonies are distinguished on the basis of both the composition of their Dufour gland secretion and cuticular hydrocarbon mixture. Branched hydrocarbons seem to be particularly important in distinguishing females according to their colony. We suggest that the Dufour gland may contribute substances to form the hydrocarbon layer on the cuticle.  相似文献   

4.
The cuticular surface lipids of the red harvester ant, Pogonomyrmex barbatus, were found to contain minor amounts of novel wax esters, in addition to the major components, hydrocarbons. The wax esters ranged in carbon number from C19 to C31 and consisted of esters of both odd- and even-numbered alcohols and acids. Each wax ester with a given carbon number eluted at several different retention times indicating possible methyl branching in either the fatty acid or alcohol moiety, or in both moieties. Each eluting peak of wax esters consisted of a mixture of wax esters of the same carbon number in which the fatty acid moiety ranged from C8 to C18, and the alcohol moiety ranged from C8 to C17. Some wax esters were largely found on the head indicating they may be of a glandular origin. The hydrocarbons consisted of: n-alkanes, C23 to C33; odd-numbered n-alkenes, C27 to C35; and the major components, methyl-branched alkanes, C26 to over C49. Notable components of the methyl-branched alkanes were 2-methyltriacontane, and the novel trimethylalkanes with a single methylene between the first and second branch points, 13,15,19-trimethylhentriacontane and 13,15,21-trimethyltritriacontane.  相似文献   

5.
The major components of the egg hydrocarbons were dimethylalkanes (40%) and trimethylalkanes (24%) in which the first methyl branch was on carbon 2. The major dimethylalkanes were an approximately 2:1 mixture of 2,10- and 2,6-dimethyloctacosanes in females and eggs. The major trimethylalkanes were a mixture of 2,10,16- and 2,10,18-trimethyloctacosanes. 2,x- and 2,x,y-methyl-branched alkanes with an odd-numbered carbon backbone were proposed to have an even number of carbon atoms between the first and second methyl branch points indicating that their biosynthesis started with a primer derived from leucine. 13,17,21,25-Tetramethylheptatriacontane was the only tetramethylalkane identified. Females and eggs had more hydrocarbons with a 2-methyl branch point than did the males. The eggs had the lowest amount of internally-branched dimethylalkanes but the largest amount of 2,x-dimethylalkanes in their surface hydrocarbons. Only trace amounts of n-alkanes and alkenes were detected in the surface hydrocarbons of adult males and females, larvae and eggs, of the Colorado potato beetle.  相似文献   

6.
The labial gland secretions from males of the bumblebee Bombus (Separatobombus) griseocollis De Geer, a bumblebee exhibiting perching behaviour, were analysed by gas chromatography/mass spectrometry (GC/MS) in the electron impact and positive ion chemical ionization mode. The major compound of the complex mixture of alkenols, acetates, hydrocarbons, wax type esters and steroids is tetradecyl acetate, considerable amounts of hexadecyl, geranyllinaloyl, geranylgeranyl, docosyl, tetracosenyl and hexacosenyl acetate were also found. 1,3-Tetradecanediol diacetate, detected as a minor component, has not yet been identified in male bumblebee labial gland secretions. Besides small amounts of primary alcohols (tetradecanol and hexadecanol) the tertiary alcohol geranyllinalool (3,7,11,15-tetramethyl-hexadeca-1,6,10,14-tetraene-3-ol) was also present. The primary alcohols were also present as esters of butanoic, dodecanoic, tetradecanoic, and hexadecanoic acid. Besides the usual mixture of un- and mono-unsaturated straight chain hydrocarbons, the labial gland contains the isoprenoid hydrocarbons beta-springene [(6E, 10E)-7,11,15-trimethyl-3-methylene-hexadeca-1,6,10,14-tetraene] and two isomers of a-springene [(3Z,6E,10E)- and (3E,6E,10E)-3,7,11,15-tetramethyl-hexadeca-1,3,6,10,14-pentaene]. The close relationship in chemical composition in male bumblebees with perching and flight pass behaviour is discussed.  相似文献   

7.
The tubiform Dufour gland in the digger wasp species Liris niger is about 1.0 mm long ( 0.15 mm). An alternating arrangement of longitudinal and circumferential bundles of striated muscle fibers surrounds the gland. The Dufour gland, together with the venom gland, enters the sting base and terminates in the sting. The glandular epithelium is monolayered. Glands about 3 day after imaginal ecdysis have an empty lumen but a thick lining epithelium. The gland cells are characterized by a well-developed vesicular smooth endoplasmic reticulum, sparse rough ER and numerous free ribosomes. They also exhibit several electron-lucent vesicles and autophagic vacuoles. Secretion of electron-dense material via the gland cuticle into the gland lumen is apparent. Glands more than 20 days after imaginal ecdysis display a large lumen and a thin epithelium. The cells show signs of degeneration with numerous cytolytic inclusions. Dufour gland liquid contains numerous polypeptides of molecular weights ranging from 14 to about 200 kDa. In addition the secretion consists predominantly of straight-chain hydrocarbons, accompanied by small amounts of esters. The major hydrocarbons are pentadecane and (Z)-8-heptadecene. Dufour gland secretion may have several functions: (1) the polypeptides might be involved in the gluing process of the eggs, while (2) the hydrocarbon oils may function as lubricants for the lancets and (3) might soften the secretion, thus allowing easier application of the glue. The lipophilic volatile material (4) might also be involved in pheromonal signaling.  相似文献   

8.
The uropygial gland secretions produced by female mallards (Anas platyrhynchos) throughout the year were analyzed by thin-layer chromatography and combined gas-liquid chromatography and mass spectrometry. Most of the year, the secretion was composed of wax esters. With the beginning of the mating season in the middle of March, a polar component appeared which became the dominant and sole component of the secretion through April and May and as the mating season ended in June, wax esters became the sole component of the secretion. The polar components were identified to be diesters of n-C8, n-C10, and n-C12 3-hydroxy acids with n-C16 and n-C18 alcohols and n-C6 to C16 even chain acids. Immediately after the diester-producing period the female uropygial glands produced very long chain wax esters composed of fatty acids longer than C12. By the end of August, shorter chain wax esters composed of C6 and C12 acids became the dominant components of the secretion and this composition, previously considered characteristic of mallards, remained constant until March. The observed disappearance of the short chain waxes during the postnuptial period is similar to that in males. The dramatic changes in the composition of the uropygial glands similar to those observed in the female mallards during the mating season have not yet been observed in any other species.  相似文献   

9.
Conflicts over reproductive division of labour are common in social insects. These conflicts are often resolved via antagonistic actions that are mediated by chemical cues. Dominant egg layers and their eggs can be recognized by a specific yet similar cuticular hydrocarbon profile. In the facultatively queenless ant Gnamptogenys striatula, a worker's cuticular hydrocarbon profile signals its fertility and this determines its position in the reproductive division of labour. How eggs acquire the same hydrocarbon profile is as yet unclear. Here, we search for glandular sources of egg hydrocarbons and identify the putative mechanism of egg marking. We found that eggs carry the same hydrocarbons as the cuticle of fertile workers, and that these hydrocarbons also occur in the ovaries and the haemolymph. None of the studied glands (Dufour, venom, labial and mandibular gland) contained these hydrocarbons. Our results indicate that hydrocarbons are deposited on eggs while still in the ovaries. The low hydrocarbon concentration in the ovaries, however, suggests they are produced elsewhere and transported through the haemolymph. We also found that fertile workers regularly deposit new hydrocarbons on eggs by rubbing laid eggs with a hairy structure on the abdominal tip from which a non-polar substance is secreted.  相似文献   

10.
Long-chain aldehydes, alcohols, hydrocarbons and wax esters were major components of the external lipids of adult Aleyrodes singularis. In exuviae, acetate esters replaced the hydrocarbons as a major component. The major long-chain alcohol and aldehyde from adults were C32 and were essentially the exclusive components of the wax particles. The major alcohol from exuviae was C26 and the aldehydes were C26, C28, C30 and C32. The major acetate esters were C28 and C30 in both adults and exuviae. There were wax esters of similar carbon number in adults and exuviae although the exuviae had a greater amount of wax esters with unsaturated fatty acids. The fatty acid and alcohol composition of the wax esters differed markedly between adults and exuviae. Wax esters of adults had similar amounts of C16, C18, C20, C22 and C24 fatty acids while those from exuviae contained largely C16 and C18. The major alcohol in the wax esters of adults was C22 and those of exuviae were C26 and C28. The distribution of fatty acids and alcohols among wax esters of varying chain length also differed between adults and exuviae: in adults C22 was the major fatty acid found in the dominant wax ester, C44 and the C22 alcohol was the major alcohol and found in wax esters C42 and C44. In exuviae C16 and C18 were the major fatty acids found in most wax esters and a C28 alcohol was the major alcohol found in wax esters C44 and C46, the two dominant wax esters in exuviae. It was clear that the difference in chemistry of the wax esters between the adults and exuviae is not evident unless the acid and alcohol moieties are characterized.  相似文献   

11.
The molecular composition of lipids in three samples of leafy mosses (Aulacomnium palustre, Warnstorfia fluitans, and Calliergon giganteum) has been determined. The revealed acyclic compounds included normal and isoprenoid alkanes, isoprenoid alkenes, normal and isoprenoid ketones, carboxylic acids and their esters, alcohols, and aldehydes. Among cyclic compounds, bi-, tri- and tetracyclic polycycloaromatic hydrocarbons (PAHs), bicyclic and pentacyclic terpenoids, steroids and tocopherols have been observed. The identified organic compounds consisted mainly of carbocyclic acids and n-alkanes with the prevalence of C27 homologues. A. palustre is characterized by a reduced content of isoprenoid compounds, alcohols, and ketones, while the content of unsaturated acids, pentacyclic terpenoids, and aldehydes is rather heightened. A. palustre differs from W. fluitans and C. giganteum in the steroid composition and contains eremophylene, a sesquiterpenoid, which is absent in the mosses of the family Amblystegiaceae. Compared to C. giganteum, W. fluitans has a higher content of lycopadiene, carboxylic acids, n-alkanes, phyt-2-ene, aldehydes, esters, squalene, diploptene, α-tocopherol, and triphenyl phosphates.  相似文献   

12.
The uropygial gland secretion of some grebes (Podicipediformes) had been shown to contain saturated and unsaturated aliphatic hydrocarbons and monoester waxes. While ester waxes are common constituents of preen gland secretions, nonisoprenoid hydrocarbons have not been detected hitherto. The wax constituents are very complex, belonging to several multibranched homologous series, including unusual acids with ethyl branches. The waxes were identified by gas-liquid chromatography-mass spectrometry and equivalent chain length comparisons. A method for the prediction of equivalent chain length values of unknown methyl esters is offered. The results are discussed from a chemotaxonomic viewpoint.  相似文献   

13.
The leaf cuticle is covered by epicuticular wax consisting mainly of straight-chain aliphatic hydrocarbons with a variety of substituted groups. Studies have been concentrated on n-alkanes in epicuticular wax of Winged bean [Psophocarpus tetragonolobus (Stickm.) DC.]. Hydrocarbon constituents especially n-alkane analyses of seven cultivars of Winged bean [Psophocarpus tetragonolobus (Stickm.) DC.] have been undertaken. All the n-alkanes in between C14–C18 and C20–C38 are present in each of the species. Among the species, amount of n-alkanes is maximum in IC112417 and relatively low in EC38825. Scanning electron microscopic views were also taken for epicuticular layers and their hydrocarbons of the leaves of all the genotype species of the plant. Qualitative and quantitative characterization of n-alkanes present in the epicuticular wax extracted from the mature leaves can be used as an effective tool in chemo taxonomical work and also for the study of genotypic variation of the different cultivars.  相似文献   

14.
The qualitative and quantitative compositions of leaf cuticular waxes from potato (Solanum tuberosum) varieties were studied. The principal components of the waxes were very long chain n-alkanes, 2-methylalkanes and 3-methylalkanes (3.1-4.6 microg cm(-2)), primary alcohols (0.3-0.7 microg cm(-2)), fatty acids (0.3-0.6 microg cm(-2)), and wax esters (0.1-0.4 microg cm(-2)). Methyl ketones, sterols, beta-amyrin, benzoic acid esters and fatty acid methyl, ethyl, isopropyl and phenylethyl esters were found for the first time in potato waxes. The qualitative composition of the waxes was quite similar but there were quantitative differences between the varieties studied. A new group of cuticular wax constituents consisting of free 2-alkanols with odd and even numbers of carbon atoms ranging from C25 to C30 was identified.  相似文献   

15.
The adult beetles Aphthona lacertosa and Aphthona nigriscutis, used as biocontrol agents for leafy spurge, had a complex mixture of hydrocarbons on their cuticular surface consisting of alkanes, methylalkanes, alkenes and alkadienes as determined by gas chromatography-mass spectrometry. A trace amount of wax esters were present. In both species, the hydrocarbons were the major cuticular lipid class and the gas chromatographic profiles of the total hydrocarbons were similar. However, the profiles for the saturated hydrocarbon fraction were distinct for each species. Alkanes (n-alkanes and methyl-branched alkanes), alkenes and alkadienes comprised 26, 44 and 30%, respectively, for A. lacertosa, and 48, 26 and 26%, respectively, for A. nigriscutis, of the total hydrocarbons. The major methyl-branched hydrocarbons were 2-methylalkanes: 2-methyloctacosane and 2-methyltriacontane. The major monoene was hentriacontene and the major diene was tritriacontadiene. The species were unique in that a number of di- and trimethyl-branched alkanes were present in minor quantities in which the first methyl branch was on carbon 2 or 3. Examples of structures were 2,10-, 2,12-, 2,6-, 2,4- and 3,7-dimethylalkanes. 2,10,12-Trimethylalkanes and a 2,10,12,24-tetramethylalkane with one methylene between adjacent methyl branch points also were identified. The adjacent methyl branch points of the 2,4- and 2,10,12- and 2,10,12,24-methyl-branched alkanes appeared to cause additional fragmentations in the mass spectra. Dimethylalkanes with an odd number of carbons in the backbone of the molecule were identified as 2,23-dimethylnonacosane and 2,25-dimethylhentriacontane; their mass spectra also corresponded to mass spectra expected for a 2,6 branching sequence. However, a 2,6 branching sequence is not biosynthetically feasible because such a structure has a straight-chain tail with an odd number of carbon atoms beyond the last methyl branch point. The 2,23 and 2,25 branching sequences could be synthesized starting with a primer derived from the amino acid leucine which would account for both the even number of carbons between the branch points and an even number of carbons beyond the last methyl branch point.  相似文献   

16.
An n-hexane extract of fresh, mature leaves of Argemone mexicana (Papaveraceae), containing thin-layer epicuticular waxes, has been analysed for the first time by TLC, IR and GLC using standard hydrocarbons. Seventeen long-chain alkanes (n-C18 to n-C34) were identified and quantified. Nonacosane (n-C29) was established as the n-alkane with the highest amount, whilst octadecane (n-C19) was the least abundant component of the extracted wax fraction. The carbon preference index (CPI) calculated for the hydrocarbon sample with the chain lengths between C18 and C34 was 1.2469, showing an odd to even carbon number predominance.  相似文献   

17.
The Dufour gland secretion consists of a solution of volatile oxygenated compounds in a mixture of higher hydrocarbons and sesquiterpenoid alkenes. Methanol, butenone, 2-methylpropanal, and 1-butanol have now been identified as the remaining major volatile components. These substances have no strong behavioural effect upon ants, nor do they induce trail following behaviour. The principal activity of the Dufour gland can be traced to the three more abundant volatile components, ethanal, acetone, and butanone, together with the minor component ethanol.  相似文献   

18.
The viviparous cockroach Diploptera punctata carries a wax-coated batch of embryos in a brood sac. When the embryos are expelled into saline, flakes of wax from the surface of the embryos float to the surface. In contrast, embryos of the ovoviviparous species such as Rhyparobia maderae are not nourished by the mother during embryogenesis and do not have a copious waxy coating. As a first step in determining the function of this copious wax layer on the batch of embryos of D. punctata, its composition was compared to that of the waxy material on the outer cuticular surface of the mother (female cuticle) by thin-layer chromatography (TLC) and gas chromatography-mass spectrometry. The major lipid class on the embryos was hydrocarbons with lesser amounts of wax esters and long-chain alcohols. Hydrocarbons from both sources had similar elution times and chemical composition, but were markedly different in the amounts of the major methyl-branched hydrocarbon components. A mixture of 3,X-dimethyl alkanes were 44% of the hydrocarbons on the embryos and were only 29% on the female cuticle. However, trimethylalkanes were only 22% of the hydrocarbons on the embryos and were 34% of the hydrocarbons on the female cuticle. The major hydrocarbons from both sources were mixtures of methyl-branched alkanes with backbones of 33 and 35 carbon atoms. Methyl-branched tritriacontanes were 59% of embryo and 35% of female cuticular hydrocarbons; methyl-branched pentatriacontanes were 19% of embryo and 42% of female hydrocarbons. The difference in proportions of the similar hydrocarbons on the outer cuticular surface of the female and those covering the embryos may suggest that the evolution of copious nutrient secretion for the embryos was accompanied by selection for a mixture of hydrocarbons that prevents water loss by the embryos and protects them against invasion by microorganisms without preventing the movement of nutrient fluid into the embryos.  相似文献   

19.
The fine structure of the wax gland of Anomoneura nymph and its metamorphic change were investigated. In the nymph, this organ encircles the anus, and consists of two kinds of cells, derived from epidermal cells: (1) very tall, slim wax cells, which produce and secrete the wax, and (2) flat interstitial cells found among the wax cells. The whole gland is covered by a wax-secreting cuticle with a delicate surface sculpture. Each wax cell has a long, wide duct which opens at the cuticle and penetrates the entire cell. Its cytoplasm is rich in mitochondria and smooth endoplasmic reticulum while that of interstitial cells contains rough endoplasmic reticulum. During each nymphal molt, the cluster of primordial wax gland cells — derived from the epidermis — proliferates rapidly and forms the gland of the next instar. The gland of the preceding instar meanwhile degenerates. Interstitial cells play an important role in cuticle formation and shedding at each molt. These cells alone produce and deposit the new cuticle of the next instar; the wax cells, specialized for wax production, cannot produce cuticle. The apical portion of the wax cell is cut off from the main cell body by growth of the surrounding interstitial cells. Thereafter, the wax cells degenerate, resulting in the rapid disappearance of the previous instar's wax gland. Adults lack this gland entirely.  相似文献   

20.
The labial gland secretions from males of the bumble bee Bombus (Pyrobombus) perplexus Cresson were analysed by gas chromatography/mass spectrometry (GC/MS) in the electron impact and positive ion chemical ionization mode. The major compound of the complex mixture of alkenols, alkenals, fatty acids, hydrocarbons, wax type esters and steroids is 3,7,11,15-tetramethyl-2,6,10-hexadecatrien-1-ol (geranylcitronellol), considerable amounts of hexadecan-1-ol and Z-9-hexadecen-1-ol were also found. All alcohols were present as esters of the detected acids. In older samples both the acids and the alcohols sometimes could not be detected in the GC; therefore, the possibility to check the detected acid-alcohol pattern by interpreting the wax type ester peaks is very instructive. Moreover, the labial gland contains a rich mixture of mono- and di-unsaturated straight chain hydrocarbons. The similarity in composition of the labial glands of the North American B. (Pyrobombus) perplexus with the Eurasian species B. (Pyrobombus) hypnorum corroborates the assumption that the two species are conspecific. The likely supposition that the hydrocarbons could play an essential role in the chemical communication in bumble bees is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号