首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
Seasonal and vertical fluctuations of zooplankton species composition,biomass, and production were monitored by weekly sampling duringa two year period in one eutrophic pond in Central Finland.The study was one part of a more comprehensive study programto investigate the effects of warm water effluents from onesmall thermal power plant (35 MW) on the pond ecosystem. Becauseof the circulation of the pond water through the pumps in thepower plant the crustacean populations were very sparse in planktonduring the seasons the power plant was in operation (late Augustto May). During that time rotifers were dominant and some speciesreached very high densities (e.g., Keratella cochlearis s.l.ca. 15 000 ind. l–1 in sping). In summer months Asplanchnapriodonta, Ceriodaphnia quadrangula, Bosmina longirostris, Mesocyclopsleuckarti and Thermocyclops oithonoides were dominant. A totalof 96 planktonic and meroplanktonic taxa were identified (26ciliates, 46 rotifers, 21 cladocerans and 3 copepods). The dryweight biomass of total zooplankton was 10 mg m–3 in wintermonths, 10–100 mg m–3 in spring and 300–1000mg m–3 in summer. The total yearly production of zooplanktonwas 8552 mg dry wt m–3 a–1 in 1979 and 8440 mg drywt m–3 a–1 in 1980, from which the proportion ofrotifers was 33–39%, cladocerans 52–58% and copepods8.6 –9.4%. The winter production was 0.2–0.5% ofthe total yearly production, that of spring and autumn togetherwas 8.1–10.4% and the remainder (89–91%) was summerproduction.  相似文献   

2.
Two planktonic cyclopoid copepods (Tropocyclops prasinus andMesocyclops longisetus) were raised in the laboratory to obtainlife history information (duration of embryonic and post-embryonicdevelopment, reproductive performance, longevity, and stage-specificlength and weight values). Animals were maintained at 20 and25°C, and fed ad libitum. Development times were temperaturedependent when food was not limiting, with shorter periods ofembryonic and post-embryonic development and decreased longevityat 25°C. Laboratory data on the duration of developmentand biomass, together with population dynamics data obtainedin the field, were used to estimate summer and winter biomassand production of these species in a shallow reservoir, LagoaDourada, Brazil. The maximum production rate of T. prasinus,attained during summer, was 2.8 mg dry weight (DW) m–3day–1 and the highest daily production:biomass (P:B) ratiowas 0.29, whereas for M. longisetus the maximum production ratewas 1.4 mg DW m–3 day–1 and the highest daily P:Bratio was 0.39, in the winter. Over short time intervals (everyother day), there was great variability of the species productionrates. Species production rates were low compared to valuesreported in the literature for the same or other species ofequivalent sized copepods from both tropical and subtropicalregions.  相似文献   

3.
The predation impact of Cyclops vicinus on rotifers was studiedunder near-natural conditions in small enclosures to evaluatewhether copepod predation is responsible for the decline ofrotifers in Lake Constance in spring. Cyclops vicinus fed selectivelyon Synchaeta spp.; Keratella and Polyarthra spp. were not selectedfor. Predation rates increased with prey density up to a maximumof 37 Synchueta day–1 at a density of 1.6 x 106 Synchaetam–2, i.e. at -1200 Synchaeta l–1. Calculation ofcropping rates suggests that Cyclops alone can control the abundanceof Synchaeta in spring, i.e. that mainly Cyclops is responsiblefor the decline of Synchaeta species in Lake Constance in May.  相似文献   

4.
Seasonal variation of the biomass (B), production (P) and P/Bratio of the numerically dominant crustaceans in Lake Awasa(Mesocydops aequatonalis stmilts, Thermocyclops consunilis andDiaphanosoma exisum) were studied during 1986 and 1987. Quantitativenet samples (64 (xm mesh) were taken at three stations on 10day intervals throughout 1986, and the dry weights and developmenttimes for each life stage were obtained from laboratory measurementsand cultures Total biomass of most of the dominant crustaceans,determined from 390 samples during 1986, was 44.85 mg m3(dry weight, DW) with adult females of Mesocyclops making >43.5%.Alona diaphana, another common crustacean, is dealt with ina separate paper, as are the Rotifera. Production of the dominantcrustaceans during 1986 was estimated by the growth incrementsummation (Winberg) and instantaneous growth (Ricker) methodsThe annual integrated production of the two dominant cyclopoidsis 535.2 mg (DW) m3 (Winberg) while annual crustaceanproduction totals 2.5 g (DW) m3 (Ricker) The mean annualP/B ratio for individual species and stages varied from 221.0for Diaphanosoma, to 121.7-143.0 for nauplii and 9.8–187 for copepodites of the cyclopoids It was 55 8 for the dominantzooplankton species Low or high zooplankton production and biomassturnover rates (P/B) cannot be used to characterize all tropicallakes consistently However, production per unit biomass is likelyto be higher in tropical lakes.  相似文献   

5.
The distinct patterns of stratification in the North Channeland stratified region of the western Irish Sea influence theseasonal abundance of phytoplankton. The 3–4 month productionseason in the stratified region was characterized by productionand biomass peaks in the spring (up to 2378 mg C m2 day–1and 178.4 mg chlorophyll m–2) and autumn (up to 1280 mgC m–2 day–1 and 101.9 mg chlorophyll m–2).Phytoplankton in the North Channel exhibited a short, late productionseason with a single summer (June/July) peak in production (4483mg Cm–2 day–1) and biomass (–160.6 mg chlorophyllm–2). These differences have little influence on copepoddynamics. Both regions supported recurrent annual cycles ofcopepod abundance with similar seasonal maxima (182.8–241.8103ind. m–2) and dominant species (Pseudocalanus elongatusand Acartia clausi). Specific rates of population increase inthe spring were 0.071 and 0.048 day1 for the North Channel andstratified region, respectively. Increased copepod abundancein the stratified region coincided with the spring bloom, andwas significantly correlated with chlorophyll standing stock.Increased copepod abundance preceded the summer production peakin the North Channel. This increase was not correlated withchlorophyll standing crop, suggesting that a food resource otherthan phytoplankton may be responsible for the onset of copepodproduction prior to the spring bloom. Hetero-trophic microplanktonas an alternative food source, and advection of copepods fromthe stratified region, are proposed as possible explanationsfor copepod abundance increasing in advance of the summer peakin primary production.  相似文献   

6.
Primary production, and bacterial production as measured byincorporation of [3H-methyl]thymidineinto ice cold TCA insolublematerial were investigated during 1984 in Lake Kvernavatnet,west Norway. Primary production averaged 222 mg C m–2day–1 and bacterial production averaged 163 mg C m–2day–1. The bacterial production in the euphotic pelagiczonecontributed -60% of the total pelagic bacterial production.The zooplankton was dominated byDaphnia longispina. From growthexperiments with animals fed only natural food in coarse filteredlake water, the population daily growth increments were calculated.The average production of D.longispina was 151 mg C m–2day–1 during the period investigated. The estimated primaryproduction was too low to sustain both the bacterial productionand the zooplankton food requirements. These results imply thatthe carbon cycle of the lake is dependent on the supply of allochtonousmaterial, or that the current methods for measuring productionrates in aquatic environments are systematical erratic.  相似文献   

7.
The abundance, life span, growth and production of the mud snailsHydrobia minoricensis, H. ulvae and H. ventrosa in a semi-naturallagoon system were studied by taking monthly samples at threesites during 1991 and 1992. The most abundant species, H. minoricensisoccurred at mean densities of 12834 to 26264 snails m–2(10.7 to 25.8g dry weigh m–2), depending on the site.The least abundant species, H. ulvae, occurred at mean densitiesof 185 to 353 snails m–2 (3.2 to 2.2g dry weight m–2).The numerical abundance and biomass of the three Hydrobia specieswere positively related to the biomass of benthic macroalgae(P<0.01). Although H. ulvae egg capsules were recorded throughoutthe year, newly hatched snailsof this species were not observed,in contrast to the other two species. The early spring and summercohorts of H. minoricensis and H. ventrosa seemed to be themost numerous. The average life spans of these two species wereestimated to be about 18 and 13 months respectively. Annualproduction estimates for the whole lagoon system were 29.0 (6.3),5.5 (0.8) and 5.2 (1.0)g dry weight (ash-free dry weight) m–2yr–1 for H. minoricensis, H. ulvae and H. ventrosa respectively.The annual P/B ratio was about 2 for H. minoricensis and H.ventrosa. (Received 5 July 1994; accepted 5 October 1994)  相似文献   

8.
Primary production, pigment concentrations and spectral measurementsof downwelling irradiance were made at four stations in fourseasons (spring, summer, autumn, winter) during 1994 in thewaters of the South Aegean Sea (Cretan Sea), Eastern Mediterranean.Rates of production were determined using in Situ incubationtechniques and included measurements at the surface microlayer.Depth-integrated values averaged over season were 5.66 mg Cm–2 h–1 for primary production and the correspondingchlorophyll (Ch1) a and phaeophytin (Phaeo) a values had meansof 4.87 and 1.21 mg m–3 respectively. The assimilationratio remained very low (mean over season: 1.19 mg C mg–2Chl a h–1 as did the Phaeo a/Chl a ratio (mean over season:0.24). The annual production for the area was estimated to yield24.79 g C m–2 year–1. Primary production and Chla estimates showed statistically significant seasonal, spatialand depth variations. The spectral values of the attenuationcoefficient Kd (  相似文献   

9.
Results are presented of size-fractionated primary productionstudies conducted in the vicinity of the Subtropical Front (STF),an adjacent warm-core eddy, and in Sub-antarctic waters duringthe third South African Antarctic Marine Ecosystem Study (SAAMESIII) in austral winter (June/July) 1993. Throughout the investigation,total chlorophyll (Chl a) biomass and production were dominatedby small nano- and picophytoplankton. No distinct patterns intotal Chl a were evident. At stations (n = 7) occupied in thevicinity of the STF, total integrated biomass values rangedfrom 31 to 53 mg Chl a m–2. In the vicinity of the eddy,integrated biomass at the eddy edge (n = 3) ranged from 24 to54 mg Chl a m–2 and from 32 to 43 mg Chl a m–2 inthe eddy (n = 2). At the station occupied in the Sub-antarcticwaters, total integrated biomass was 43 mg Chl a m–2.Total daily integrated production was highest at stations occupiedin the vicinity of the STF and at the eddy edge. Here, totalintegrated production ranged from 150 to 423 mg C m–2day–1 and from 244 to 326mg C m–2 day–1, respectively.In the eddy centre, total integrated production varied between134 and 156 mg C m–2 day–1. At the station occupiedin the Sub-antarctic waters, the lowest integrated production(141 mg C m–2 day–1) during the entire survey wasrecorded. Availability of macronutrients did not appear to limittotal production. However, the low silicate concentrations duringthe survey may account for the predominance of small nano- andpicophytoplankton. Differences in production rates between theeddy edge and eddy core were related to water column stability.In contrast, at stations occupied in the vicinity of the STF,the control of phytoplankton production appears to be relatedto several processes, including water column stability and,possibly, iron availability.  相似文献   

10.
Can phaeopigments be used as markers for Daphnia grazing in Lake Constance?   总被引:1,自引:0,他引:1  
The formation of chlorophyll a degradation products was measuredwith natural phytoplankton from Lake Constance and Daphnia magnaand native Daphnia as grazers in grazing experiments duringspring bloom conditions using high-pressure liquid chromatography(HPLC). Chlorophyll a start concentrations were between 1.2and 16.3 µg l–1; phaeopigment weights constituted5% of chlorophyll a weight. Only phaeophorbide a was a markerfor Daphnia grazing; concentrations of other phaeopigments (phaeophytina, chlorophyllide a and two unidentified phaeopigments) didnot increase during Daphnia grazing. Conversion efficiencies(chlorophyll a to phaeophorbide a) were between 0 and 43% ona weight basis, and between 0 and 65% on a molar basis. Conversionefficiencies were highest at high grazer density (40 Daphnial–1) and after a 24 h exposure time. Grazing by microzooplanktonprobably led to the formation of the two unidentified phaeopigments.In Lake Constance, Daphnia density was significantly positivelycorrelated with the phaeophorbide a/chlorophyll a ratio whenit was <5000 Daphnia m–3. However, when higher Daphniadensities were included in calculations, then Daphnia densitywas positively, but insignificantly, correlated with the phaeophorbidea/chlorophyll a ratio. This suggests that when the level offood per Daphnia is low, then grazing is more efficient withless production of phaeophorbide a and a higher production ofcolourless products.  相似文献   

11.
Time series of phytoplankton biomass and taxonomic compositionhave been obtained for the 3 years 1992, 1993 and 1994 in thenorthern part of the Southern Ocean (station Kerfix, 5040'S,6825;E) Autotrophic biomass was low throughout the year (<0.2mg m–3 except during a short period in summer when a maximumof 1.2 mg chlorophyll (Chl) a m– was reached. During winter,the integrated biomass was low (<10 mg m–2) and associatedwith deeply mixed water, whereas the high summer biomass (>20mg m–2) was associated with increased water column stability.During summer blooms, the >10 µ;m size fraction contributed60% to total integrated biomass. Large autotrophic dinoflagellates,mainly Prorocentrum spp., were associated with the summer phytoplankton maxima and accounted for >80% of the total autotrophcarbon biomass. In November and December, the presence of thelarge heterotrophic dinoflagellates Protoperidinium spp. andGyro dinium spp. contributed a high proportion of total carbonbiomass. During winter, the <10 µm size fraction contributed80% of total Chi a biomass with domination of the picoplanktonsize fraction. The natural assemblage included mainly nakedflagellates such as species of the Prasinophyceae, Cryptophyceaeand Prymnesiophyceae. During spring, picocyanobacteria occurredin sub-surface water with a maximum abundance in September of106 cells 1–1  相似文献   

12.
Neomysis mercedis, an important invertebrate predator in somelakes and estuaries in North America, occurred at high densities(>2 mysids m-3) in Lake Washington in the early 1960s, aperiod when Daphnia were scarce in the lake. Because Neomysisfeed selectively on Daphnia, it was hypothesized that mysidpredation contributed significantly to the scarcity of Daphnia.To evaluate this hypothesis, mysid abundance was monitored inthe lake (July 1989–February 1992), and whole lake predationimpacts on Daphnia were estimated. Mysid abundance varied from319 million, 0.1 mysids m-3 (February 1992) to 4276 million,1.7 mysids m-3 ( June 1991), and mysid biomass ranged from 1153(October 1991) to 4700 kg dry weight (November 1990). A peakin Daphnia consumption was noted during autumn, when total mysidbiomass was high. In late autumn/winter mysid consumption month-1accounted for 28–95% of Daphnia biomass and 13–38%of production. Mysid densities in this study were 18x and 5xlower than in 1962 and 1975, respectively. By extrapolation,at a density of 3.5 mysids m-3 observed in the early 1960s,total Neomysis consumption demand month-1 exceeded 100% of Daphniabiomass (late autumn–early spring), and 100% of Daphniaproduction (late autumn–winter). Estimates of the totalmysid consumption demand in this study are thus in accord withthe hypothesis that Neomysis could control Daphnia abundancein Lake Washington.  相似文献   

13.
The impact of a cyclopoid copepod population on the protozoacommunity (two ciliate categories and Cryptomonas) was assessedweekly during the spring cohort of Cyclops vicinus (one monthduration) in hypereutrophic Lake Søbygård by insitu gradient experiments with manipulation of ambient zooplanktonabundance. As C.vicinus always made up >92% of the zooplanktonbiomass, the response of protozoa is assumed to be a resultof predation by the copepod. Significant effects of copepodbiomass on protozoa net population growth rates were obtainedin the four experiments. Copepod clearance rates were significantlyhigher on oligotrichs than on prostomatids and Cryptomonas butdeclined for all three protozoa categories during the firstthree weeks of the copepod cohort, probably because of the changein developmental instar composition of the copepod population.Grazing impact on protozoa at ambient copepod abundance wasconsiderable (range, 0.05–0.87 day–1) and could,together with the estimated reproductive potential of protozoans(range, –0.20–0.87 day–1), account for thedecline in abundance and biomass of protozoa during the cohortdevelopment. Carbon flow from the protozoa to C.vicinus (range,2.8–23.5 µg C l–1 day–1) documents thepresence of a trophic link between protozoa and the spring cohortof C.vicinus in Lake Søbygård.  相似文献   

14.
Oikopleura longicauda occurred throughout the year in ToyamaBay, southern Japan Sea, and analysis of its size compositionand maturity revealed that reproduction was continuous overtheyear. Somatic growth production (Pg) varied with season from0.03 to 103 mg carbon (C) m–2day–1 (annual Pg 4.5g C m–2), and house production (Pe) from 0.11 to 266 mgC m–2 day–1 (annualPe 11.3 g C m–2). The annualPg/B ratio was 176. Compared with production data of some predominantzooplankton species in Toyama Bay, it is suggested that despitetheir smaller biomass, appendicularians are an important secondaryproducer.  相似文献   

15.
The relationships between photosynthesis and photosyntheticphoton flux densities (PPFD, P-l) were studied during a red-tideof Dinophysis norvegica (July-August 1990) in Bedford Basin.Dinophysis norvegica, together with other dinoflagellates suchas Gonyaulax digitate, Ceratium tripos, contributed {small tilde}50%of the phytoplankton biomass that attained a maximum of 16.7µg Chla 1 and 11.93 106 total cells I–1.The atomic ratios of carbon to nitrogen for D.norvegica rangedfrom 8.7 to 10.0. The photosynthetic characteristics of fractionatedphytoplankton (>30 µm) dominated by D.norvegica weresimilar to natural bloom assemblages: o (the initial slope ofthe P-l curves) ranged between 0.013 and 0.047 µg C [µgChla]–1 h–1 [µmol m s–1]–1the maximum photosynthetic rate, pBm, between 0.66 and 1.85µg C [µghla]–1 h–1; lk (the photoadaptationindex) from 14 to 69 µ,mol m–2 s–1. Carbonuptake rates of the isolated cells of D.norvegica (at 780 µmolm–2 s–1) ranged from 16 to 25 pg C cell–1h and were lower than those for C.tripos, G.digitaleand some other dinoflagellates. The variation in carbon uptakerates of isolated cells of D.norvegica corresponded with PBmof the red-tide phytoplankton assemblages in the P-l experiments.Our study showed that D.norvegica, a toxigenic dinoflagellate,was the main contributor to the primary production in the bloom.  相似文献   

16.
The life cycles, biomass and secondary production of three sympatricfreshwater basommatophoran snails, Lymnaea palustris (MÜller),Physa fontinalis Linnaeus and Anisus rotundatus (Poiret) werestudied during two years in a freshwater ditch. L. palustrisexhibited an iteroparous life-cycle whereas the two other speciespresented a semelparous life-cycle, adults died just after oviposition.L. palustris secondary production (dry weight) value was higher(P = 11 298.4 mg 0.1 m–1 yr–1) than those of P.fontinalis (P = 846.3 mg 0.1 m–2 yr–1) and A. rotundatus(P = 1192 mg 0.1 m–2 yr–1). (Received 16 March 1992; accepted 30 June 1992)  相似文献   

17.
Planktonic primary production in the German Wadden Sea   总被引:8,自引:0,他引:8  
By combining weekly data of irradiance, attenuation and chlorophylla concentrations with photosynthesis (P) versus light intensity(E) curve characteristics, the annual cycle of planktonic primaryproduction in the estuarine part of the Northfrisian WaddenSea was computed for a 2 year period. Daily water column particulategross production ranged from 5 to 2200 mg C m–2 day–1and showed a seasonal pattern similar to chlorophyll a. Budgetcalculation yielded annual gross particulate primary productionsof 124 and 176 g C m–2 year–1 in 1995 and 1996,respectively. Annual amounts of phytoplankton respiration, calculatedaccording to a two-compartment model of Langdon [in Li,W.K.W.and Maestrini,S.Y. (eds), Measurement of Primary Productionfrom the Molecular to the Global Scale. International Councilfor the Exploration of the Sea, Copenhagen, 1993, pp. 20–36],and dissolved production in 1996, were both in the range of24–39 g C m–2 year–1. Annual total net productionwas thus very similar to particulate gross production (127 and177 g C m–2 year–1 in 1995 and 1996, respectively).Phytoplankton growth was low or even negative in winter. Inspring and summer, production/biomass (Pr/B) ratios varied from0.2 up to 1.7. Phytoplankton growth during the growth seasonalways surpassed average flushing time in the area, thus underliningthe potential of local phytoplankton bloom development in thispart of the Wadden Sea. The chlorophyll-specific maximum photosyntheticrate (PBmax) ranged from 0.8 to 9.9 mg C mg–1 Chl h–1and was strongly correlated with water temperature (r2 = 0.67).By contrast, there was no clear seasonal cycle in B, which rangedfrom 0.007 to 0.039 mg C mg–1 Chl h–1 (µmolphotons m–2 s–1)–1. Its variability was muchless than PBmax and independent of temperature. The magnitudeand part of the variability of PBmax and B are presumably causedby changes in species composition, as evidenced from the rangeof these parameters found among 10 predominant diatom speciesisolated from the Wadden Sea. The ratio of average light conditionsin the water column (Eav) to the light saturation parameterEk indicates that primary production in the Wadden Sea regionunder study is predominantly controlled by light limitationand that nutrient limitation was likely to occur for a few hoursper day only during 5 (dissolved inorganic nitrogen) to 10 (PO4,Si) weeks in the 2 year period investigated.  相似文献   

18.
Production of Penilia avirostris in Kingston Harbour, Jamaica   总被引:2,自引:0,他引:2  
The cladoceran Penilia avirostris is one of the more abundantand widespread members of the crustacean zooplankton in nearshoretropical and subtropical waters. Its abundance, biomass, fecundity,development rate and production were estimated in Kingston Harbour,Jamaica, during an 18 month period. Mean annual abundance ofPenilia was 1821 m–3, while biomass (excluding eggs/embryos)was 2.87 mg ash-free dry-weight (AFDW) m–3 (43.1 mg AFDWm–2), accounting for 13% of the copepod community biomass.Fecundity increased with body size. There was no clear seasonalpattern of abundance, size or fecundity, nor were physical orbiological variables correlated to these variations. Developmenttime averaged 20.5 h for juveniles and 41.4 h for adult femalesduring incubations; there was no clear evidence of a diel patternto molting. Growth rate appeared to be exponential, with correspondingsomatic growth rates, averaging 0.27 day–1 for juveniles,and 0.34 day–1 for somatic plus reproductive growth inadult females. Annual production was estimated as 173 kJ m–2year–1,  相似文献   

19.
The population carbon budget and seasonality of Boeckella minutain a newly formed subtropical reservoir were examined 3 yearsafter the reservoir filled. Average daily biomass was 26.4 mgC m–3 and the annual population carbon budget was: consumption2470, egestion 1482, assimilation 988, production 493 and respiration495, mg C m–3 year–1, and the average P/B and P/Aratios were 0.08 and 0.5 respectively. Clutch size and reproductiveeffort (egg production/assimilation) were low, and the proportionof males decreased throughout the population cycle. The seasonalabundance pattern changed from perennial (pre-filling years)to a 7 month cycle. It is suggested that eutrophication andthe spring bloom of cyanobacteria may have accentuated a seasonaldecrease in reproductive effort and survival, leading to anabsence of planktonic stages during summer, and that restingeggs facilitated population survival during the summer periodof stratification.  相似文献   

20.
On p. 527 the legend for Table 2 should read: TABLE 2. Measured and simulated dry matter production (g m–2)of Wimmera ryegrass. Data from Donald (1951) and sentence 7 in the text should read: Measured yields (averaged over four replicates and convertedto g m–2), simulated yields and estimated parameters aregiven in Table 3. On p. 528 the legends for Tables 4 and 5 should read: TABLE 4. Measured and simulated dry matter production (g m–2)of maize. Data from Tetio-Kagho and Gardner (1988) TABLE 5. Measured and simulated dry matter production (g m–2)of lucerne. Data from Jarvis (1962), averages of four replicates,planted at two different dates in two successive years and sentence 1 should read: The maximum biomass production (A) of 113 g m–2 of f.wt.corresponds with 6.3 g m–2 of dry matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号