首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Red beech (Nothofagus fusca (Hook. F.) Oerst.; Fagaceae) andradiata pine (Pinus radiata D. Don; Pinaceae) were grown for16 months in large open-top chambers at ambient (37 Pa) andelevated (66 Pa) atmospheric partial pressure of CO2, and incontrol plots (no chamber). Summer-time measurements showedthat photosynthetic capacity was similar at elevated CO2 (lightand CO2-saturated value of 17.2 µmol m–2 s–1for beech, 13.5 µmol m–2 s–1 for pine), plantsgrown at ambient CO2 (beech 21.0 µmol–2 s–1,pine 14.9 µmol m–2s–1) or control plants grownwithout chambers (beech 23.2 µmol m–2 s–1,pine 12.9 µmol m–2 s–1). However, the higherCO2 partial pressure had a direct effect on photosynthetic rate,such that under their respective growth conditions, photosynthesisfor the elevated CO2 treatment (measured at 70 Pa CO2 partialpressure: beech 14.1 µmol m–2 s–1 pine 10.3)was greater than in ambient (measured at 35 Pa CO2: beech 9.7µmol m–2 s–1, pine 7.0 µmol m–2s–1) or control plants (beech 10.8 µmol m–2s–1, pine 7.2 µmol m–2 s–1). Measurementsof chlorophyll fluorescence revealed no evidence of photodamagein any treatment for either species. The quantity of the photoprotectivexanthophyll cycle pigments and their degree of de-epoxidationat midday did not differ among treatments for either species.The photochemical efficiency of photosystem II (yield) was lowerin control plants than in chamber-grown plants, and was higherin chamber plants at ambient than at elevated CO2. These resultssuggest that at lower (ambient) CO2 partial pressure, beechplants may have dissipated excess energy by a mechanism thatdoes not involve the xanthophyll cycle pigments. Key words: Carotenoids, chlorophyll fluorescence, photosynthesis, photoinhibition, photoprotection, xanthophyll cycle  相似文献   

2.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

3.
Three marine phytoplankton species (Skeletonema costatum, Olisthodiscusluteus andGonyaulax tamarensis) were grown in batch culturesat 15°C and a 14:10 L:D cycle at irradiance levels rangingfrom 5 to 450 µEinst m–2 s–1. At each irradiance,during exponential growth, concurrent measurements were madeof cell division, carbon-specific growth rate, photosyntheticperformance (both O2 and POC production), dark respiration,and cellular composition in terms of C, N and chlorophyll a.The results indicate that the three species were similar withrespect to chemical composition, C:N (atomic) = 6.9 ±0.4, photo-synthetic quotient, 1.43 ± 0.09, and photosyntheticefficiency, 2.3 ±0.1 x 10–3 µmol O2 (µgChl a)–1 h–1 (µEinst m–2 s–1)–1.Differences in maximum growth rate varied as the –0.24power of cell carbon. Differences in growth efficiency, werebest explained by a power function of Chl a:C at µ = 0.Compensation intensities, ranged from 1.1 µEinst m–2s–1 for S. costatum to 35 forG. tamarensis and were foundto be a linear function of the maintenance respiration rate.The results indicate that interspecific differences in the µ–Irelationship can be adequately explained in terms of just threeparameters: cell carbon at maximum growth rate, the C:Chl aratio (at the limit as growth approaches zero) and the respirationrate at zero growth rate. A light-limited algal growth modelbased on these results gave an excellent fit to the experimentalµ–I curves and explained 97% of the observed interspecificvariability. 1Present address: Lamont-Doherty Geological Observatory Columbiaof University, Palisades, NY 10964, USA  相似文献   

4.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

5.
The photosynthetic response to CO2 concentration, light intensityand temperature was investigated in water hyacinth plants (Eichhorniacrassipes (Mart.) Solms) grown in summer at ambient CO2 or at10000 µmol(CO2) mol–1 and in winter at 6000 µmol(CO2)mol–1 Plants grown and measured at ambient CO2 had highphotosynthetic rate (35 µmo1(CO2) m–2 s–1),high saturating photon flux density (1500–2000) µmolm–2 s–1 and low sensitivity to temperature in therange 20–40 °C. Maximum photosynthetic rate (63 µmol(CO2)m–2 s–1) was reached at an internal CO2 concentrationof 800 µmol mol–1. Plants grown at high CO2 in summerhad photosynthetic capacities at ambient CO2 which were 15%less than for plants grown at ambient CO2, but maximum photosyntheticrates were similar. Photosynthesis by plants grown at high CO2and high light intensity had typical response curves to internalCO2 concentration with saturation at high CO2, but for plantsgrown under high CO2 and low light and plants grown under lowCO2 and high light intensity photosynthetic rates decreasedsharply at internal CO2 concentrations above 1000 µmol–1. Key words: Photosynthesis, CO2, enrichment, Eichhornia crassipes  相似文献   

6.
Gas exchange measurements were undertaken on 2-year-old plantsof Clusia rosea. The plants were shown to have the ability toswitch from C3-photosynthesis to CAM and vice versa regardlessof leaf age and, under some conditions, CO2 was taken up continuously,throughout the day and night. The light response was saturatedby 120 µmol m–2 s–1 typical of a shade plant. Gas exchange patterns in response to light, water and VPD wereexamined. All combinations of daytime and night-time CO2 uptakewere observed, with rates of CO2 uptake ranging from 2 to 11µmol m–2 s–1 depending upon water status andlight. Categorization of this plant asC3, CAM or an intermediateis impossible. Differing VPD affected the magnitude of changesfrom CAM to C3-photosynthesis (0 to 0.5 and 0 to 6.0 µmolm–2 s–1 CO2, respectively) when plants were watered.Under well-watered conditions, but not under water stress, highPPFD elicited changes from CAM to C3 gas exchange. This is unusualnot only for a shade plant but also for a plant with CAM. Itis of ecological importance for C. rosea, which may spend theearly years of its life as an epiphyte or in the forest understorey,to be able to maximize photosynthesis with minimal water loss. Key words: Clusia rosea, CAM, C3, stress  相似文献   

7.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

8.
Planktonic primary production in the German Wadden Sea   总被引:8,自引:0,他引:8  
By combining weekly data of irradiance, attenuation and chlorophylla concentrations with photosynthesis (P) versus light intensity(E) curve characteristics, the annual cycle of planktonic primaryproduction in the estuarine part of the Northfrisian WaddenSea was computed for a 2 year period. Daily water column particulategross production ranged from 5 to 2200 mg C m–2 day–1and showed a seasonal pattern similar to chlorophyll a. Budgetcalculation yielded annual gross particulate primary productionsof 124 and 176 g C m–2 year–1 in 1995 and 1996,respectively. Annual amounts of phytoplankton respiration, calculatedaccording to a two-compartment model of Langdon [in Li,W.K.W.and Maestrini,S.Y. (eds), Measurement of Primary Productionfrom the Molecular to the Global Scale. International Councilfor the Exploration of the Sea, Copenhagen, 1993, pp. 20–36],and dissolved production in 1996, were both in the range of24–39 g C m–2 year–1. Annual total net productionwas thus very similar to particulate gross production (127 and177 g C m–2 year–1 in 1995 and 1996, respectively).Phytoplankton growth was low or even negative in winter. Inspring and summer, production/biomass (Pr/B) ratios varied from0.2 up to 1.7. Phytoplankton growth during the growth seasonalways surpassed average flushing time in the area, thus underliningthe potential of local phytoplankton bloom development in thispart of the Wadden Sea. The chlorophyll-specific maximum photosyntheticrate (PBmax) ranged from 0.8 to 9.9 mg C mg–1 Chl h–1and was strongly correlated with water temperature (r2 = 0.67).By contrast, there was no clear seasonal cycle in B, which rangedfrom 0.007 to 0.039 mg C mg–1 Chl h–1 (µmolphotons m–2 s–1)–1. Its variability was muchless than PBmax and independent of temperature. The magnitudeand part of the variability of PBmax and B are presumably causedby changes in species composition, as evidenced from the rangeof these parameters found among 10 predominant diatom speciesisolated from the Wadden Sea. The ratio of average light conditionsin the water column (Eav) to the light saturation parameterEk indicates that primary production in the Wadden Sea regionunder study is predominantly controlled by light limitationand that nutrient limitation was likely to occur for a few hoursper day only during 5 (dissolved inorganic nitrogen) to 10 (PO4,Si) weeks in the 2 year period investigated.  相似文献   

9.
Mistletoes usually have slower rates of photosynthesis thantheir hosts. This study examines CO2assimilation, chlorophyllfluorescence and the chlorophyll content of temperate host–parasitepairs (nine hosts parasitized by Ileostylus micranthus and Carpodetusserratus parasitized by Tupeia antarctica). The hosts of I.micranthus had higher mean annual CO2assimilation (3.59 ±0.41 µmol m-2 s-1) than I. micranthus(2.42 ± 0.20µmol m-2 s-1), and C. serratus(2.41 ± 0.43 µmolm-2 s-1) showed higher CO2assimilation than T. antarctica(0.67± 0.64 µmol m-2 s-1). Hosts saturated at significantlyhigher electron transport rates (ETR) and light levels thanmistletoes. The positive relationship between CO2assimilationand electron transport suggests that the lower CO2assimilationrates in mistletoes are a consequence of lower electron transportrates. When photosynthetic rates, ETR and chlorophyll a /b ratioswere adjusted for photosynthetically active radiation, hostsdid not have significantly higher CO2assimilation (3.21 ±0.37 µmol m-2 s-1) than mistletoes (2.54 ± 0.41µmol m-2 s-1), but still had significantly higher ETRand chlorophyll a / b ratios. The electron transport rates,saturating light and chlorophyll a / b ratios of sun leavesfrom mistletoes were similar to host shade leaves. These responsesindicate that in comparison with their hosts, mistletoe leaveshave the photosynthetic characteristics of the leaves of shadeplants. Copyright 2000 Annals of Botany Company CO2assimilation, photosynthetic active radiation (PAR), chlorophyll fluorescence, electron transport rate (ETR), photochemical quenching (qp), non-photochemical quenching (qn), sun and shade leaves, chlorophyll content, Ileostylus micranthus, Tupeia antarctica, New Zealand  相似文献   

10.
The response of phytoplankton to variations in the light regimewas studied during the VULCAN and ACDA cruises in the Antarctic.Unenriched batch cultures of 12–19 days' duration reachedchl concentrations of 10–50 µg–1 and exhibitedexponential growth rates, with the maximal rate being 0.41 doubl,day–1. Ice edge algae exhibited maximum growth rates atphoton flux densities (PFD) of 30–100 µE m–2S–1and the growth rate was reduced by about 30% at 500–1000µE m–2S–1 The chl/C ratio ranged between 0.004and 0.018, with the lowest ratios at PFDs above 500 µEm–2S–1 chl/C ratios were also below maximum at PFDsbelow 40–50 µE m–2S–1 The C:N:P ratioswere close to the Redfield ratios; the Si/C ratio averaged 0.16(atoms), and the ATP/C ratio averaged from 0.0024 to 0.0050in different culture senes. When thawed after having been frozenfor 10 days, shade-adapted cultures were in a much better conditionthan sun-adapted ones. P versus I data showed that the maximumassimilation number varied from 0.75 to 4.4 µg C (µgchl)–1h–1. It varied inversely with the chl/C ratio;therefore the maximum carbon turnover rate varied little betweensamples (0.024/0.035 h–1). Low biomass communities exhibitedrelatively high values for (the initial slope of P versus Icurves), low values for 1sat (160–330 µE m–2S–1),and they were susceptible to photoinhibition. In contrast, communitiesdominated by Odontella weissflogii exhibited low values for, a high value for Isat (560 µE m–2S–1 andthey tolerated high PFDs. The photo-adaptational status of thephytoplankton in natural water samples is discussed relativeto the profile of water column stability and mixing processes.  相似文献   

11.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

12.
Both predicted (incubator) and measured (in situ) 14C-assimilationrates were studied from February to November 1981 at three stationsin Boknafjorden, a deep silled fjord of western Norway. Sampleswere taken from different light depths within the euphotic zone.A high degree of conformity was found between the two approaches.Daily values of carbon assimilation integrated over the euphoticzone varied between 0.05 and 1.4 g C m–2. Yearly primaryproduction varied between stations from 82 to 112 g C m–2(120–148 g C m–2 when based on average light conditions).The light-saturation curve parameters B and PBmax ranged from0.0056 to 0.0537 mg C mg Chla–1 h–1 µE–1m2 and from 0.7 to 8.5 mg C mg Chla–1 h–2 (in situassimilation numbers ranged from 0.9 to 9.3 mg C mg Chla–1h–1) respectively, which compare well with those publishedfrom the northwestern side of the Atlantic. The overall importanceof light in controlling photosynthesis throughout the year wasrevealed by the light utilization index , estimated to be 0.43mg C mg Chla–1 E–1 m2. The maximum quantum yieldwas encountered on August 17, with 0.089 mol CE–1. Chla/Cratios above and below 0.010 were found to be typical for shade-and light-adapted cells respectively. Assimilation numbers andgrowth rates were linearly related only when considering light-adaptedcells. Consistent with the findings of this study, the applicabilityof IK, B and PBmax as indicators of light-shade adaptation propertiesshould be questioned. Maximum growth rates were encounteredduring an autumn bloom of the dinoflagellate Gyrodinium aureolum(1.0 doublings day–1), while 0.7–0.8 doublings day–1were found for a winter bloom (water temperature of 2°C)of the diatom Skeletonema costatum. No unambiguous temperatureeffect on assimilation number and growth of phytoplankton couldbe recognized in Boknafjorden. A tendency towards increasedassimilation numbers coinciding with increased water columnstability was revealed. The highest PBmax values were oftenencountered at almost undetectable nutrient concentrations.At least during summer this could be attributed to recyclingof nutrients by macro- and/or microzooplankton, responsiblefor a greater part of the primary production now being grazeddown. This study supports the convention that the depth of theeuphotic zone may extend considerably below the 1% light depth.  相似文献   

13.
The responses of net CO2 assimilation to sudden changes in irradiancewere studied in Phaseolus vulgaris L. in the laboratory andthe field. For irradiance changes between 50 µmol m–2s–1 to 350 µmol m–2 s–1 in the laboratory,assimilation rate increased with half-times of 2.7 and 4.1 minin well-watered and water-stressed plants, respectively. Ina field experiment with a change in irradiance from 400 to 1200µmol m–2 s–1 the response was faster (half-time=c.1.2 min). In all cases when irradiance was returned to a lowvalue, assimilation declined rapidly with a half-time of approximately1 min, which approached the time resolution of the gas-exchangesystem. The corresponding changes in stomatal conductance in responseto both increasing and decreasing irradiance were much slowerthan the assimilation responses, indicating that biochemicalprocesses, rather than CO2 supply, primarily determined theactual rate of assimilation in these experiments. The conceptof stomatal limitation to photosynthesis is discussed in relationto these results. A simple model for assimilation in a fluctuating light environmentis proposed that depends on a steadystate light response curve,an ‘induction lag’ on increasing irradiance, andan induction-state memory. The likely importance of taking accountof such induction lags in natural canopy microclimates is considered. Key words: Models, Phaseolus vulgaris, photosynthetic induction, CO2 assimilation, stomatal limitation, sunflecks, water stress  相似文献   

14.
The relationships between CO2 concentrating mechanisms, photosyntheticefficiency and inorganic carbon supply have been investigatedfor the aquatic macrophyte Littorella uniflora. Plants wereobtained from Esthwaite Water or a local reservoir, with thelatter plants transplanted into a range of sediment types toalter CO2 supply around the roots. Free CO2 in sediment-interstitial-waterranged from 1–01 mol m–3 (Esthwaite), 0.79 mol m–3(peat), 0.32 mol m–3 (silt) and 0–17 mol m–3(sand), with plants maintained under PAR of 40 µmol m–2s–1. A comparison of gross morphology of plants maintained underthese conditions showed that the peat-grown plants with highsediment CO2 had larger leaf fresh weight (0–69 g) andtotal surface area (223 cm2 g–1 fr. wt. including lacunalsurface area) than the sand-grown plants (0.21 g and 196 cm2g–1 fr. wt. respectively). Root fresh weights were similarfor all treatments. In contrast, leaf internal CO2 concentration[CO2], was highest in the sand-grown plants (2–69 molm–3, corresponding to 6.5% CO2 in air) and lowest inthe Esthwaite plants (1–08 mol m–3). Expressionof CAM in transplants was also greatest in the low CO2 regime,with H+ (measured as dawn-dusk titratable acidity) of 50µmolg fr. wt., similar to Esthwaite plants in natural sediment.Assuming typical CAM stoichiometry, decarboxylation of malatecould account largely for the measured [CO2]1 and would makea major contribution to daytime CO2 fixation in vivo. A range of leaf sections (0–2, 1–0, 5–0 and17–0 mm) was used to evaluate diffusion limitation andto select a suitable size for comparative studies of photosyntheticO2 evolution. The longer leaf sections (17.0 mm), which weresealed and included the leaf tip, were diffusion-limited witha linear response to incremental addition of CO2 and 1–0mol m–3 exogenous CO2 was required to saturate photosynthesis.Shorter leaf sections were less diffusion-limited, with thegreatest photosynthetic capacity (36 µmol O2 g–1 fr. wt. h–1) obtainedfrom the 1.0 mm size and were not infiltrated by the incubatingmedium. Comparative studies with 1.0 mm sections from plants grown inthe different sediment types revealed that the photosyntheticcapacity of the sand-grown plants was greatest (45 µmolO2 g–1 fr. wt. h–1) with a K0.5 of 80 mmol m–3.In terms of light response, saturation of photosynthesis intissue slices occurred at 850–1000 µmol m–2s–1 although light compensation points (6–11 µmolm–2s–1) and chlorophyll a: b ratios (1.3) were low.While CO2 and PAR responses were obtained using varying numbersof sections with a constant fresh weight, the relationshipsbetween photosynthetic capacity and CO2 supply or PAR were maintainedwhen the data were expressed on a chlorophyll basis. It is concludedthat under low PAR, CO2 concentrating mechanisms interact inintact plants to maintain saturating CO2 levels within leaflacunae, although the responses of the various components ofCO2 supply to PAR require further investigation. Key words: Key words-Uttorella uniflora, internal CO2 concentration, crassulacean acid metabolism, root inorganic carbon supply, CO2 concentrating mechanism  相似文献   

15.
Yield stress threshold (Y) and volumetric extensibility () arethe rheological properties that appear to control root growth.In this study they were measured in wheat roots by means ofparallel measurement of the growth rate (r) of intact wheatroots and of the turgor pressures (P) of individual cells withinthe expansion zone. Growth and turgor pressure were manipulatedby immersion in graded osmoticum (mannitol) solutions. Turgorwas measured with a pressure probe and growth rate by visualobservation. The influence of various growth conditions on Yand was investigated; (a) At 27 °C.In 0.5 mol m–3 CaCl2 r, P, Y and were20.7±4.6 µm min–1, 0.77±0.05 MPa,0.07±0.03 MPa and 26±1.9 µm min–1MPa–1 (expressed as increase in length), respectively.Following 24 h growth in 10 mol m–3 KC1 these parametersbecame 12.3±3.5 µm min–1, 0.72±0.04MPa, 0.13±0.01 MPa and 21±0.7 µm min–1MPa–1. After 24 h osmotic adjustment in 150 mol m–3mannitol/0.5 mol m–3 CaCl2 r= 19.6±4.2 µmmin–1, P = 0.68±0.05 MPa and Y and were 0.07±0.04MPa and 30±0.2 µm min–1 MPa–01, respectively.After 24 h growth in 350 mol m–3 mannitol/0.5 mol m–3CaCl2 r= 13.3±4.1 µm min–1, P= 0.58±0.07MPa, Y=0.12±0.01 MPa and ø 32±0.2 tim min–1MPa–1. During osmotic adjustment in 200 mol m–3mannitol/0.5 mol m–3 CaCl2, with or without KCl, the recoveryof growth rate corresponded to turgor pressure recovery (t1/2approximately 3 h). (b) At 15 °C. Lowered temperature dramatically influencedthe growth parameters which became r= 8.3±2.8 um min–1,P=0.78 MPa, r=<0.2 MPa and =15±0.1 µm min–1MPa–1. Therefore, Y and are influenced by 10 mol m–3 K+ ionsand low temperature. In each case the effective pressure forgrowth (P-Y) was large indicating that small fluctuations ofsoil water potential will not stop root elongation. Key words: Yield threshold, cell wall extensibility, wheat root growth, temperature, turgor pressur  相似文献   

16.
In situ light measurements were used to obtain information oninherent and apparent optical properties. The average verticalattenuation coefficient Kd(ave) varied from 1.1 to 4.6 In unitsm–1 During three periods the variation in Kd(ave) correlatedwith changes in chlorophyll a concentration and specific attenuationcoefficients Ks, of 0.013, 0.014 and 0.022 m2 mg Chl a–1were calculated. Chlorophyll-specific diffuse absorption coefficients(A,) for these periods were 0.012. 0.013 and 0.017 m2 mg Chla–1 and only varied significantly from estimates of Ksin the period when scattering was intense. Absorption coefficientsa(zmid) and scattering coefficients b(zmid) calculated for themid-point of the euphotic zone ranged between 0.45 and 2.9 mand 3.5–52.0 m respectively. Chlorophyll-specific absorptioncoefficients Ka, of 0.005, 0.006 and 0.007 m2 mg Chl a–1and scattering coefficients Kb of 0.05. 0.09 and 0.191 m2 mgChl a–1 were measured during the three periods. The highKb value occurred when gas-vacuolate cyanobactena were dominant.Algal photosynthesis and light absorption were related throughthe maximum quantum yield m which varied between 0.019 and 0.11mol C Einstein–1 while average quantum yields a, variedbetween 0.006 and 0.024 with a mean of 0.013 mol C Einstein–1A comparison of changes in the mean irradiance of the mixedzone and chlorophyll concentration indicated that growth waslight limited below 0.04–0.05 Einsteins absorbed mg Chla–1 day–1.  相似文献   

17.
Photosynthetic 14C fixation by Characean cells in solutionsof high pH containing NaH14CO3 gave a measure of the abilityof these cells to take up bicarbonate (H14CO3). Whereascells of Nitella translucens from plants collected and thenstored in the laboratory absorbed bicarbonate at 1–1.5µµmoles cm–2 sec–1, rates of 3–8µµmoles cm–2 sec–1 were obtained withN. translucens cells from plants grown in the laboratory. Influxesof 5–6 µµmoles cm–2 sec–1 wereobtained with Chara australis, 3–8 µµmolescm–2 sec–1 with Nitellopsis obtusa, and 1–5µµmoles cm–2 sec–1 with Tolypella intricata.It is considered that these influxes represent the activityof a bicarbonate pump, which may be an electrogenic process. In solutions of lower pH, H14CO3 uptake would be maskedby rapid diffusion of 14CO2 into the cells: the four Characeanspecies fixed 14CO2 at maximum rates of 30–40 µµmolescm–2 sec–1 (at 21° C).  相似文献   

18.
Chara cells show an inward positive electric current acrossthe plasmalemma when exposed to Cl under voltage-clampconditions. The rapid rise of this current suggests that itis directly associated with the inward transport of Cl.The dependence of the current on Cl concentration showssaturation, the data fitting the Michaelis-Menten equation withVm up to 100 nmol m–2 s–1 (for Clstarvedcells) with KM 10–20 µM, and with some allowancefor an unstirred layer of water adjacent to the membrane. Theeffects on the current of clamp potential, illumination, withdrawalof alkali metal cations, and addition of amine were also investigated.These results suggest that the mechanism is the symport of 2H+ with each Cl, and that the actions of light, externalK+, and amine in stimulating Cl, influx are indirect.  相似文献   

19.
Diurnal mixed layers and the long-term dominance of Microcystis aeruginosa   总被引:1,自引:0,他引:1  
The population dynamics of the cyanobacterium Microcystis aeruginosain a hypertrophic, subtropical lake (Hartbeespoort Dam, SouthAfrica) were followed over 4.5 years. We examined the hypothesisthat M.aeruginosa dominated (>80% by volume) the phytoplanktonpopulation up to 10 months of each year because it maintaineditself within shallow diurnal mixed layers and was thus ensuredaccess to light, the major limiting resource. Wind speeds overHartbeespoort Dam were strong enough to mix the entire epilimnionthrough Langmuir circulations only 12% of the time. At othertimes solar heating led to the formation of diurnal mixed layers(z1) that were shallower (<2 m) than the euphotic zone (zcu;mean = 3.5 m, range: 0.45–8.4 m) while the seasonal mixedlayer (zm) was always deeper than zcu (range: 7–18 m).By means of its buoyancy mechanism M.aeruginosa maintained thebulk of its population within z1, while non-buoyant speciessank into dark layers. Adaptation to strong light intensitywas implicated from low cellular chlorophyll a content (0.132µg/106 cells) and high Ik (up to 1230 µE m–2s–1). Ensured access to light, the post-maximum summerpopulations persisted throughout autumn and winter, despitesuboptimal temperatures, by sustaining low losses. Increasedsedimentation losses caused a sharp decline of the populationat the end of winter each year, and a short (2–3 months)successional episode followed, but by late spring M.aeruginosawas again dominant. The data from Hartbeespoort Dam point outthe importance of distinguishing between zm and z1, and showthe profound effect that the daily pattern of z1 as opposedto the seasonal pattern of zm, can have on phytoplankton populationspecies composition.  相似文献   

20.
Barley (Hordeum vulgare L. cv. Digger) was grown for 22 d inenclosed chambers with a CO2 enrichment of 35, 155, 400 or 675µmol CO2 mol1. CO2 enrichment increased photosyntheticcapacity in the plants grown at either of the two highest levelsof pCO2. A CO2 enrichment of 675µmol CO2 caused a significantincrement of shoot dry weight, whereas no changes were observedin fresh weight, chlorophyll or protein levels. At a light intensityof 860µmol m–2s–1 CO2 enrichment caused photosyntheticcapacity to increase by 250%, whereas no effect was observedat 80 µmol m–2 s–1. Over time, photosynthesisdecreased by 70% independent of CO2. A time-dependent increasein the level of extractable fructose was observed whereas totalextractable carbohydrate only changed slightly. Key words: Carbohydrates, CO2 enrichment, Hordeum vulgare, photosynthesis, respiration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号