首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aphids are dependent on the phloem sap of plants as their only source of nutrients. Host‐plant resistance in lettuce, Lactuca sativa L. (Asteraceae), mediated by the Nr gene is used to control the lettuce aphid Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae). The resistance is located in the phloem; however, the exact mechanism of resistance is unknown. In this study, we investigated whether the resistance factor (or factors) is synthesized in the root or in the shoot. The feeding behavior and performance of avirulent N. ribisnigri were studied on grafts of resistant and susceptible lettuce. In addition, the persistence of resistance in excised lettuce tissue was measured, by studying the feeding behavior and performance of N. ribisnigri on detached leaves and leaf disks of resistant lettuce. It appears that the resistance factor encoded by the Nr gene is produced in the shoots: aphid feeding was reduced on resistant shoots grafted on susceptible roots, whereas aphids were able to feed on grafts of susceptible shoots on resistant roots. Partial loss of resistance was observed after detachment of leaves and excision of leaf disks from resistant plants. Aphids fed longer on excised resistant plant tissue compared with intact resistant plants; however, compared with excised plant tissue of the susceptible cultivar, the time spent on feeding was shorter, indicating resistance was not completely lost. Our findings caution against the use of excised leaf material for aphid resistance bioassays.  相似文献   

2.
When crops are bred for resistance to herbivores, these herbivores are under strong selection pressure to overcome this resistance, which may result in the emergence of virulent biotypes. This is a growing problem for crop species attacked by aphids. The Nr‐gene in lettuce confers near‐complete resistance against the black currant‐lettuce aphid, Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae). Since 2007, populations of N. ribisnigri have been reported in several locations in Europe to infest resistant lettuce varieties that possess the Nr‐gene. The objective of this study was to analyse the behaviour and level of virulence of several N. ribisnigri populations observed to have colonized Nr‐locus‐containing lettuce lines. We analysed the stylet penetration and feeding behaviour, and the performance of these N. ribisnigri populations on resistant and susceptible lettuce lines. Large variation in the degree of virulence to the Nr‐locus‐containing lettuce lines was found among populations of the Nr:1 biotype. The German population was highly virulent on the Nr‐containing resistant lettuce lines, and showed similar feeding behaviour and performance on both the susceptible and resistant lettuces. The French population from Paris was the second most virulent, though reproduction on the resistant lines was reduced. The French population from Perpignan and a population from Belgium, however, showed reduced performance and feeding rate on the resistant compared to the susceptible lettuces. The lettuce background in which the Nr‐gene is expressed influences the level of resistance to the various Nr:1 aphid populations, because the performance and feeding behaviour differed between the aphids on the cultivars (romaine lettuce) compared to the near‐isogenic lines (butterhead/iceberg lettuce). This study also shows that being able to feed on a plant not automatically implies that a population can successfully develop on that plant, because aphids showed phloem ingestion during the 8‐h recording period on resistant lettuce, but were not able to survive and reproduce on the same lettuce line.  相似文献   

3.
Many aphid species have become virulent to host‐plant resistance, which limits the sustainability of insect resistance breeding. However, when this adaptation to resistant plants is associated with fitness costs for the aphids, virulence can be lost in the absence of resistant plants. For two populations of the lettuce aphid, Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae), we evaluated whether virulence to Nr‐gene‐based resistance was lost on a susceptible lettuce, Lactuca sativa L. (Asteraceae), and assessed possible costs of virulence. The feeding behaviour and performance of these aphids, reared and tested on susceptible and resistant lettuce, were investigated. The rearing plant affected feeding behaviour and performance of the aphids. Temporary reduction and long‐term loss of virulence were found. The total duration of phloem intake was shorter after being reared on susceptible lettuce and tested on resistant lettuce. In addition, one population had a lower survival on resistant lettuce after being reared on susceptible lettuce. There were also indications of fitness costs of the virulence in both populations.  相似文献   

4.
Aphid saliva can suppress the blocking of sieve elements, a reaction that plants employ to inhibit aphid feeding, but aphid saliva can also elicit plant defence responses. Such plant responses might affect interactions between different aphid species and intraspecifically, e.g. among different biotypes. The objectives of our study were to investigate if feeding behaviour and performance of two biotypes of the lettuce aphid Nasonovia ribisnigri are affected by (1) feeding by the other biotype and (2) feeding by the green peach aphid Myzus persicae or the potato aphid Macrosiphum euphorbiae. Additionally the effect of feeding in a group was studied. All experiments were performed on both a resistant and an isogenic susceptible lettuce cultivar. Feeding or probing by conspecific or heterospecific aphids had different effects on Nasonovia ribisnigri biotypes. Aphids were only slightly affected by feeding or probing of the same biotype on both susceptible and resistant lettuce. N. ribisnigri virulent biotype Nr:1 suppressed the resistance against Nr:0 in the resistant cultivar. In contrast, defence was induced by Nr:1 against Nr:0 in susceptible lettuce. Co-infestation by M. euphorbiae and M. persicae had minor effects on Nr:0. Defence against Nr:1 was induced on both susceptible lettuce and resistant lettuce by Nr:0 and M. euphorbiae. Additionally, M. persicae induced defence in resistant lettuce against Nr:1. Effectors in the saliva of Nr:1 aphids are likely responsible for the defence suppression in lettuce. Identification of these effectors could lead to a better understanding of the mechanism of virulence in N. ribisnigri.  相似文献   

5.
The intrinsic rate of increase (rm-values), mean relative growth rates and mortality ofNasonovia ribisnigri (Mosley) (Homoptera, Aphididae) on different lines of lettuce (Lactuca sativa L.) were determined. Near isogenic resistant and susceptible lines, plus their ancestors, were used. Bionomics ofN. ribisnigri on the resistant lines (NrNr) with the dominantNasonovia resistance gene (Nr-gene) differed clearly from the susceptible lines (nrnr). Mortality was high, no larvae reached adulthood, and no reproduction nor honeydew production was seen on the resistant lines. Transfer of aphids to susceptible plants after a period of 2 days on the resistant lines showed no signs of intoxication of aphids. Apparently there is no feeding on the resistant lines. It is not clear whether the aphids can not reach the phloem or do not accept it on the resistant line.  相似文献   

6.
Cultivated peatland (Histosol) in Southern Québec (Canada) is a rapidly declining non-renewable resource used to grow most Canadian lettuce (Lactuca sativa L., Asteraceae). Rolled-rye (Secale cereale L., Poaceae) cover crop is one of the conservation practices proposed to reach a more sustainable lettuce production, but the overall impact on the agroecosystem remains poorly studied in Histosols. We assessed multiple effects of rolled-rye cover crop on the trophic chain associated with the lettuce aphid, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae), a major pest of lettuce. During one growing season and through two consecutive lettuce crops, we monitored in situ the impacts of rolled-rye cover crop on insect fauna and lettuce quality. We used visual scouting and yellow pan traps to assess plant colonization by N. ribisnigri, its natural enemies, and alternative prey. Exclusion cage experiments were also conducted to measure aphid fitness and population growth. Under greenhouse conditions, following cover crop removal, we examined potential lingering effects of rye within the soil on lettuce plants and N. ribisnigri. In situ experiments showed that rolled-rye cover crop has the potential to inhibit N. ribisnigri field colonization and recruit natural enemies and alternative prey in the first lettuce crop. Rye also reduced aphid fitness as well as lettuce foliar amino acid concentration and weight. For the second lettuce crop, an almost 50% reduction in N. ribisnigri abundance was observed with the use of rolled-rye cover crop. In greenhouse experiments, no persistent effect of rye was observed on the quality of lettuce grown with soil collected under a cover crop, nor on the fitness of aphids inoculated on these lettuces. This study highlights the diversity of trophic effects rolled-rye cover crop may have on lettuce production in Histosols and the potential of rolled-rye cover crop as a cultural practice to reduce aphid populations. Mechanisms at play while underlining agronomic challenges regarding proper rye termination must be further explored to maintain high-performing lettuce yields.  相似文献   

7.
The use of resistant cultivars is one of the best ways to protect lettuce from aphid pests. At present, there are cultivars available with nearly complete resistance to Nasonovia ribisnigri biotype Nr:0 (based on the Nr gene) and partial resistance to Macrosiphum euphorbiae. Nevertheless, a new biotype of N. ribisnigri (Nr:1) able to overcome the resistance based on the Nr gene is expanding around Europe and has become a major threat of lettuce. In the present work, we report the presence of this new biotype in southeastern Spain, a major lettuce-producing region. Furthermore, a pool of 264 germplasm accessions belonging to Lactuca genus was tested in a greenhouse assay to search for new resistance sources to N. ribisnigri. The most promising accessions were retested in the laboratory to characterize the resistance by means of free-choice and antibiosis assays against biotypes Nr:0 and Nr:1 of N. ribisnigri and against a clone of M. euphorbiae. Three accessions of L. virosa showed resistance against the target aphid species and could be of interest for ongoing breeding programs. The accessions CGN16272 and CGN13361 were both partially resistant to the Nr:1 biotype of N. ribisnigri and to M. euphorbiae, and CGN13355, in spite of not being resistant to N. ribisnigri, showed a near complete resistance to M. euphorbiae. The study of the feeding behavior of N. ribisnigri biotypes showed that the Nr:1 biotype is able to maintain a similar phloem feeding ingestion pattern on genotypes bearing the Nr gene and on N. ribisnigri-susceptible lettuce genotypes. Moreover, as aphids rejected L. virosa as a feeding source due to superficial factors (high level of antixenosis), no differences in the level of antibiosis between such genotypes were detected. A second set of screening assays were conducted on 40 accessions of L. virosa in order to select for resistance against the Nr:1 biotype. The results showed three accessions with high levels of resistance (CGN05148, CGN21399 and CGN16274) against Nr:1 that could be of interest in lettuce breeding programs.  相似文献   

8.
The broad-spectrum insecticides greatly influence the control of cotton aphids; however, due to frequent chemical control, Aphis gossypii (Hemiptera: Aphididae) has developed resistance against several classes of synthetic insecticides. In this study, we explored the sub-lethal effects of imidacloprid and pirimicarb, two commonly used insecticides for aphid control, on a parasitoid wasp, Lysiphlebus fabarum (Marshall) (Braconidae: Aphidiinae), when simultaneously used to control melon aphid on cucumber plants, as part of a comprehensive study for integrated pest management. Bioassays of imidacloprid and pirimicarb were performed to calculate LC50 with third instars of A. gossypii. The LC50 of these insecticides (110.55 and 250.89 μg/lit, respectively) were used to expose the wasp larvae, pupae, and adult parasitoids on a cucumber leaf. The percent mortality, percent adult emergence, and sex ratio were calculated during each exposure test. Moreover, the body size, egg load, and mature egg size of wasps surviving the insecticide treatments, as well as the sex ratio of the second generation was evaluated. Regardless of the host aphid mortality, none of the insecticides caused mortality of larval stage of the parasitoid. The insecticide application on pupal stage revealed that the percentage of mortality, sex ratio, body size, and egg load of surviving wasps, as well as the sex ratio of their offspring was adversely affected by imidacloprid, but not by pirimicarb. The present study suggests pirimicarb as a preferred insecticide, with less harmful effects on the fitness components of L. fabarum, for integrated pest management of cotton aphids.  相似文献   

9.
Aphis gossypii is the main virus vector in muskmelon crops. The melon gene Vat confers resistance to non‐persistent virus transmission by this aphid. The mechanism of this resistance is not well understood, but no relationship has been detected between resistance and the probing behaviour of aphids on resistant plants. Results presented here suggest that temporary blockage of aphid stylet tips preventing virus particle release may explain the resistance conferred by Vat gene. We performed experiments in which viruliferous aphids were allowed to probe different sequences of resistant (Vat‐bearing) and/or susceptible melon plants. The results demonstrated that A. gossypii inoculates Cucumber mosaic virus (CMV) efficiently in susceptible plants having previously probed resistant plants, showing that the resistance mechanism is reversible. Furthermore, the infection rate obtained for susceptible plants was the same (25%) regardless of whether the transmitting aphid had come directly from the CMV source or had subsequently probed on resistant plants. This result suggests that virus is not lost from stylet to plant during probing of resistant plants, supporting the temporary blockage hypothesis. We also found that the ability of Myzus persicae to transmit CMV is noticeably reduced after probing on resistant plants, providing evidence that this aphid species also responds to the presence of the Vat gene. Finally, we also found that in probes immediately after virus acquisition M. persicae inoculates resistant plants with CMV more efficiently than susceptible plants, perhaps because the Vat gene product induces increased salivation by this aphid.  相似文献   

10.
The lettuce aphid, Nasonovia ribisnigri Mosley, was accidentally introduced into California from Europe during the late 1990s and soon became an economic pest of Romaine lettuce along California’s central coast region. Indigenous syrphid larvae attack the lettuce aphid and are believed to be effective in the management of this invasive pest, although there have been no studies on the capacity of the syrphid larvae to kill and consume lettuce aphids. We focused on four syrphid species commonly found in central coast lettuce fields: Allograpta obliqua (Say), Eupeodes fumipennis (Thomson), Sphaerophoria sulphuripes (Thomson), and Toxomerus marginatus (Say). Laboratory feeding experiments were conducted to estimate the development times of all juvenile stages, the daily growth rate of larvae, the number of third instar aphids killed, the aphid biomass killed, and the aphid biomass consumed as measures of predator performance. Results show that during larval development E. fumipennis killed the most third-instar aphids (507 aphids, 88 mg biomass killed) and reached the largest size, followed by A. obliqua (228 aphids, 39 mg killed), S. sulphuripes (194 aphids, 31 mg killed) and T. marginatus (132 aphids, 20 mg killed). Body size alone did not account for species differences in per-capita larval consumption rates. This information is discussed in relation to the predation potential of syrphids through the short cropping cycle of lettuce, and the choice of plant species to use for floral resource provisioning to enhance the activity of syrphids needed for effective management of lettuce aphids in California’s central coast fields.  相似文献   

11.
Apple grain aphid, Rhopalosiphum padi (Linnaeus), is an important wheat pest. In China, it has been reported that R. padi has developed high resistance to carbamate and organophosphate insecticides. Previous work cloned from this aphid 2 different genes encoding acetylcholinesterase (AChE), which is the target enzyme for carbamate and organophosphate insecticides, and its insensitive alteration has been proven to be an important mechanism for insecticide resistance in other insects. In this study, both resistant and susceptible strains of R, padi were developed, and their AChEs were compared to determine whether resistance resulted from this mechanism and whether these 2 genes both play a role in resistance. Bioassays showed that the resistant strain used was highly or moderately resistant to pirimicarb, omethoate, and monocrotophos (resistance ratio, 263.8, 53.8, and 17.5, respectively), and showed little resistance to deltamethrin or thiodicarb (resistance ratio, 5.2 and 3.4, respectively). Correspondingly, biochemistry analysis found that AChE from resistant aphids was very insensitive to the first 3 insecticides (I50 increased 43.0-, 15.2-, and 8.8-fold, respectively), but not to thiodicarb (I50 increased 1.1-fold). Enzyme kinetics tests showed that resistant and susceptible strains had different AChEs. Sequence analysis of the 2 AChE genes cloned from resistant and susceptible aphids revealed that 2 mutations in Ace2 and 1 in Ace1 were consistently associated with resistance. Mutation F368(290)L in Ace2 localized at the same position as a previously proven resistance mutation site in other insects. The other 2 mutations, S329(228)P in Ace1 and V435(356)A in Ace2, were also found to affect the enzyme structure. These findings indicate that resistance in this aphid is mainly the result of insensistive AChE alteration, that the 3 mutations found might contribute to resistance, and that the AChEs encoded by both genes could serve as targets of insecticides.  相似文献   

12.
Little is known about the simultaneous effects of drought stress and plant resistance on herbivorous insects. By subjecting the green peach aphid Myzus persicae Sulzer to well‐watered and drought‐stressed plants of both susceptible and resistant peach (Prunus persica), the effects of both stressors on aphid performance and proteomics are tested. Overall, the influence of the water treatment on aphid performance is less pronounced than the effect of host plant genetic resistance. On the susceptible cultivar, aphid survival, host acceptance and ability to colonize the plant do not depend on water treatment. On the resistant cultivar, aphid survival and ability to colonize are higher on drought‐stressed than on well‐watered plants. A study examining the pattern of protein expression aiming to explain the variation in aphid performance finds higher protein expression in aphids on the drought‐stressed susceptible cultivars compared with the well‐watered ones. In the susceptible cultivar, the regulated proteins are related to energy metabolism and exoskeleton functionality, whereas, in the resistant cultivar, the proteins are involved with the cytoskeleton. Comparison of the protein expression ratios for resistant versus susceptible plants reveals that four proteins are down‐regulated in well‐watered plants and 15 proteins are down‐regulated in drought‐stressed plants. Drought stress applied to the susceptible cultivar induces the regulation of proteins in M. persicae that enable physiological adaptation to maintain an almost unaltered aphid performance. By contrast, for aphids on the resistant cultivar subjected to drought stress, the down‐regulation of proteins responds to an induced host susceptibility effect.  相似文献   

13.
The inheritance of resistance to lettuce root aphid, Pemphigus bursarius, was studied in lettuce using the Wellesbourne cultivars Avondefiance and Avoncrisp as resistant parents and Borough Wonder and Webb's Wonderful as aphid-susceptible parents. All four cultivars were crossed in all possible combinations including reciprocals and the response to root aphid of plants in the P1F1F2 and BC generations was assessed using apterae of P. bursarius from the lettuce cv. Iceberg. Resistance to attack was clearly inherited and the parents appeared to be homozygous for their resistance or susceptibility. In the F1 generation, however, in all crosses between resistant and susceptible parents, segregation into susceptible, resistant and some slightly less resistant plants occurred. This and the highly significant differences in segregation between pairs of reciprocal crosses in the F1 and other generations indicate that the inheritance of resistance to root aphid is controlled by extra-nuclear factors. Modifying genes might also be involved but there appears to be no linkage of root aphid resistance with resistance to downy mildew, for which the Wellesbourne lettuces were bred.  相似文献   

14.
Crop protection is an integral part of establishing food security, by protecting the yield potential of crops. Cereal aphids cause yield losses by direct damage and transmission of viruses. Some wild relatives of wheat show resistance to aphids but the mechanisms remain unresolved. In order to elucidate the location of the partial resistance to the bird cherry–oat aphid, Rhopalosiphum padi, in diploid wheat lines of Triticum monococcum, we conducted aphid performance studies using developmental bioassays and electrical penetration graphs, as well as metabolic profiling of partially resistant and susceptible lines. This demonstrated that the partial resistance is related to a delayed effect on the reproduction and development of R. padi. The observed partial resistance is phloem based and is shown by an increase in number of probes before the first phloem ingestion, a higher number and duration of salivation events without subsequent phloem feeding and a shorter time spent phloem feeding on plants with reduced susceptibility. Clear metabolic phenotypes separate partially resistant and susceptible lines, with the former having lower levels of the majority of primary metabolites, including total carbohydrates. A number of compounds were identified as being at different levels in the susceptible and partially resistant lines, with asparagine, octopamine and glycine betaine elevated in less susceptible lines without aphid infestation. In addition, two of those, asparagine and octopamine, as well as threonine, glutamine, succinate, trehalose, glycerol, guanosine and choline increased in response to infestation, accumulating in plant tissue localised close to aphid feeding after 24 h. There was no clear evidence of systemic plant response to aphid infestation.  相似文献   

15.
Plant genes participating in the recognition of aphid herbivory in concert with plant genes involved in defense against herbivores mediate plant resistance to aphids. Several such genes involved in plant disease and nematode resistance have been characterized in detail, but their existence has only recently begun to be determined for arthropod resistance. Hundreds of different genes are typically involved and the disruption of plant cell wall tissues during aphid feeding has been shown to induce defense responses in Arabidopsis, Triticum, Sorghum, and Nicotiana species. Mi‐1.2, a tomato gene for resistance to the potato aphid, Macrosiphum euphorbiae (Thomas), is a member of the nucleotide‐binding site and leucine‐rich region Class II family of disease, nematode, and arthropod resistance genes. Recent studies into the differential expression of Pto‐ and Pti1‐like kinase genes in wheat plants resistant to the Russian wheat aphid, Diuraphis noxia (Mordvilko), provide evidence of the involvement of the Pto class of resistance genes in arthropod resistance. An analysis of available data suggests that aphid feeding may trigger multiple signaling pathways in plants. Early signaling includes gene‐for‐gene recognition and defense signaling in aphid‐resistant plants, and recognition of aphid‐inflicted cell damage in both resistant and susceptible plants. Furthermore, signaling is mediated by several compounds, including jasmonic acid, salicylic acid, ethylene, abscisic acid, giberellic acid, nitric oxide, and auxin. These signals lead to the development of direct chemical defenses against aphids and general stress‐related responses that are well characterized for a number of abiotic and biotic stresses. In spite of major plant taxonomic differences, similarities exist in the types of plant genes expressed in response to feeding by different species of aphids. However, numerous differences in plant signaling and defense responses unique to specific aphid–plant interactions have been identified and warrant further investigation.  相似文献   

16.
Nasonovia ribisnigri, a main pest of salad crops, has developed resistance to various insecticides in southern France, including the carbamate pirimicarb and the cyclodiene endosulfan, two insecticides widely used to control this aphid. Here we have investigated the mechanisms of resistance to these two insecticides by studying cross-resistance, synergism, activity of detoxifying enzymes, and possible modifications of the target proteins. Resistance to pirimicarb was shown to be mainly due to a decreased sensitivity of the target acetylcholinesterase; this modification conferred also, resistance to propoxur but not to methomyl and the two tested organophosphates (acephate and paraoxon). Endosulfan resistance was associated with a moderate level of resistance to dieldrin, and resistance to both insecticides was due, in part, to increased detoxification by glutathione S-transferases (GST). The endosulfan resistant strain displayed the same amino acid at position 302 of the Rdl gene (GABA receptor) as susceptible aphids (e.g. Ala), indicating that the Ala to Ser (or to Gly) mutation observed among dieldrin resistant strains of other insect species was not present.  相似文献   

17.
Extensive use of insecticides on cotton has prompted resistance development in the cotton aphid, Aphis gossypii (Glover) in China. A deltamethrin‐selected population of cotton aphids from Xinjiang Uygur Autonomous Region, China with 228.59‐fold higher resistance to deltamethrin was used to examine how carboxylesterase conferred resistance to this pyrethroid insecticide. The carboxylesterase activity in the deltamethrin‐resistant strain was 3.67‐, 2.02‐ and 1.16‐fold of the susceptible strain when using α‐naphthyl acetate (α‐NA), β‐naphthyl acetate (β‐NA) and α‐naphthyl butyrate (α‐NB) as substrates, respectively. Carboxylesterase cDNA was cloned and sequenced from both deltamethrin‐resistant and susceptible strains. The cDNA contained 1581 bp open reading frames (ORFs) coding a 526 amino acid protein. Only one amino acid substitution (Val87‐Ala) was observed between deltamethrin‐resistant and susceptible strains but it is not genetically linked to resistance by the catalytic triad and signature motif analysis. The real‐time polymerase chain reaction analysis indicated that the resistant strain had a 6.61‐fold higher level of carboxylesterase mRNA than the susceptible strain. The results revealed that up‐regulation of the carboxylesterase gene, not modified gene structure, may be responsible for the development of resistance in cotton aphids to deltamethrin.  相似文献   

18.
The Mi-1.2 gene in tomato confers resistance against certain clones of the potato aphid (Macrosiphum euphorbiae). This study used 2D-DIGE coupled with protein identification by MALDI-TOF-MS to compare the proteome patterns of avirulent and semivirulent potato aphids and their bacterial endosymbionts on resistant (Mi-1.2+) and susceptible (Mi-1.2−) tomato lines. Avirulent aphids had low survival on resistant plants, whereas the semivirulent clone could colonize these plants. Eighty-two protein spots showed significant quantitative differences among the four treatment groups, and of these, 48 could be assigned putative identities. Numerous structural proteins and enzymes associated with primary metabolism were more abundant in the semivirulent than in the avirulent aphid clone. Several proteins were also up-regulated in semivirulent aphids when they were transferred from susceptible to resistant plants. Nearly 25% of the differentially regulated proteins originated from aphid endosymbionts and not the aphid itself. Six were assigned to the primary endosymbiont Buchnera aphidicola, and 5 appeared to be derived from a Rickettsia-like secondary symbiont. These results indicate that symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids’ host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance.  相似文献   

19.
A 2‐year field experiment was conducted in northern Illinois to evaluate the effects of host plant resistance and an insecticidal seed treatment (thiamethoxam) on soybean aphids, Aphis glycines Matsumura and their predators. Densities of soybean aphids varied between the 2 years of the experiment. During both years, resistant plants experienced fewer cumulative aphid days than susceptible plants. Populations of soybean aphids on resistant plants rarely exceeded the economic injury level of 250 soybean aphids per plant. The use of thiamethoxam reduced cumulative aphid days in 2007, but not in 2008. Although soybean aphids reached densities that were sufficient to cause yield‐loss for untreated and susceptible plants, no yield‐benefit was associated with using the two management tactics in either year. This latter finding suggests that densities of soybean aphids need to be greater and sustained for a longer period of time than what we observed if the two management tactics are expected to provide a yield‐benefit. Monitoring natural enemies revealed that densities of key aphidophagous predators were relatively unaffected by host plant resistance or thiamethoxam; the effect of these management tactics on densities of predators, as well as the effectiveness of the method used to sample predators, is discussed.  相似文献   

20.
Electrical penetration graphs (EPG's) ofNasonovia ribisnigri (Mosley) (Homoptera, Aphididae) on resistant and susceptible lettuce (Lactuca sativa, Compositae) showed a large reduction in the duration of the food uptake pattern (E2) on the resistant line. No differences in EPG's were observed before the phloem was reached. Therefore, resistance is believed to be located in the phloem vessel. Both mechanical blocking of the sieve element after puncturing and a difference in composition of the phloem sap are possible resistance factors. However, a chemical factor seems more likely because of the specificity of the resistance againstN. ribisnigri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号