首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
P22pro-1 and P22pro-3 are specialized transducing derivatives of phage P22 that carry the proA and proB genes of Salmonella typhimurium. These genes lie immediately adjacent to the prophage attachment site on the bacterial chromosome. By examining DNA heteroduplexes in the electron microscope, we found that DNA molecules from P22pro-1 and P22pro-3 each contain a substitution which adds length to the composite genome making the intracellular replicated genome too long to fit into a single phage particle. In this respect, and in many of their biological properties, the proline-transducing phages resemble P22Tc-10, another specialized transducing phage with an oversize, intracellular replicated genome which carries a tetracycline-resistance determinant from an R-factor.—Unlike P22Tc-10, however, P22pro-1 and P22pro-3 fail to integrate normally during lysogenizing infections, even when provided with all known integration functions. These results suggest that the proline substitutions have created a defect in the phage attachment site and suggest that the Campbell model for the formation of specialized transducing phages is applicable to phage P22 with the additional feature that oversize genomes can be produced and propagated.—A physical and genetic map of the P22 genome near the prophage attachment site was constructed which shows that the insertion from the R-factor in P22Tc-10 is not at the attachment site: it is therefore unlikely that P22Tc-10 was formed in an abnormal prophage excision event as envisioned in the Campbell model, but was instead the result of a direct translocation from the R-plasmid to P22.  相似文献   

2.
Two independently isolated specialized transducing phages, P22 pro-1 and P22pro-3, have been studied. Lysates of P22pro-1 contain a majority of transducing phages which can go through the lytic cycle only in mixed infection; these defective phages transduce by lysogenization in mixed infection and by substitution in single infection. A few of the transducing phages in P22pro-1 lysates appear to be non-defective, being able to form plaques and to transduce by lysogenization in single infection. Transduction by P22pro-3 lysates is effected by non-defective transducing phages, which transduce by lysogenization; these lysates also contain a majority of defective phages which do not co-operate in mixed infection.

The P22 pro-1 genome is thought to contain an insertion of bacterial DNA longer than the terminal repetition present in P22 wild type, so that at maturation a population of differently defective phages is produced. The exact structure of the P22pro-3 genome is open to conjecture, but it seems clear that the insertion of bacterial DNA is smaller than that in P22pro-1. Both P22pro-1 and P22pro-3 are defective in integration at ataA under non-selective conditions, although both integrate on medium that lacks proline.

  相似文献   

3.
4.
A generalized transducing bacteriophage of Myxococcus xanthus has been examined. The phage particle consists of an isometric head and a contractile tail. The genome of the phage is a linear DNA molecule of molecular weight 39 ± 2.1 × 106, which contains the normal DNA bases 70% of which are guanosine + cytosine. No overall heterogeneity of base composition is present. The DNA does not carry easily detectable cohesive ends nor is it cyclically permuted. It does contain a large and somewhat variable terminal redundancy. Heating phage particles in the presence of EDTA causes tail sheath contraction and ejection of DNA, some of which remains attached to the tail. Digestion of tail-bound DNA with restriction enzymes shows that the phage tail can be attached to either end of the DNA. Thus the DNA probably contains recognition sites for the packaging of its DNA at both ends. These results suggest possible mechanisms for the genesis of transducing particles by phage MX4.  相似文献   

5.
Rapid mapping in Salmonella typhimurium with Mud-P22 prophages.   总被引:19,自引:9,他引:10       下载免费PDF全文
A new method for mapping mutations in the Salmonella typhimurium chromosome is described and applied to the localization of novel regulatory mutations affecting expression of the nirB (nitrite reductase) gene. The mapping technique is also illustrated by the mapping of mutations in genes affecting carbohydrate catabolism and biosynthetic pathways. The new mapping method involves use of the hybrid phage MudP and MudQ (together referred to as Mud-P22), originally constructed by Youderian et al. (Genetics 118:581-592, 1988). This report describes a set of Mud-P22 lysogens, each member of the set containing a different Mud-P22 insertion. The insertions are scattered along the entire Salmonella genome. These lysogens, when induced by mitomycin C, generate transducing lysates that are enriched (45- to 1,400-fold over the background, generalized transducing particle population) for transducing particles containing bacterial DNA that flanks one side of the insertion. We demonstrate that within the set of lysogens there can be found at least one Mud-P22 insertion that enriches for any particular region of the Salmonella chromosome and that, therefore, all regions of the chromosome are discretely enriched and represented by the collection as a whole. We describe a technique that allows the rapid and facile determination of which lysate contains enriched sequences for the repair of a mutant locus, thereby allowing the determination of the map position of the locus. This technique is applicable to those mutations for which the wild-type allele is selectable. We also describe a procedure whereby any Tn10 insertion can be mapped by selecting for the loss of Tetr.  相似文献   

6.
It was shown in an accompanying paper (Buck and Groman, J. Bacteriol. 148: 131-142, 1981) that γ-tsr-1 phage stocks produced by heat induction of lysogens are a mixture of two phages which differ in the content of their deoxyribonucleic acid (DNA). This difference is evidenced by the appearance of “heterogeneous” (HET) fragments in restriction enzyme digests of γ-tsr-1 phage DNA. It was estimated that 20 to 80% of the phage in these lysates produced HET fragments. The appearance of HET fragments correlated with the appearance of a DNA insertion (DI-1) in the γ phage genome as revealed in heteroduplexes of DNA from γ-tsr-1 and β corynebacteriophages. The HET fragments were seen in DNA from heat-induced lysates, but not in DNA from phage stocks produced by lytic infection. By DNA-DNA hybridization analysis it was shown that a fraction of γ-tsr-1 phages from heat-induced lysates carried an insertion of bacterial DNA in the vegetative phage attachment site (attP), and that this insertion was responsible for the formation of HET fragments. Since the phage produced by this event carried a complete phage genome plus a small segment of bacterial DNA, they were called transducing elements. On the basis of these facts it was concluded that heat-induced γ-tsr-1 prophage was excised at an abnormal site at a very high frequency. Abnormal excision was highly specific, and the change in excision specificity occurred simultaneously with the spontaneous mutation of the phage to heat inducibility. From this and other data it was postulated that a mutation in the immune repressor was reponsible for an alteration in the specificity of the normal excision process. This distinguishes the mechanism of formation of γ-tsr-1 transducing elements from that employed by other phages. A second DNA insertion (DI-2) in the tox (diphtheria toxin) gene of γ-tsr-1 and γ-tsr-2 was also identified as an insertion of bacterial DNA. The DI-2 insertion had a stem-and-loop structure similar to that seen in heteroduplexes visualizing transposons or insertion elements. It seems likely that γ wild-type phage, which is mutant for tox, was originally tox+, but that transposition of bacterial DNA into the gene inactivated it.  相似文献   

7.
Summary CsCl density gradient analysis showed that the DNA of plaque forming particles ofSalmonella phageP22 is lighter than the host DNA. The DNA of transducing phages exhibits an intermediate density, but close to host DNA. BU labelling of DNA synthesized in the cells after phage infection resulted in a density increase of transducing DNA of about 0.004 gxcm-3, whereas infectious DNA increased by about 0.045 gxcm-3. Shearing of isolated DNA molecules from unlabelledP22 lysates demonstrated that transducing DNA consists of two pieces of DNA of different density: 90% stem from the bacterial host whereas 10% are phage DNA and therefore responsible for the BU lable in transducing phages.  相似文献   

8.
The temperate bacteriophage P22 mediates both generalized and specialized transduction in Salmonella typhimurium. Specialized transduction by phage P22 is different from, and less restricted than, the well characterized specialized transduction by phage lambda, due to differences in the phage DNA packaging mechanisms. Based on the properties of the DNA packaging mechanism of phage P22 a model for the generation of various types of specialized transducing particles is presented that suggests generation of substantial numbers of specialized transducing genomes which are heterogeneous but only some of which have terminally redundant ends. The primary attachment site, ataA, for phage P22 in S. typhimurium is located between the genes proA,B and supQ newD. (The newD gene is a substitute gene for the leuD gene, restoring leucine prototrophy of leuD mutant strains.) The proA,B and supQ newD genes are very closely linked and thus cotransducible by generalized transducing particles. Specialized transducing particles can carry either proA,B or supQ newD but not both simultaneously, and thus cannot give rise to cotransduction of the proA,B and supQ newD genes. This difference is used to calculate the frequency of generalized and specialized transducing particles from the observed cotransduction frequency in phage lysates. By this method, very high frequencies of supQ newD (10(-2)/PFU)- and proA,B (10(-3)/PFU)-specialized transducing particles were detected in lysates produced by induction of lysogenic strains. These transducing particles most of which would have been produced by independent aberrant excision events (which include in situ packaging), were of various types.  相似文献   

9.
N. R. Benson  J. Roth 《Genetics》1997,145(1):17-27
In the course of a lytic infection the Salmonella phage P22 occasionally encapsulates bacterial DNA instead of phage DNA. Thus, phage lysates include two classes of viral particles. Phage particles carrying bacterial DNA are referred to as transducing particles and deliver this DNA to a host as efficiently as particles carrying phage DNA. Once injected, the transduced DNA can either recombine with the recipient chromosome to form a ``complete'''' transductant, or it can establish itself as an expressible, nonreplicating genetic element and form an ``abortive'''' transductant. In this work, we describe a P22-phage mutant with reduced ability to form abortive transductants. The mutation responsible for this phenotype, called tdx-1, was found as one of two mutations contributing to the high-transducing phenotype of the P22-mutant HT12/4. In addition, the tdx-1 mutation is lethal when combined with an erf-am mutation. The tdx-1 mutation has been mapped to a region of the P22 genome that encodes several injected proteins and may involve more than one mutant locus. The phenotypes of the tdx-1 mutation suggest that the Tdx protein(s) normally assist in the circularization of the P22 genome and also contribute to the formation of DNA circles thought to be required for abortive transduction.  相似文献   

10.
The temperate bacteriophage P22 mediates both generalized and specialized transduction in Salmonella typhimurium. Specialized transduction by phage P22 is different from, and less restricted than, the well characterized specialized transduction by phage lambda, due to differences in the phage DNA packaging mechanism. Phage lysates produced by induction of lysogenic strains contain very high frequencies of supQ newD- and proA,B-specialized transducing particles (10(-2)/PFU and 10(-3)/PFU, respectively), most of which are produced by independent aberrant excision events of various types. In a model, 12 different modes of transduction mechanisms were characterized by: (i) the structure of the specialized transducing genomes after injection into a new host cell, i.e., linear or circular, and (ii) the requirements for the transduction process, i.e., host recombination functions, phage integration functions, or presence of a prophage. By using different recipient strains and phage helper strains, it was possible to show that most specialized transducing particles (ca. 99%) contain linear genomes that cannot circularize upon injection into a new host cell and that require the presence of an integrated prophage as a site for a recombinational event to give rise to a transductant. Only 0.1% of all specialized transducing particles were shown to transduce by integration, suggesting that transducing genomes containing terminally redundant ends represent only a minor fraction of all transducing particles that are produced. However, it should be pointed out that the frequency (approximately 10(-5)/PFU) of these specialized transducing genomes that can circularize upon injection into a new host cell is as high as or even higher than the frequency of specialized transducing particles of phage lambda. The remaining approximately 1% of all specialized transducing particles can transduce by any one of the other mechanisms described.  相似文献   

11.
A new filamentous phage cloning vector: fd-tet   总被引:10,自引:0,他引:10  
A N Zacher  C A Stock  J W Golden  G P Smith 《Gene》1980,9(1-2):127-140
We have constructed a hybrid chromosome composed of the genome of wild-type fd (a filamentous, male-specific bacteriophage) and a segment of transposon Tn10 coding for tetracycline resistance but not including the Tn10 insertion sequences. The hybrid phage infects male E. coli, thereby transducing the infected cells to tetracycline resistance. The phage DNA can also be propagated in F- cells after transfection. This new phage, fd-tet, may be used as a cloning vector to produce large quantities of cloned DNA in single-stranded form. Its usefulness has been demonstrated by cloning of a fragment from bacteriophage lambda. Some unexpected sequence alterations have been identified in lambda cloning experiments.  相似文献   

12.
Summary Tn7 insertions into the genome of F116L, a Pseudomonas aeruginosa generalized transducing phage, were isolated by repeated cycles of transducing phage, were of strains lysogenic for F116cts mutants with selection for trimethoprim resistance (Tp1). Two non-defective F116Lcts:Tn7 phage were characterized. They have reduced plaquing ability, produced non-lysogenic Tpr transductants, and have yielded a deletion mutant of the phage genome upon selection for plaque formation in single infection. F116L DNA is circularly permuted and terminally redundant. A circular restriction map of 61.7 kb has been defined, and a cleavage site common to many enzymes has been identified at coordinate 23.3 kb on the map. It is presumed that this site represents the sequence for the initiation of DNA encapsidation by a headful packaging mode. The Tn7 insertion targets and a 13.4 kb deletion define regions of the F116L genome non-essential for either vegetative growth or lysogenization. The restriction map of Tn7 has been determined for five enzymes. Non-lysogenic Tpr transuctants reveal a Tn7 insertion hot-spot in the P. aeruginosa genome.  相似文献   

13.
Summary A special class of transducing particles in lysates of P22 is described. When DNA synthesized after infection is density labelled with bromodeoxyuridine, this class of particles exhibit a higher density in CsCl-gradients than normal transducing particles in the same lysates. It is shown that the DNA of these transducing particles carries the normal amount of bacterial information and is synthesized in the semiconservative mode after phage-infection. From the efficiency of BU-incorporation we conclude that the DNA molecules of these particles are not products of normal bacterial replication, but might be replicated under the control of the phage.  相似文献   

14.
Three somewhat different types of particle accumulate in cells infected with a phage carrying a mutation in gene 21 (in addition to the tubular variant (polyhead) of the head). The major type is the so-called τ-particle. These particles are very fragile, associated with the cell membrane, and have a sedimentation coefficient of about 420 S. They possess no DNA if isolated, and contain predominantly the precursor proteins P23, P24, P22 and the internal protein IP III, in addition to protein P20 and several proteins of unknown genetic origin.The remainder of the particles are partially or completely filled with DNA. The ratio of τ-particles to these partially or completely filled particles depends upon the particular mutant (in gene 21) phage used. In cells infected with a phage carrying the amber mutation (N90) in gene 21, about 10% of the precursor head protein P23 is cleaved to P231, and correspondingly about 10% of the particles are partially or completely filled with DNA. In cells infected with the temperature-sensitive mutant (N8) in gene 21, about 1% of the particles are fully or partially filled, and correspondingly about 1% of the P23 is cleaved to P231. In either case, the DNA-associated particles contain predominantly the cleaved proteins P231 and IP III1, and have none of the P22 and IP III found in τ-particles. This observation, and the correlation of the amount of partially or completely filled particles with the extent of the cleavage of P23 in the lysates, strongly suggest that cleavage of the head proteins is required for DNA packaging to occur.The τ-particles have properties similar to the so-called prohead I particles which we have isolated as intermediates in wild-type head assembly (preceding paper). However, temperature shift-down experiments, using several different phage carrying temperature-sensitive mutations in gene 21, indicate that the bulk of the τ-particles cannot be used for normal phage production.  相似文献   

15.
16.
PY100 is a lytic bacteriophage with a broad host range within the genus Yersinia. The phage forms plaques on strains of the three human pathogenic species Yersinia enterocolitica, Y. pseudotuberculosis, and Y. pestis at 37°C. PY100 was isolated from farm manure and intended to be used in phage therapy trials. PY100 has an icosahedral capsid containing double-stranded DNA and a contractile tail. The genome consists of 50,291 bp and is predicted to contain 93 open reading frames (ORFs). PY100 gene products were found to be homologous to the capsid proteins and proteins involved in DNA metabolism of the enterobacterial phage T1; PY100 tail proteins possess homologies to putative tail proteins of phage AaΦ23 of Actinobacillus actinomycetemcomitans. In a proteome analysis of virion particles, 15 proteins of the head and tail structures were identified by mass spectrometry. The putative gene product of ORF2 of PY100 shows significant homology to the gene 3 product (small terminase subunit) of Salmonella phage P22 that is involved in packaging of the concatemeric phage DNA. The packaging mechanism of PY100 was analyzed by hybridization and sequence analysis of DNA isolated from virion particles. Newly replicated PY100 DNA is cut initially at a pac recognition site, which is located in the coding region of ORF2.  相似文献   

17.
Summary There are at least two classes of transducing particles made on the induction of normal lysogens: the first is capable of transducing by the insertion of the whole transducing genome into the host chromosome, so its genome must be capable of circularizing; the second transduces less well by insertion—perhaps not at all; if it does not transduce by insertion then its genome need not be linear.The formation of a transducing genome can be accomplished in three steps: (a) breaking the lysogenic bacterial chromosomes in two places, (b) joining the fragment ends together to form a circular structure, (c) opening the circle (by ter) to form a linear genome. If the resultant structure meets the requirements for packaging, it may be formed into a transducing phage, like a bougus .Any meaningful rearrangement of these steps in which step (b) is omitted or delayed leads to the formation of genomes, which are (1) unable to transduce by insertion (because both of its mature ends are unexposed) and (2) are on the average smaller than genomes which are capable of transducing by insertion (so the resultant transducing phage is less dense). Consequence (2) has been confirmed.We assume that the red function of catalyzes the joining of broken DNA molecules to each other. So red is responsible for rehealing the product of (a) back into a lysogenic chromosome and for catalyzing step (b), the healing of fragment ends into a circular structure. The much elevated level of stable transductants on induction of red lysogens hereby is explained.Supported by grant E-2862 of the U.S.P.H.S. to Dr. Allan Campell.  相似文献   

18.
A P22 specialized transducing phage has been constructed which carries the structural gene for aspartate transcarbamylase (ATCase). This gene (pyrB) was first brought close to the P22 attachment site by fusing an F' pyrB+ episome to an F' prolac episome which carries a P22 prophage attachment site. A prophage was added to these fused F' episomes and the lysogen was UV-induced. The specialized transducing phage was isolated from the resulting lysate. The phage also carries argI, the structure gene for ornithine transcarbamylase.  相似文献   

19.
Salmonella typhimurium bacteriophage P22 transduced plasmids having P22 sequences inserted in the vector pBR322 with high frequency. Analysis of the structure of the transducing particle DNA and the transduced plasmids indicates that this plasmid transduction involves two homologous recombination events. In the donor cell, a single recombination between the phage and the homologous sequences on the plasmid inserted the plasmid into the phage chromosome, which was then packaged by headfuls into P22 particles. The transducing particle DNA contained duplications of the region of homology flanking the integrated plasmid vector sequences and lacked some phage genes. When these defective phage genomes containing the inserted plasmid infected a recipient cell, recombination between the duplicated regions regenerated the plasmid. A useful consequence of this sequence of events was that genetic markers in the region of homology were readily transferred from phage to plasmid. Plasmid transduction required homology between the phage and the plasmid, but did not depend on the presence of any specific P22 sequence in the plasmid. When the infecting P22 carried a DNA sequence homologous to the ampicillin resistance region of pBR322, the vector plasmid having no P22 insert could be transduced. P22-mediated transduction is a useful way to transfer chimeric plasmids, since most S. typhimurium strains are poorly transformed by plasmid DNA.  相似文献   

20.
We have found that two different temperature-sensitive mutations in gene 22, tsA74 and ts22-2, produce high frequencies (up to 85%) of petite phage particles when grown at a permissive or intermediate temperature. Moreover, the ratio of petite to normal particles in a lysate depends upon the temperature at which the phage are grown. These petite phage particles appear to have approximately isometric heads when viewed in the electron microscope, and can be distinguished from normal particles by their sedimentation coefficient and by their buoyant density in CsCl. They are biologically active as detected by their ability to complement a co-infecting amber helper phage. Lysates of both mutants grown at a permissive temperature reveal not only a significant number of petite phage particles in the electron microscope, but also sizeable classes of wider-than-normal particles, particles having abnormally attached tails, and others having more than one tail.Striking protein differences exist between the purified phage particles of tsA74 or ts22-2 and wild-type T4. B11, a 61,000 molecular weight head protein, is completely absent from the phage particles of both mutants, and the internal protein IPIII1 is present in reduced amounts as compared to wild type. The precursor to B11 is present in the lysates, but these mutations appear to prevent its incorporation into heads, so it does not become cleaved.The product of gene 22 (P22) is known to be the major protein of the morphogenetic core of the T4 head. Besides the mutations reported here, several mutations which affect head length have been found in gene 23, which codes for the major capsid protein (Doermann et al., 1973b). We suggest a model in which head length is determined by an interaction between the core (P22 and IPIII) and the outer shell (P23).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号