首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4(+) T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4(+) Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.  相似文献   

2.
In the present study, we investigated the effectiveness of liposomes coated with a neoglycolipid consisting of mannotriose and dipalmitoylphosphatidylcholine (Man3-DPPE) as an adjuvant for induction of mucosal immunity. Immunization of BALB/c mice with ovalbumin (OVA)-encapsulated Man3-DPPE-coated liposomes (oligomannose-coated liposomes; OMLs) by a nasal route produced high levels of OVA-specific IgG and IgA antibodies in serum of immunized mice 1 week after the last nasal immunization, whereas no significant serum antibody responses were observed in mice that received OVA in uncoated liposomes or OVA alone. Seven weeks after the last nasal immunization, nasal challenge with an excess amount of OVA in mice that had received OVA/OMLs led to an anamnestic response to the antigen that resulted in 5- to 10-fold increases of antigen-specific serum IgG and IgA antibodies. Only mice immunized nasally with OML/OVA secreted antigen-specific secretory IgA in nasal washes and produced interferon-gamma secreting cells in nasopharyngeal-associated lymphoreticular tissue. Taken together, these results show that nasal administration of OMLs induces mucosal and systemic immunity that are specific for the entrapped antigen in the liposomes. Thus, liposomes coated with synthetic neoglycolipids might be useful as adjuvants for induction of mucosal immunity.  相似文献   

3.
Native cholera toxin (nCT) and the heat-labile toxin 1 (nLT) of enterotoxigenic Escherichia coli are AB5-type enterotoxins. Both nCT and nLT are effective adjuvants that promote mucosal and systemic immunity to protein Ags given by either oral or nasal routes. Previous studies have shown that nCT as mucosal adjuvant requires IL-4 and induces CD4-positive (CD4+) Th2-type responses, while nLT up-regulates Th1 cell production of IFN-gamma and IL-4-independent Th2-type responses. To address the relative importance of the A or B subunits in CD4+ Th cell subset responses, chimeras of CT-A/LT-B and LT-A/CT-B were constructed. Mice nasally immunized with CT-A/LT-B or LT-A/CT-B and the weak immunogen OVA developed OVA-specific, plasma IgG Abs titers similar to those induced by either nCT or nLT. Both CT-A/LT-B and LT-A/CT-B promoted secretory IgA anti-OVA Ab, which established their retention of mucosal adjuvant activity. The CT-A/LT-B chimera, like nLT, induced OVA-specific mucosal and peripheral CD4+ T cells secreting IFN-gamma and IL-4-independent Th2-type responses, with plasma IgG2a anti-OVA Abs. Further, LT-A/CT-B, like nCT, promoted plasma IgG1 more than IgG2a and IgE Abs with OVA-specific CD4+ Th2 cells secreting high levels of IL-4, but not IFN-gamma. The LT-A/CT-B chimera and nCT, but not the CT-A/LT-B chimera or nLT, suppressed IL-12R expression and IFN-gamma production by activated T cells. Our results show that the B subunits of enterotoxin adjuvants regulate IL-12R expression and subsequent Th cell subset responses.  相似文献   

4.
Andoh A  Masuda A  Kumazawa Y  Kasajima T 《Cytokine》2002,20(3):107-112
Immunization via the nasal route is effective for inducing not only mucosal immunity but also antibody (Ab) response in serum. Nasal lymphoid tissue (NALT) is important for induction of systemic immunity. It remains controversial which T effector cell response is important for serum Ab response after nasal immunization. We investigated serum Ab responses and NALT structures in interleukin (IL)-4 gene targeted (IL-4(-/-)) and interferon (IFN)-gamma gene targeted (IFN-gamma(-/-)) mice. Mice were immunized via nostrils with ovalbumin (OVA) and cholera toxin as adjuvant and serum Ab titers were measured 1 week after final antigen challenge. OVA-specific IgG titers in sera of IL-4(-/-) mice indicated a Th(1) type response, whereas titers in IFN-gamma(-/-) mice and wild-type mice indicated a Th(2) type response. Enhanced serum Ab responses were observed in IL-4(-/-) mice but not IFN-gamma(-/-) mice. OVA-specific Ab-forming cells were detected in the cervical draining lymph nodes but were rare or absent in and around the NALT of all strains of mice. Numbers of OVA-specific Ab-forming cells in cervical lymph nodes were significantly higher in IL-4(-/-) mice than in wild-type and IFN-gamma(-/-) mice. Germinal centers of lymphoid follicles were present in NALT of IL-4(-/-) and other mice. Immunohistochemistry for B and T cell markers revealed that NALT of all mice had approximately the same cellular compositions. Although the absence of IL-4 had no effect on NALT structure, IL-4 may suppress induction of serum Ab responses by nasal immunization.  相似文献   

5.
Our previous studies showed that mucosal immunity was impaired in 1-year-old mice that had been orally immunized with OVA and native cholera toxin (nCT) as mucosal adjuvant. In this study, we queried whether similar immune dysregulation was also present in mucosal compartments of mice immunized by the nasal route. Both 1-year-old and young adult mice were immunized weekly with three nasal doses of OVA and nCT or with a nontoxic chimeric enterotoxin (mutant cholera toxin-A E112K/B subunit of native labile toxin) from Brevibacillus choshinensis. Elevated levels of OVA-specific IgG Abs in plasma and secretory IgA Abs in mucosal secretions (nasal washes, saliva, and fecal extracts) were noted in both young adult and 1-year-old mice given nCT or chimeric enterotoxin as mucosal adjuvants. Significant levels of OVA-specific CD4(+) T cell proliferative and OVA-induced Th1- and Th2-type cytokine responses were noted in cervical lymph nodes and spleen of 1-year-old mice. In this regard, CD4(+), CD45RB(+) T cells were detected in greater numbers in the nasopharyngeal-associated lymphoreticular tissues of 1-year-old mice than of young adult mice, but the same did not hold true for Peyer's patches or spleen. One-year-old mice given nasal tetanus toxoid plus the chimeric toxin as adjuvant were protected from lethal challenge with tetanus toxin. This result reinforced our findings that age-associated immune alterations occur first in gut-associated lymphoreticular tissues, and thus nasal delivery of vaccines for nasopharyngeal-associated lymphoreticular tissue-based mucosal immunity offers an attractive possibility to protect the elderly.  相似文献   

6.
We have shown that intranasal coapplication of Bacillus anthracis protective Ag (PA) together with a B. anthracis edema factor (EF) mutant having reduced adenylate cyclase activity (i.e., EF-S414N) enhances anti-PA Ab responses, but also acts as a mucosal adjuvant for coadministered unrelated Ags. To elucidate the role of edema toxin (EdTx) components in its adjuvanticity, we examined how a PA mutant lacking the ability to bind EF (PA-U7) or another mutant that allows the cellular uptake of EF, but fails to efficiently mediate its translocation into the cytosol (PA-dFF), would affect EdTx-induced adaptive immunity. Native EdTx promotes costimulatory molecule expression by macrophages and B lymphocytes, and a broad spectrum of cytokine responses by cervical lymph node cells in vitro. These effects were reduced or abrogated when cells were treated with EF plus PA-dFF, or PA-U7 instead of PA. We also intranasally immunized groups of mice with a recombinant fusion protein of Yersinia pestis F1 and LcrV Ags (F1-V) together with EdTx variants consisting of wild-type or mutants PA and EF. Analysis of serum and mucosal Ab responses against F1-V or EdTx components (i.e., PA and EF) revealed no adjuvant activity in mice that received PA-U7 instead of PA. In contrast, coimmunization with PA-dFF enhanced serum Ab responses. Finally, immunization with native PA and an EF mutant lacking adenylate cyclase activity (EF-K346R) failed to enhance Ab responses. In summary, a fully functional PA and a minimum of adenylate cyclase activity are needed for EdTx to act as a mucosal adjuvant.  相似文献   

7.
Oral delivery of a large dose or prolonged feeding of protein Ags induce systemic unresponsiveness most often characterized as reduced IgG and IgE Ab- and Ag-specific CD4(+) T cell responses. It remains controversial whether oral tolerance extends to diminished mucosal IgA responses in the gastrointestinal tract. To address this issue, mice were given a high oral dose of OVA or PBS and then orally immunized with OVA and cholera toxin as mucosal adjuvant, and both systemic and mucosal immune responses were assessed. OVA-specific serum IgG and IgA and mucosal IgA Ab levels were markedly reduced in mice given OVA orally compared with mice fed PBS. Furthermore, when OVA-specific Ab-forming cells (AFCs) in both systemic and mucosa-associated tissues were examined, IgG AFCs in the spleen and IgA AFCs in the gastrointestinal tract lamina propria of mice given OVA orally were dramatically decreased. Furthermore, marked reductions in OVA-specific CD4(+) T cell proliferative and cytokine responses in spleen and Peyer's patches were seen in mice given oral OVA but were unaffected in PBS-fed mice. We conclude that high oral doses of protein induce both mucosal and systemic unresponsiveness and that use of mucosal adjuvants that induce both parenteral and mucosal immunity may be a better way to assess oral tolerance.  相似文献   

8.
RANTES potentiates antigen-specific mucosal immune responses   总被引:8,自引:0,他引:8  
RANTES is produced by lymphoid and epithelial cells of the mucosa in response to various external stimuli and is chemotactic for lymphocytes. The role of RANTES in adaptive mucosal immunity has not been studied. To better elucidate the role of this chemokine, we have characterized the effects of RANTES on mucosal and systemic immune responses to nasally coadministered OVA. RANTES enhanced Ag-specific serum Ab responses, inducing predominately anti-OVA IgG2a and IgG3 followed by IgG1 and IgG2b subclass Ab responses. RANTES also increased Ag-specific Ab titers in mucosal secretions and these Ab responses were associated with increased numbers of Ab-forming cells, derived from mucosal and systemic compartments. Splenic and mucosally derived CD4(+) T cells of RANTES-treated mice displayed higher Ag-specific proliferative responses and IFN-gamma, IL-2, IL-5, and IL-6 production than control groups receiving OVA alone. In vitro, RANTES up-regulated the expression of CD28, CD40 ligand, and IL-12R by Ag-activated primary T cells from DO11.10 (OVA-specific TCR-transgenic) mice and by resting T cells in a dose-dependent fashion. These studies suggest that RANTES can enhance mucosal and systemic humoral Ab responses through help provided by Th1- and select Th2-type cytokines as well as through the induction of costimulatory molecule and cytokine receptor expression on T lymphocytes. These effects could serve as a link between the initial innate signals of the host and the adaptive immune system.  相似文献   

9.
The use of the nontoxic B subunit of cholera toxin (CTB) as mucosal adjuvant and carrier-delivery system for inducing secretory Ab responses has been documented previously with different soluble Ags. In this study, we have evaluated this approach for inducing CTL responses against a prototype Ag, OVA, in the female genital mucosa. We report here the ability of an immunogen comprised of CTB conjugated to OVA (CTB-OVA) given by intravaginal (ivag) route to induce genital OVA-specific CTLs in mice. Using adoptive transfer models, we demonstrate that ivag application of CTB-OVA activates OVA-specific IFN-gamma-producing CD4 and CD8 T cells in draining lymph nodes (DLN). Moreover, ivag CTB induces an expansion of IFN-gamma-secreting CD8+ T cells in DLN and genital mucosa and promotes Ab responses to OVA. In contrast, ivag administration of OVA alone or coadministered with CTB failed to induce such responses. Importantly, we demonstrate that ivag CTB-OVA generates OVA-specific CTLs in DLN and the genital mucosa. Furthermore, genital CD11b+ CD11c+ dendritic cells (DCs), but not CD8+ CD11c+ or CD11c- APCs, present MHC class I epitopes acquired after ivag CTB-OVA, suggesting a critical role of this DC subset in the priming of genital CTLs. Inhibition studies indicate that the presentation of OVA MHC class I epitopes by DCs conditioned with CTB-OVA involves a proteasome-dependent and chloroquine-sensitive mechanism. These results demonstrate that CTB is an efficient adjuvant-delivery system for DC-mediated induction of genital CTL responses and may have implications for the design of vaccines against sexually transmitted infections.  相似文献   

10.
The progeny of mice treated with lymphotoxin (LT)-beta receptor (LTbetaR) and Ig (LTbetaR-Ig) lack Peyer's patches but not mesenteric lymph nodes (MLN). In this study, we used this approach to determine the importance of Peyer's patches for induction of mucosal IgA Ab responses in the murine gastrointestinal tract. Immunohistochemical analysis revealed that LTbetaR-Ig-treated, Peyer's patch null (PP null) mice possessed significant numbers of IgA-positive (IgA+) plasma cells in the intestinal lamina propria. Further, oral immunization of PP null mice with OVA plus cholera toxin as mucosal adjuvant resulted in Ag-specific mucosal IgA and serum IgG Ab responses. OVA-specific CD4+ T cells of the Th2 type were induced in MLN and spleen of PP null mice. In contrast, when TNF and LT-alpha double knockout (TNF/LT-alpha-/-) mice, which lack both Peyer's patches and MLN, were orally immunized with OVA plus cholera toxin, neither mucosal IgA nor serum IgG anti-OVA Abs were induced. On the other hand, LTbetaR-Ig- and TNF receptor 55-Ig-treated normal adult mice elicited OVA- and cholera toxin B subunit-specific mucosal IgA responses, indicating that both LT-alphabeta and TNF/LT-alpha pathways do not contribute for class switching for IgA Ab responses. These results show that the MLN plays a more important role than had been appreciated until now for the induction of both mucosal and systemic Ab responses after oral immunization. Further, organized Peyer's patches are not a strict requirement for induction of mucosal IgA Ab responses in the gastrointestinal tract.  相似文献   

11.
Nasal immunization of normal mice with HIVgp160-encapsulated hemagglutinating virus of Japan (HVJ)-liposome induced high titers of gp160-specific neutralizing IgG in serum and IgA in nasal wash, saliva, fecal extract, and vaginal wash, along with both Th1- and Th2-type responses. HIVgp160-specific IgG- and IgA-producing cells were also detected in mononuclear cells isolated from spleen, nasal cavity, salivary gland, intestinal lamina propria, and vaginal tissue of nasally immunized mice. In addition, CD8(+) CTLs were induced in mice nasally immunized with gp160-HVJ-liposome. These findings suggest that two layers of effective HIV-specific humoral and cellular immunity, in mucosal and systemic sites, were induced by this nasal vaccine. In immunodeficient mice, nasal immunization with gp160-HVJ-liposome induced Ag-specific immune responses for the systemic and mucosal compartments of both Th1 (IFN-gamma(-/-)) and Th2 (IL-4(-/-)). In vitro Ag-specific serum IgG Ab and vaginal wash samples possessing IgA and IgG Abs that had been induced by nasal immunization with gp160-HVJ-liposome were able to neutralize a clinically isolated strain of HIV-MN strain isolated from Japanese hemophiliac patients. Taken together, these results suggest that, for the prevention and control of AIDS, nasally administered gp160-HVJ-liposome is a powerful immunization tool that induces necessary Ag-specific immune responses at different stages of HIV infection.  相似文献   

12.
Bacillus anthracis, the causative agent of anthrax, produces a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF), which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin and edema toxin, respectively. In this preliminary study, we characterized the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody responses observed following infection were directed against LF, with immunoglobulin G (IgG) detected as early as 4 days after the onset of symptoms in contrast to the later and lower EF- and PA-specific IgG responses. Unlike the case with infection, the predominant toxin-specific antibody response of those immunized with the US anthrax vaccine absorbed and UK anthrax vaccine precipitated licensed anthrax vaccines was directed against PA. We observed that the LF-specific human antibodies were, like anti-PA antibodies, able to neutralize toxin activity, suggesting the possibility that they may contribute to protection. We conclude that an antibody response to LF might be a more sensitive diagnostic marker of anthrax than to PA. The ability of human LF-specific antibodies to neutralize toxin activity supports the possible inclusion of LF in future anthrax vaccines.  相似文献   

13.
Previously, we showed that nasal administration of a naked cDNA plasmid expressing Flt3 ligand (FL) cDNA (pFL) enhanced CD4(+) Th2-type, cytokine-mediated mucosal immunity and increased lymphoid-type dendritic cell (DC) numbers. In this study, we investigated whether targeting nasopharyngeal-associated lymphoreticular tissue (NALT) DCs by a different delivery mode of FL, i.e., an adenovirus (Ad) serotype 5 vector expressing FL (Ad-FL), would provide Ag-specific humoral and cell-mediated mucosal immunity. Nasal immunization of mice with OVA plus Ad-FL as mucosal adjuvant elicited high levels of OVA-specific Ab responses in external secretions and plasma as well as significant levels of OVA-specific CD4(+) T cell proliferative responses and OVA-induced IFN-gamma and IL-4 production in NALT, cervical lymph nodes, and spleen. We also observed higher levels of OVA-specific CTL responses in the spleen and cervical lymph nodes of mice given nasal OVA plus Ad-FL than in mice receiving OVA plus control Ad. Notably, the number of CD11b(+)CD11c(+) DCs expressing high levels of costimulatory molecules was preferentially increased. These DCs migrated from the NALT to mucosal effector lymphoid tissues. Taken together, these results suggest that the use of Ad-FL as a nasal adjuvant preferentially induces mature-type NALT CD11b(+)CD11c(+) DCs that migrate to effector sites for subsequent CD4(+) Th1- and Th2-type cytokine-mediated, Ag-specific Ab and CTL responses.  相似文献   

14.
The development of allergy is related to differences in the intestinal microbiota. Therefore, it is suggested that the immune responses induced by different genera of bacteria might be regulated through adaptive as well as innate immunity. In this study, we examined whether antigen-specific immune responses were affected by stimulation with the different genera of intestinal bacteria in vitro. Mesenteric lymph node (MLN) cells isolated from germ-free ovalbumin (OVA)-specific T cell receptor transgenic (OVA-Tg) mice were stimulated with OVA and intestinal bacteria. Cecal contents from conventional mice but not germ-free mice could induce OVA-specific cytokine production. Among the murine intestinal bacteria, Bacteroides acidofaciens (BA) enhanced OVA-specific IFN-γ and IL-10 production while Lactobacillus johnsonii (LA) increased OVA-specific IL-10 production only. The expression of cell surface molecules and cytokine production by antigen-presenting cells (APCs) from germ-free Balb/c mice were analyzed. BA increased the expression of MHC II and co-stimulatory molecules on APCs compared with LA. BA increased IL-6 and IL-10 production but induced less IL-12p40 than LA. To examine the effects of prior stimulation of APCs by intestinal bacteria on the induction of antigen-specific immune responses, cytokine production was determined following co-culture with OVA, CD4+ T cells from OVA-Tg mice, and APCs which were pre-stimulated with the bacteria or not. APCs pre-stimulated with LA did not enhance OVA-specific cytokine production while BA stimulated OVA-specific IL-10 production. These results suggest that the prior stimulation of intestinal immunocytes by Lactobacillus might regulate excessive antigen-specific cytokine responses via APCs when compared with prior stimulation by Bacteroides.  相似文献   

15.
We have investigated the induction of protective mucosal immunity to human immunodeficiency virus type 1 (HIV-1) isolate 89.6 by intranasal (i.n.) immunization of mice with gp120 and gp140 together with interleukin-12 (IL-12) and cholera toxin subunit B (CTB) as adjuvants. It was found that both IL-12 and CTB were required to elicit mucosal antibody responses and that i.n. immunization resulted in increased total, immunoglobulin G1 (IgG1), and IgG2a anti-HIV-1 antibody levels in serum; increased total, IgG1, IgG2a, and IgA antibody expression in bronchoalveolar lavage fluids; and increased IgA antibody levels in vaginal washes. Levels of anti-HIV-1 antibodies in both sera and secretions were higher in groups immunized with gp140 than in those immunized with gp120. However, only gp120-specific mucosal antibodies demonstrated neutralizing activity against HIV-1 89.6. Taken together, the results show that IL-12 and CTB act synergistically to enhance both systemic and local mucosal antibody responses to HIV-1 glycoproteins and that even though gp140 induces higher antibody titers than gp120, only gp120-specific mucosal antibodies interfere with virus infectivity.  相似文献   

16.
TNF superfamily member, TL1A, is a potential mucosal vaccine adjuvant   总被引:1,自引:0,他引:1  
The identification of cytokine adjuvants capable of inducing an efficient mucosal immune response against viral pathogens has been long anticipated. Here, we attempted to identify the potential of tumor necrosis factor superfamily (TNFS) cytokines to function as mucosal vaccine adjuvants. Sixteen different TNFS cytokines were used to screen mucosal vaccine adjuvants, after which their immune responses were compared. Among the TNFS cytokines, intranasal immunization with OVA plus APRIL, TL1A, and TNF-α exhibited stronger immune response than those immunized with OVA alone. TL1A induced the strongest immune response and augmented OVA-specific IgG and IgA responses in serum and mucosal compartments, respectively. The OVA-specific immune response of TL1A was characterized by high levels of serum IgG1 and increased production of IL-4 and IL-5 from splenocytes of immunized mice, suggesting that TL1A might induce Th2-type responses. These findings indicate that TL1A has the most potential as a mucosal adjuvant among the TNFS cytokines.  相似文献   

17.
Switching from IgM to IgG and IgA is essential for antiviral immunity and requires engagement of CD40 on B cells by CD40L on CD4(+) T cells. HIV-1 is thought to impair CD40-dependent production of protective IgG and IgA by inducing progressive loss of CD4(+) T cells. Paradoxically, this humoral immunodeficiency is associated with B cell hyperactivation and increased production of nonprotective IgG and IgA that are either nonspecific or specific for HIV-1 envelope glycoproteins, including gp120. Nonspecific and gp120-specific IgG and IgA are sensitive to antiretroviral therapy and remain sustained in infected individuals with very few CD4(+) T cells. One interpretation is that some HIV-1 Ags elicit IgG and IgA class switch DNA recombination (CSR) in a CD40-independent fashion. We show that a subset of B cells binds gp120 through mannose C-type lectin receptors (MCLRs). In the presence of gp120, MCLR-expressing B cells up-regulate the CSR-inducing enzyme, activation-induced cytidine deaminase, and undergo CSR from IgM to IgG and IgA. CSR is further enhanced by IL-4 or IL-10, whereas Ab secretion requires a B cell-activating factor of the TNF family. This CD40L-related molecule is produced by monocytes upon CD4, CCR5, and CXCR4 engagement by gp120 and cooperates with IL-4 and IL-10 to up-regulate MCLRs on B cells. Thus, gp120 may elicit polyclonal IgG and IgA responses by linking the innate and adaptive immune systems through the B cell-activating factor of the TNF family. Chronic activation of B cells through this CD40-independent pathway could impair protective T cell-dependent Ab responses by inducing immune exhaustion.  相似文献   

18.
We assessed the role of CCR5+/CCR6+/CD11b+/CD11c+ dendritic cells (DCs) for induction of ovalbumin (OVA)-specific antibody (Ab) responses following mucosal immunization. Mice given nasal OVA plus an adenovirus expressing Flt3 ligand (Ad-FL) showed early expansion of CCR5+/CCR6+/CD11b+/CD11c+ DCs in nasopharyngeal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLNs). Subsequently, this DC subset became resident in submandibular glands (SMGs) and nasal passages (NPs) in response to high levels of CCR-ligands produced in these tissues. CD11b+/CD11c+ DCs were markedly decreased in both CCR5−/− and CCR6−/− mice. Chimera mice reconstituted with bone marrow cells from CD11c-diphtheria toxin receptor (CD11c-DTR) and CCR5−/− or CD11c-DTR and CCR6−/− mice given nasal OVA plus Ad-FL had elevated plasma IgG, but reduced IgA as well as low anti-OVA secretory IgA (SIgA )Ab responses in saliva and nasal washes. These results suggest that CCR5+CCR6+ DCs play an important role in the induction of Ag-specific SIgA Ab responses.  相似文献   

19.
Recent study has demonstrated an increasing prevalence of food allergy in Korean children. Specific probiotic bacteria may promote potentially anti-allergenic processes through induction of Th1-type immunity and enhance the regulatory lymphocyte. This study investigated whether orally administrated probiotics could suppress allergic responses in an ovalbumin (OVA)-induced allergy mouse model. Thus, female C3H/HeJ mice were orally sensitized with OVA and cholera toxin for 4 weeks. Lactobacillus acidophilus AD031, Bifidobacterium lactis AD011, and L. acidophilus AD031 plus B. lactis AD011 were fed to mice from 2 weeks before the sensitization. The OVA-induced mice that were not treated with probiotics had significantly increased serum levels of OVA-specific IgE and IgG1, and OVAspecific IgA in feces. However, the mice treated with probiotics suppressed production of the OVA-specific IgE, IgG1, and IgA. The level of IL-4 was significantly lower, and the levels of INF-gamma and IL-10 were significantly higher in the mice treated with probiotics than that in the nontreated mice. The groups treated with probiotics had decreased levels of degranulated mast cells, eosinophil granules, and tail scabs. These results indicate that L. acidophilus AD031 and B. lactis AD011 might be useful for the prevention of allergy.  相似文献   

20.
Activation of Natural Killer-like T cells (NKT) with the CD1d ligand α-GC leads to enhanced production of anthrax toxin protective Ag (PA)-neutralizing Abs, yet the underlying mechanism for this adjuvant effect is not known. In the current study we examined the role of Th1 and Th2 type responses in NKT-mediated enhancement of antibody responses to PA. First, the contribution of IL-4 and IFNγ to the production of PA-specific toxin-neutralizing Abs was examined. By immunizing C57Bl/6 controls IL-4(-/-) mice and IFNγ(-/-) mice and performing passive serum transfer experiments, it was observed that sera containing PA-specific IgG1, IgG2b and IgG2c neutralized toxin in vitro and conferred protection in vivo. Sera containing IgG2b and IgG2c neutralized toxin in vitro but were not sufficient for protection in vivo. Sera containing IgG1 and IgG2b neutralized toxin in vitro and conferred protection in vivo. IgG1 therefore emerged as a good correlate of protection. Next, C57Bl/6 mice were immunized with PA alone or PA plus a Th2-skewing α-GC derivative known as OCH. Neutralizing PA-specific IgG1 responses were modestly enhanced by OCH in C57Bl/6 mice. Conversely, IgG2b and IgG2c were considerably enhanced in PA/OCH-immunized IL-4(-/-) mice but did not confer protection. Finally, bone marrow chimeras were generated such that NKT cells were unable to express IL-4 or IFNγ. NKT-derived IL-4 was required for OCH-enhanced primary IgG1 responses but not recall responses. NKT-derived IL-4 and IFNγ also influenced primary and recall IgG2b and IgG2c titers. These data suggest targeted skewing of the Th2 response by α-GC derivatives can be exploited to optimize anthrax vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号