首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO2] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, gs, gm, Ci/Ca, Ci/Cc, Vcmax, Jmax, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid‐anthesis and the late grain‐filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid‐anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO2]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non‐structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO2] appeared to enhance the rate of N degradation and senescence so that by late‐grain fill, photosynthetic acclimation to elevated [CO2] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO2] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation.  相似文献   

2.
The effects of nitrogen [75 and 150 kg (N) ha−1] and elevated CO2 on growth, photosynthetic rate, contents of soluble leaf proteins and activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and nitrate reductase (NR) were studied on wheat (Triticum aestivum L. cv. HD-2285) grown in open top chambers under either ambient (AC) or elevated (EC) CO2 concentration (350 ± 50, 600 ± 50 μmol mol−1) and analyzed at 40, 60 and 90 d after sowing. Plants grown under EC showed greater photosynthetic rate and were taller and attained greater leaf area along with higher total plant dry mass at all growth stages than those grown under AC. Total soluble and Rubisco protein contents decreased under EC but the activation of Rubisco was higher at EC with higher N supply. Nitrogen increased the NR activity whereas EC reduced it. Thus, EC causes increased growth and PN ability per unit uptake of N in wheat plants, even if N is limiting.  相似文献   

3.
Seasonal changes in photosynthetic capacity, leaf nitrogen (N) content, leaf chlorophyll (Chl) content and leaf N allocation patterns in leaves of different ages in the evergreen understory shrub, Daphniphyllum humile Maxim, growing at a forest border and an understory site were studied. In current-year leaves at the understory site, the N and Rubisco contents increased from spring to autumn although their light-saturated photosynthetic rate at 22°C (P max22) remained stable, indicating that their mesophyll conductance rates declined as they completed their development and/or that they invested increasing amounts of their resources in photosynthetic enzymes during this period. In contrast, seasonal changes in P max22 in current-year leaves at the forest border site were correlated with changes in Rubisco content. In 1-year old leaves at the understory site, P max22 and contents of Chl, leaf N, and Rubisco remained stable from spring to autumn, while these parameters decreased in 1-year-old forest border leaves, indicating that N may have been remobilized from shaded 1-year-old leaves to sunlit current-year leaves. When leaves senesced at the forest border site the Rubisco content decreased more rapidly than that of light-harvesting proteins such as LHCII, suggesting that N remobilization from Rubisco may be more efficient, possibly because Rubisco has greater N costs and is soluble, whereas the light-harvesting proteins are membrane components.  相似文献   

4.
The current concentrations of O3 have been shown to cause significant negative effects on crop yield. The present levels of ozone may not induce visible symptoms in most of plants, but can result in substantial losses in reproductive output. This paper considers the impact of ambient O3 on gas exchange, photosynthetic pigments, chlorophyll (Chl) fluorescence and carbohydrate levels in the flag leaf of wheat plants during various stages of reproductive development using open-top chambers. Mean O3 concentration was 45.7 ppb during wheat growth and 50.2 ppb after flag leaf development. Reproductive stage showed higher exceedence of O3 above 40 ppb compared to the vegetative stage. Diurnal variations in net photosynthetic rate (P N) and stomatal conductance (g s), intercellular CO2 concentration (C i), Fv/Fm ratio, photosynthetic pigments, soluble sugars, and starch were measured at 10, 30, and 50 days after flag leaf expansion (DAFE). The results showed reductions in P N, g s, Fv/Fm ratio, photosynthetic pigments and starch, and increases in C i, F0, and soluble sugars in nonfiltered chambers (NFCs) compared to filtered chambers (FCs). Maximum changes in measured parameters were observed at 50 DAFE (i.e. grain filling and setting phase). Diurnal variation in P N showed double peaked curve in both FCs and NFCs, but delayed peak and early depression in NFCs. Stomatal conductance was significantly lower in NFCs. The study suggests that higher prevalence of ambient O3 during reproductive development led to significant alteration in physiological vitality of wheat having potential negative influence on yield.  相似文献   

5.
To examine the role of sink size on photosynthetic acclimation under elevated atmospheric CO2 concentrations ([CO2]), we tested the effects of panicle-removal (PR) treatment on photosynthesis in rice (Oryza sativa L.). Rice was grown at two [CO2] levels (ambient and ambient + 200 μmol mol−1) throughout the growing season, and at full-heading stage, at half the plants, a sink-limitation treatment was imposed by the removal of the panicles. The PR treatment alleviated the reduction of green leaf area, the contents of chlorophyll (Chl) and Rubisco after the full-heading stage, suggesting delay of senescence. Nonetheless, elevated [CO2] decreased photosynthesis (measured at current [CO2]) of plants exposed to the PR treatment. No significant [CO2] × PR interaction on photosynthesis was observed. The decrease of photosynthesis by elevated [CO2] of plants was associated with decreased leaf Rubisco content and N content. Leaf glucose content was increased by the PR treatment and also by elevated [CO2]. In conclusion, a sink-limitation in rice improved N status in the leaves, but this did not prevent the photosynthetic down-regulation under elevated [CO2].  相似文献   

6.
7.
Wakayama M  Ohnishi J  Ueno O 《Planta》2006,223(6):1243-1255
In its leaf blade, Arundinella hirta has unusual Kranz cells that lie distant from the veins (distinctive cells; DCs), in addition to the usual Kranz units composed of concentric layers of mesophyll cells (MCs) and bundle sheath cells (BSCs; usual Kranz cells) surrounding the veins. We examined whether chlorophyllous organs other than leaf blades—namely, the leaf sheath, stem, scale leaf, and constituents of the spike—also have this unique anatomy and the C4 pattern of expression of photosynthetic enzymes. All the organs developed DCs to varying degrees, as well as BSCs. The stem, rachilla, and pedicel had C4-type anatomy with frequent occurrence of DCs, as in the leaf blade. The leaf sheath, glume, and scale leaf had a modified C4 anatomy with MCs more than two cells distant from the Kranz cells; DCs were relatively rare. An immunocytochemical study of C3 and C4 enzymes revealed that all the organs exhibited essentially the same C4 pattern of expression as in the leaf blade. In the scale leaf, however, intense expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in the MCs as well as in the BSCs and DCs. In the leaf sheath, the distant MCs also expressed Rubisco. In Arundinella hirta, it seems that the ratio of MC to Kranz cell volumes, and the distance from the Kranz cells, but not from the veins, affects the cellular expression of photosynthetic enzymes. We suggest that the main role of DCs is to keep a constant quantitative balance between the MCs and Kranz cells, which is a prerequisite for effective C4 pathway operation.  相似文献   

8.
Drought is a normal, recurrent feature of climate. In order to understand the potential effect of increasing atmospheric CO2 concentration (C a) on ecosystems, it is essential to determine the combined effects of drought and elevated C a (EC) under field conditions. A severe drought occurred in Central Florida in 1998 when precipitation was 88 % less than the average between 1984 and 2002. We determined daytime net ecosystem CO2 exchange (NEE) before, during, and after the drought in the Florida scrub-oak ecosystem exposed to doubled C a in open-top chamber since May 1996. We measured diurnal leaf net photosynthetic rate (P N) of Quercus myrtifolia Willd, the dominant species, during and after the drought. Drought caused a midday depression in NEE and P N at ambient CO2 concentration (AC) and EC. EC mitigated the midday depression in NEE by about 60 % compared to AC and the effect of EC on leaf P N was similar to its effect on NEE. Growth in EC lowered the sensitivity of NEE to air vapor pressure deficit under drought. Thus EC would help the scrub-oak ecosystem to survive the consequences of the effects of rising atmospheric CO2 on climate change, including increased frequency of drought, while simultaneously sequestering more anthropogenic carbon.  相似文献   

9.
Wheat (Triticum aestivum L.) was grown under CO2 partial pressures of 36 and 70 Pa with two N-application regimes. Responses of photosynthesis to varying CO2 partial pressure were fitted to estimate the maximal carboxylation rate and the nonphotorespiratory respiration rate in flag and preceding leaves. The maximal carboxylation rate was proportional to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content, and the light-saturated photosynthetic rate at 70 Pa CO2 was proportional to the thylakoid ATP-synthase content. Potential photosynthetic rates at 70 Pa CO2 were calculated and compared with the observed values to estimate excess investment in Rubisco. The excess was greater in leaves grown with high N application than in those grown with low N application and declined as the leaves senesced. The fraction of Rubisco that was estimated to be in excess was strongly dependent on leaf N content, increasing from approximately 5% in leaves with 1 g N m−2 to approximately 40% in leaves with 2 g N m−2. Growth at elevated CO2 usually decreased the excess somewhat but only as a consequence of a general reduction in leaf N, since relationships between the amount of components and N content were unaffected by CO2. We conclude that there is scope for improving the N-use efficiency of C3 crop species under elevated CO2 conditions.  相似文献   

10.
Miscanthus is one of the most promising bioenergy crops with high photosynthetic nitrogen-use efficiency (PNUE). It is unclear how nitrogen (N) influences the photosynthesis in Miscanthus. Among three Miscanthus genotypes, the net photosynthetic rate (P N) under the different light intensity and CO2 concentration was measured at three levels of N: 0, 100, and 200 kg ha?1. The concentrations of chlorophyll, soluble protein, phosphoenolpyruvate carboxylase (PEPC), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit, leaf anatomy and carbon isotope discrimination (Δ) in the leaf were analyzed to probe the response of photosynthesis in Miscanthus genotypes to N levels. P N in all genotypes rose significantly as N application increased. The initial slope of response curves of P N to C i was promoted by N application in all genotypes. Both stomatal conductance and C i were increased with increased N supply, indicating that stomatal factors played an important role in increasing P N. At a given C i, P N in all genotypes was enhanced by N, implying that nonstomatal factors might also play an important role in increasing P N. Miscanthus markedly regulated N investment into PEPC rather than the Rubisco large subunit under higher N conditions. Bundle sheath leakiness of CO2 was constant at about 0.35 for all N levels. Therefore, N enhanced the photosynthesis of Miscanthus mainly by increasing stomatal conductance and PEPC concentration.  相似文献   

11.
The effects of CO2 concentration (C a) on growth, photosynthesis, and the activity of enzymes associated with the translocation and assimilation of CO2 were studied in sugar beet (Beta vulgaris L. subsp. saccharifera, cv. Ramonskaya) plants. The plants were grown in controlled-climate chamber to the stage of 3–4 leaves and then used in experiments. Experimental plants were exposed in boxes to doubled C a (700 µl/l, 2C plants), whereas control plants were kept in a chamber with ambient atmosphere (350 µl/l, 1C plants). As compared with 1C plants, in 3 and 8 days, the leaf area of 2C plants increased by 14 and 26%, respectively. The rate of their photosynthesis (P n) measured in 3, 6, and 8 days increased by 85, 47, and 52%, respectively, whereas in normal air, the values of P n in 2C plants were by 12, 19, and 15% lower than in 1C plants. After 8-day growth, the content of soluble carbohydrates in the leaves of 2C plants attained 7.2%, being by 80% greater than in 1C plants; the content of starch did not exceed 3%. The total content of chlorophylls a and b in the leaves of 2C plants was by 14% greater than in 1C plants, but their ratio was essentially the same. The level of protein in 2C plants was by 13.4% lower than in 1C plants. The activity and content of Rubisco in 1C and 2C plants were similar. As compared with 1C plants, in 2C plants the activity of soluble carbonic anhydrase (sCA) was lower by 34% in 3 days and by 18% in 8 days; the activity of carbonic anhydrase of membrane preparations (mCA), was lower by 24 and 77%, respectively. Catalase activity in 2C plants became by 8% lower than in 1C plants only after 8 days. A reduction in the photosynthetic ability of 2C plants in ambient atmosphere, a decrease in activity of sCA and, especially, of mCA observed together with invariable activity and content of Rubisco in the leaf extracts are interpreted as early symptoms of acclimation of young plants of sugar beet to elevated CO2.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 184–190.Original Russian Text Copyright © 2005 by Ignatova, Novichkova, Mudrik, Lyubimov, Ivanov, Romanova.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

12.
Net photosynthetic rate (P N) was high in genotypes with ‘C’ genome both in the nucleus and cytoplasm. This may be attributed to the co-ordinated manner of acting of both genome sources. Leaf mass per area (LMA) and chlorophyll content increased with leaf nitrogen (N) content but did not show any correlation with P N. The factors which affected P N had the same effect on photosynthetic nitrogen use efficiency (pNUE). Thus, differential allocation of N to the various components influences plant pNUE which is not significantly affected by genome constitution.  相似文献   

13.
Recent research on the photosynthetic mechanisms of plant species in the Chenopodiaceae family revealed that three species, including Bienertia sinuspersici, can carry out C4 photosynthesis within individual photosynthetic cells, through the development of two cytoplasmic domains having dimorphic chloroplasts. These unusual single-cell C4 species grow in semi-arid saline conditions and have semi-terete succulent leaves. The effects of salinity on growth and photosynthesis of B. sinuspersici were studied. The results show that NaCl is not required for development of the single-cell C4 system. There is a large enhancement of growth in culture with 50–200 mM NaCl, while there is severe inhibition at 400 mM NaCl. With increasing salinity, the carbon isotope values (δ13C) of leaves increased from −17.3o/oo (C4-like) without NaCl to −14.6o/oo (C4) with 200 mM NaCl, possibly due to increased capture of CO2 from the C4 cycle by Rubisco and reduced leakiness. Compared to growth without NaCl, leaves of plants grown under saline conditions were much larger (~2 fold) and more succulent, and the leaf solute levels increased up to ~2000 mmol kg solvent−1. Photosynthesis on an incident leaf area basis (CO2 saturated rates, and carboxylation efficiency under limiting CO2) and stomatal conductance declined with increasing salinity. On a leaf area basis, there was some decline in Rubisco content with increasing salinity up to 200 mM NaCl, but there was a marked increase in the levels of pyruvate, Pi dikinase, and phosphoenolpyruvate carboxylase (possibly in response to sensitivity of these enzymes and C4 cycle function to increasing salinity). The decline in photosynthesis on a leaf area basis was compensated for on a per leaf basis, up to 200 mM NaCl, by the increase in leaf size. The influence of salinity on plant development and the C4 system in Bienertia is discussed.  相似文献   

14.
We studied the influence of prolonged (a few weeks) and short-term (a few hours) periodical elevation of the ambient CO2 concentration ([Ca]) on the photosynthetic apparatus and carbohydrate content in the third leaf of three-week-old cucumber (Cucumis sativus L.) plants. On the basis of experimental data and subsequent modeling, we revealed the limiting processes in the photosynthetic apparatus functioning: Rubisco activity, the rate of ribulose bisphosphate (CO2 acceptor) regeneration, the rate of triose phosphate utilization in the Calvin cycle, and the influence of stomata on the photosynthesis rate. An increase in soluble carbohydrate content and a decrease in starch accumulation at a short-term [Ca] elevation indicate an important role of carbohydrate accumulation and their partition between organs in the regulation of the photosynthesis. We concluded that periodic [Ca] elevation can be used to improve plant productivity.  相似文献   

15.
The influence of phosphorus (P) and nitrogen (N) supply on biomass, leaf area, photon saturated photosynthetic rate (Pmax), quantum yield efficiency (α), intercellular CO2 concentration (Ci), and carboxylation efficiency (CE) was investigated in Vicia faba. The influence of P on N accumulation, biomass, and leaf area production was also investigated. An increase in P supply was consistently associated with an increase in N accumulation and N productivity in terms of biomass and leaf area production. Furthermore, P increased the photosynthetic N use efficiency (NUE) in terms of Pmax and α. An increase in P supply was also associated with an increase in CE and a decrease in Ci. Under variable daily meteorological conditions specific leaf nitrogen content (NL), specific leaf phosphorus content (PL), specific leaf area (δL), root mass fraction (Rf), Pmax, and α remained constant for a given N and P supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. δL increased with increasing N supply or with increasing NL. We tested also the hypothesis that P supply positively affects both N demand and photosynthetic NUE by influencing the upper limit of the asymptotic values for Pmax and CE, and the lower limit for Ci in response to increasing N.  相似文献   

16.
Y. Jia  V. M. Gray 《Photosynthetica》2004,42(4):535-542
The influence of phosphorus (P) and nitrogen (N) supply on biomass, leaf area, photon saturated photosynthetic rate (Pmax), quantum yield efficiency (), intercellular CO2 concentration (Ci), and carboxylation efficiency (CE) was investigated in Vicia faba. The influence of P on N accumulation, biomass, and leaf area production was also investigated. An increase in P supply was consistently associated with an increase in N accumulation and N productivity in terms of biomass and leaf area production. Furthermore, P increased the photosynthetic N use efficiency (NUE) in terms of Pmax and . An increase in P supply was also associated with an increase in CE and a decrease in Ci. Under variable daily meteorological conditions specific leaf nitrogen content (NL), specific leaf phosphorus content (PL), specific leaf area (L), root mass fraction (Rf), Pmax, and remained constant for a given N and P supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. L increased with increasing N supply or with increasing NL. We tested also the hypothesis that P supply positively affects both N demand and photosynthetic NUE by influencing the upper limit of the asymptotic values for Pmax and CE, and the lower limit for Ci in response to increasing N.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

17.
Quercus ilex plants grown on two different substrates, sand soil (C) and compost (CG), were exposed to photosynthetic photon flux densities (PPFD) at 390 and 800 μmol(CO2) mol−1 (C390 and C800). At C800 both C and CG plants showed a significant increase of net photosynthetic rate (P N) and electron transport rate (ETR) in response to PPFD increase as compared to C390. In addition, at C800 lower non-photochemical quenching (NPQ) values were observed. The differences between C390 and C800 were related to PPFD. The higher P N and ETR and the lower dissipative processes found in CG plants at both CO2 concentrations as compared to C plants suggest that substrate influences significantly photosynthetic response of Q. ilex plants. Moreover, short-term exposures at elevated CO2 decreased nitrate photo-assimilation in leaves independently from substrate of growth.  相似文献   

18.
Cell proliferation, elongation, determination and differentiation mainly take place in the basal 5 mm of a barley leaf, the so-called basiplast. A considerable portion of cDNAs randomly selected from a basiplast cDNA library represented photosynthetic genes such as CP29, RUBISCO-SSU and type I-LHCP II. Therefore, we became interested in the role of the basiplast in establishing photosynthesis. (1) Northern blot analysis revealed expression of photosynthetic genes in the basiplast, although at a low level. Analysis of basiplasts at different developmental stages of the leaves revealed maximal expression of photosynthetic genes during early leaf development. The activity of these genes shows that plastid differentiation involves the development of the photosynthetic apparatus even at this early state of leaf cell expansion. (2) This conclusion was supported by the fact that chlorophylls and carotenoids are synthesized in the basiplast. The qualitative pattern of pigment composition was largely similar to that of fully differentiated green leaves. (3) The transition from proplastids to chloroplasts progressed in the basal 5 mm of the leaf, so that the number of grana lamellae per thylakoid stack increased with distance from the meristem from zero to about five. (4) Photosynthetic function was studied by chlorophyll a-fluorescence measurements. In dark-adapted 8-day-old primary leaves, the fluorescence ratio (FP-Fo)/FP was little decreased in basiplasts as compared to leaf blades. During steady state photosynthesis, the ratio (FM-Fo)/FM was high in leaf blade (0.5), but low in the sheath (0.25) and in the basiplast (0.18), indicating the existence of functional, albeit low light-adapted chloroplasts in the basiplast. (5) Further on, chlorophyll a fluorescence analysis in relation to seedling age revealed efficient photosynthetic performance in the basiplast of 3- to 6-day-old seedlings which later-on differentiates into leaf blade as compared to the basiplast of 7- to 12-day-old seedlings which develops into leaf sheath and finally ceases to grow. The leaf age dependent changes in basiplast photosynthesis were reflected by changes in pigment contents and LHCP II expression both of which also revealed a maximum in the basiplast of 4-day-old seedlings.Abbreviations bas 1 basiplast-associated gene 1 encoding a peroxide reductase - cab chlorophyll a/b binding protein - CP 29 29 kDa chlorophyll binding protein - DIG digoxigenin - EMIP epidermal major intrinsic protein - LHCP II light harvesting complex of Photosystem II - LSU large subunit of Rubisco - NPQ non photochemical chlorophyll a fluorescence quenching - PSI/PS II Photosystem I/II - PQ photochemical chlorophyll a fluorescence quenching - Rubisco Ribulose-1,5-bisphosphate carboxylase - SSU small subunit of Rubisco  相似文献   

19.
The relationships between leaf nitrogen content per unit area (Na) and (a) the initial slope of the photosynthetic CO2 response curve, (b) activity and amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC), and (c) chlorophyll content were studied in the ecologically similar weeds Chenopodium album (C3) and Amaranthus retroflexus (C4). In both species, all parameters were linearly dependent upon leaf Na. The dependence of the initial slope of the CO2 response of photosynthesis on Na was four times greater in A. retroflexus than in C. album. At equivalent leaf Na contents, C. album had 1.5 to 2.6 times more CO2 saturated Rubisco activity than A. retroflexus. At equal assimilation capacities, C. album had four times the Rubisco activity as A. retroflexus. In A. retroflexus, a one to one ratio between Rubisco activity and photosynthesis was observed, whereas in C. album, the CO2 saturated Rubisco activity was three to four times the corresponding photosynthetic rate. The ratio of PEPC to Rubisco activity in A. retroflexus ranged from four at low Na to seven at high Na. The fraction of organic N invested in carboxylation enzymes increased with increased Na in both species. The fraction of N invested in Rubisco ranged from 10 to 27% in C. album. In A. retroflexus, the fraction of Na invested in Rubisco ranged from 5 to 9% and the fraction invested in PEPC ranged from 2 to 5%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号