首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The enzymes of the KsgA/Dim1 family are universally distributed throughout all phylogeny; however, structural and functional differences are known to exist. The well-characterized function of these enzymes is to dimethylate two adjacent adenosines of the small ribosomal subunit in the normal course of ribosome maturation, and the structures of KsgA from Escherichia coli and Dim1 from Homo sapiens and Plasmodium falciparum have been determined. To this point, no examples of archaeal structures have been reported. Here, we report the structure of Dim1 from the thermophilic archaeon Methanocaldococcus jannaschii. While it shares obvious similarities with the bacterial and eukaryotic orthologs, notable structural differences exist among the three members, particularly in the C-terminal domain. Previous work showed that eukaryotic and archaeal Dim1 were able to robustly complement for KsgA in E. coli. Here, we repeated similar experiments to test for complementarity of archaeal Dim1 and bacterial KsgA in Saccharomyces cerevisiae. However, neither the bacterial nor the archaeal ortholog could complement for the eukaryotic Dim1. This might be related to the secondary, non-methyltransferase function that Dim1 is known to play in eukaryotic ribosomal maturation. To further delineate regions of the eukaryotic Dim1 critical to its function, we created and tested KsgA/Dim1 chimeras. Of the chimeras, only one constructed with the N-terminal domain from eukaryotic Dim1 and the C-terminal domain from archaeal Dim1 was able to complement, suggesting that eukaryotic-specific Dim1 function resides in the N-terminal domain also, where few structural differences are observed between members of the KsgA/Dim1 family. Future work is required to identify those determinants directly responsible for Dim1 function in ribosome biogenesis. Finally, we have conclusively established that none of the methyl groups are critically important to growth in yeast under standard conditions at a variety of temperatures.  相似文献   

2.
Ribosomes are intricate molecular machines ensuring proper protein synthesis in every cell. Ribosome biogenesis is a complex process which has been intensively analyzed in bacteria and eukaryotes. In contrast, our understanding of the in vivo archaeal ribosome biogenesis pathway remains less characterized. Here, we have analyzed the in vivo role of the almost universally conserved ribosomal RNA dimethyltransferase KsgA/Dim1 homolog in archaea. Our study reveals that KsgA/Dim1-dependent 16S rRNA dimethylation is dispensable for the cellular growth of phylogenetically distant archaea. However, proteomics and functional analyses suggest that archaeal KsgA/Dim1 and its rRNA modification activity (i) influence the expression of a subset of proteins and (ii) contribute to archaeal cellular fitness and adaptation. In addition, our study reveals an unexpected KsgA/Dim1-dependent variability of rRNA modifications within the archaeal phylum. Combining structure-based functional studies across evolutionary divergent organisms, we provide evidence on how rRNA structure sequence variability (re-)shapes the KsgA/Dim1-dependent rRNA modification status. Finally, our results suggest an uncoupling between the KsgA/Dim1-dependent rRNA modification completion and its release from the nascent small ribosomal subunit. Collectively, our study provides additional understandings into principles of molecular functional adaptation, and further evolutionary and mechanistic insights into an almost universally conserved step of ribosome synthesis.  相似文献   

3.
While the general blueprint of ribosome biogenesis is evolutionarily conserved, most details have diverged considerably. A striking exception to this divergence is the universally conserved KsgA/Dim1p enzyme family, which modifies two adjacent adenosines in the terminal helix of small subunit ribosomal RNA (rRNA). While localization of KsgA on 30S subunits [small ribosomal subunits (SSUs)] and genetic interaction data have suggested that KsgA acts as a ribosome biogenesis factor, mechanistic details and a rationale for its extreme conservation are still lacking. To begin to address these questions we have characterized the function of Escherichia coli KsgA in vivo using both a ksgA deletion strain and a methyltransferase-deficient form of this protein. Our data reveal cold sensitivity and altered ribosomal profiles are associated with a DeltaksgA genotype in E. coli. Our work also indicates that loss of KsgA alters 16S rRNA processing. These findings allow KsgAs role in SSU biogenesis to be integrated into the network of other identified factors. Moreover, a methyltransferase-inactive form of KsgA, which we show to be deleterious to cell growth, profoundly impairs ribosome biogenesis-prompting discussion of KsgA as a possible antimicrobial drug target. These unexpected data suggest that methylation is a second layer of function for KsgA and that its critical role is as a supervisor of biogenesis of SSUs in vivo. These new findings and this proposed regulatory role offer a mechanistic explanation for the extreme conservation of the KsgA/Dim1p enzyme family.  相似文献   

4.
5.
Desai PM  Culver GM  Rife JP 《Biochemistry》2011,50(5):854-863
KsgA is an rRNA methyltransferase important to the process of small subunit biogenesis in bacteria. It is ubiquitously found in all life including archaea and eukarya, where the enzyme is referred to as Dim1. Despite the emergence of considerable data addressing KsgA function over the last several years, details pertaining to RNA recognition are limited, in part because the most accessible substrate for in vitro studies of KsgA is the 900000 Da 30S ribosomal subunit. To overcome challenges imposed by size and complexity, we adapted recently reported techniques to construct in vivo assembled mutant 30S subunits suitable for use in in vitro methyltransferase assays. Using this approach, numerous 16S rRNA mutants were constructed and tested. Our observations indicate that the 790 loop of helix 24 plays an important role in overall catalysis by KsgA. Moreover, the length of helix 45 also is important to catalysis. In both cases loss of catalytic function occurred without an increase in the production of N(6)-methyladenosine, a likely indication that there was no critical reduction in binding strength. Both sets of observations support a "proximity" mechanism of KsgA function. We also report that several of the mutants constructed failed to assemble properly into 30S subunits, while some others did so with reduced efficiency. Therefore, the same technique of generating mutant 30S subunits can be used to study ribosome biogenesis on the whole.  相似文献   

6.
Ribosome biogenesis is a complicated process, involving numerous cleavage, base modification and assembly steps. All ribosomes share the same general architecture, with small and large subunits made up of roughly similar rRNA species and a variety of ribosomal proteins. However, the fundamental assembly process differs significantly between eukaryotes and eubacteria, not only in distribution and mechanism of modifications but also in organization of assembly steps. Despite these differences, members of the KsgA/Dim1 methyltransferase family and their resultant modification of small-subunit rRNA are found throughout evolution and therefore were present in the last common ancestor. In this paper we report that KsgA orthologs from archaeabacteria and eukaryotes are able to complement for KsgA function in bacteria, both in vivo and in vitro. This indicates that all of these enzymes can recognize a common ribosomal substrate, and that the recognition elements must be largely unchanged since the evolutionary split between the three domains of life.  相似文献   

7.
Biogenesis of ribosomal subunits involves enzymatic modifications of rRNA that fine-tune functionally important regions. The universally conserved prokaryotic dimethyltransferase KsgA sequentially modifies two universally conserved adenosine residues in helix 45 of the small ribosomal subunit rRNA, which is in proximity of the decoding site. Here we present the cryo-EM structure of Escherichia coli KsgA bound to an E. coli 30S at a resolution of 3.1 Å. The high-resolution structure reveals how KsgA recognizes immature rRNA and binds helix 45 in a conformation where one of the substrate nucleotides is flipped-out into the active site. We suggest that successive processing of two adjacent nucleotides involves base-flipping of the rRNA, which allows modification of the second substrate nucleotide without dissociation of the enzyme. Since KsgA is homologous to the essential eukaryotic methyltransferase Dim1 involved in 40S maturation, these results have also implications for understanding eukaryotic ribosome maturation.  相似文献   

8.
The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.  相似文献   

9.
KsgA, a universally conserved small ribosomal subunit (SSU) rRNA methyltransferase, has recently been shown to facilitate a checkpoint within the ribosome maturation pathway. Under standard growth conditions removal of the KsgA checkpoint has a subtle impact on cell growth; yet, upon overexpresssion of RbfA, a ribosome maturation factor, KsgA becomes essential. Our results demonstrate the requirement of KsgA, in the presence of excess RbfA, both for the incorporation of ribosomal protein S21 to the developing SSU, and for final maturation of SSU rRNA. Also, when SSU biogenesis is perturbed by an imbalance in KsgA and RbfA, a population of 70S‐like particles accumulates that is compositionally, functionally and structurally distinct from mature 70S ribosomes. Thus, our work suggests that KsgA and RbfA function together and are required for SSU maturation, and that additional checkpoints likely act to modulate malfunctional 70S particle formation in vivo.  相似文献   

10.
11.
A 16S rRNA methyltransferase, KsgA, identified originally in Escherichia coli is highly conserved in all living cells, from bacteria to humans. KsgA orthologs in eukaryotes possess functions in addition to their rRNA methyltransferase activity. E. coli Era is an essential GTP-binding protein. We recently observed that KsgA functions as a multicopy suppressor for the cold-sensitive cell growth of an era mutant [Era(E200K)] strain (Q. Lu and M. Inouye, J. Bacteriol. 180:5243-5246, 1998). Here we observed that although KsgA(E43A), KsgA(G47A), and KsgA(E66A) mutations located in the S-adenosylmethionine-binding motifs severely reduced its methyltransferase activity, these mutations retained the ability to suppress the growth defect of the Era(E200K) strain at a low temperature. On the other hand, a KsgA(R248A) mutation at the C-terminal domain that does not affect the methyltransferase activity failed to suppress the growth defect. Surprisingly, E. coli cells overexpressing wild-type KsgA, but not KsgA(R248A), were found to be highly sensitive to acetate even at neutral pH. Such growth inhibition also was observed in the presence of other weak organic acids, such as propionate and benzoate. These chemicals are known to be highly toxic at acidic pH by lowering the intracellular pH. We found that KsgA-induced cells had increased sensitivity to extreme acid conditions (pH 3.0) compared to that of noninduced cells. These results suggest that E. coli KsgA, in addition to its methyltransferase activity, has another unidentified function that plays a role in the suppression of the cold-sensitive phenotype of the Era(E200K) strain and that the additional function may be involved in the acid shock response. We discuss a possible mechanism of the KsgA-induced acid-sensitive phenotype.  相似文献   

12.
The 5-formyluracil (5-foU), a major mutagenic oxidative damage of thymine, is removed from DNA by Nth, Nei and MutM in Escherichia coli. However, DNA polymerases can also replicate past the 5-foU by incorporating C and G opposite the lesion, although the mechanism of correction of the incorporated bases is still unknown. In this study, using a borohydride-trapping assay, we identified a protein trapped by a 5-foU/C-containing oligonucleotide in an extract from E. coli mutM nth nei mutant. The protein was subsequently purified from the E. coli mutM nth nei mutant and was identified as KsgA, a 16S rRNA adenine methyltransferase. Recombinant KsgA also formed the trapped complex with 5-foU/C- and thymine glycol (Tg)/C-containing oligonucleotides. Furthermore, KsgA excised C opposite 5-foU, Tg and 5-hydroxymethyluracil (5-hmU) from duplex oligonucleotides via a β-elimination reaction, whereas it could not remove the damaged base. In contrast, KsgA did not remove C opposite normal bases, 7,8-dihydro-8-oxoguanine and 2-hydroxyadenine. Finally, the introduction of the ksgA mutation increased spontaneous mutations in E. coli mutM mutY and nth nei mutants. These results demonstrate that KsgA has a novel DNA glycosylase/AP lyase activity for C mispaired with oxidized T that prevents the formation of mutations, which is in addition to its known rRNA adenine methyltransferase activity essential for ribosome biogenesis.  相似文献   

13.
14.
15.
The methyltransferase KsgA modifies two adjacent adenosines in 16S rRNA by adding two methyl groups to the N(6) position of each nucleotide. Unlike nearly all other rRNA modifications, these modifications and the responsible enzyme are highly conserved phylogenetically, suggesting that the modification system has an important role in ribosome biogenesis. It has been known for some time that KsgA recognizes a complex pre-30S substrate in vitro, but there is disagreement in the literature as to what that substrate can be. That disagreement is resolved in this report; KsgA is unable to methylate 30S subunits in the translationally active conformation, but rather can modify 30S when in an experimentally well established translationally inactive conformation. Recent 30S crystal structures provide some basis for explaining why it is impossible for KsgA to methylate 30S in the translationally active conformation. Previous work identified one set of ribosomal proteins important for efficient methylation by KsgA and another set refractory methylation. With the exception of S21 the recent crystal structures of 30S also instructs that the proteins important for KsgA activity all exert their influence indirectly. Unfortunately, S21, which is inhibitory to KsgA activity, has not had its position determined by X-ray crystallography. A reevaluation of published biophysical data on the location also suggests that the refractory nature of S21 is also indirect. Therefore, it appears that KsgA solely senses the conformation 16S rRNA when carrying out its enzymatic activity.  相似文献   

16.
17.

Key message

Plant RbgA GTPase is targeted to chloroplasts and co-fractionated with chloroplast ribosomes, and plays a role in chloroplast rRNA processing and/or ribosome biogenesis.

Abstract

Ribosome Biogenesis GTPase A (RbgA) homologs are evolutionarily conserved GTPases that are widely distributed in both prokaryotes and eukaryotes. In this study, we investigated functions of chloroplast-targeted RbgA. Nicotiana benthamiana RbgA (NbRbgA) and Arabidopsis thaliana RbgA (AtRbgA) contained a conserved GTP-binding domain and a plant-specific C-terminal domain. NbRbgA and AtRbgA were mainly localized in chloroplasts, and possessed GTPase activity. Since Arabidopsis rbgA null mutants exhibited an embryonic lethal phenotype, virus-induced gene silencing (VIGS) of NbRbgA was performed in N. benthamiana. NbRbgA VIGS resulted in a leaf-yellowing phenotype caused by disrupted chloroplast development. NbRbgA was mainly co-fractionated with 50S/70S ribosomes and interacted with the chloroplast ribosomal proteins cpRPL6 and cpRPL35. NbRbgA deficiency lowered the levels of mature 23S and 16S rRNAs in chloroplasts and caused processing defects. Sucrose density gradient sedimentation revealed that NbRbgA-deficient chloroplasts contained reduced levels of mature 23S and 16S rRNAs and diverse plastid-encoded mRNAs in the polysomal fractions, suggesting decreased protein translation activity in the chloroplasts. Interestingly, NbRbgA protein was highly unstable under high light stress, suggesting its possible involvement in the control of chloroplast ribosome biogenesis under environmental stresses. Collectively, these results suggest a role for RbgA GTPase in chloroplast rRNA processing/ribosome biogenesis, affecting chloroplast protein translation in higher plants.
  相似文献   

18.
The 25S rRNA of yeast contains several base modifications in the functionally important regions. The enzymes responsible for most of these base modifications remained unknown. Recently, we identified Rrp8 as a methyltransferase involved in m1A645 modification of 25S rRNA. Here, we discovered a previously uncharacterized gene YBR141C to be responsible for second m1A2142 modification of helix 65 of 25S rRNA. The gene was identified by reversed phase–HPLC screening of all deletion mutants of putative RNA methyltransferase and was confirmed by gene complementation and phenotypic characterization. Because of the function of its encoded protein, YBR141C was named BMT2 (base methyltransferase of 25S RNA). Helix 65 belongs to domain IV, which accounts for most of the intersubunit surface of the large subunit. The 3D structure prediction of Bmt2 supported it to be an Ado Met methyltransferase belonging to Rossmann fold superfamily. In addition, we demonstrated that the substitution of G180R in the S-adenosyl-l-methionine–binding motif drastically reduces the catalytic function of the protein in vivo. Furthermore, we analysed the significance of m1A2142 modification in ribosome synthesis and translation. Intriguingly, the loss of m1A2142 modification confers anisomycin and peroxide sensitivity to the cells. Our results underline the importance of RNA modifications in cellular physiology.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号