首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim There is increasing evidence that the quality and breadth of ecological niches vary among individuals, populations, evolutionary lineages and therefore also across the range of a species. Sufficient knowledge about niche divergence among clades might thus be crucial for predicting the invasion potential of species. We tested for the first time whether evolutionary lineages of an invasive species vary in their climate niches and invasive potential. Furthermore, we tested whether lineage‐specific models show a better performance than combined models. Location Europe. Methods We used species distribution models (SDMs) based on climatic information at native and invasive ranges to test for intra‐specific niche divergence among mitochondrial DNA (mtDNA) clades of the invasive wall lizard Podarcis muralis. Using DNA barcoding, we assigned 77 invasive populations in Central Europe to eight geographically distinct evolutionary lineages. Niche similarity among lineages was assessed and the predictive power of a combination of clade‐specific SDMs was compared with a combined SDM using the pooled records of all lineages. Results We recorded eight different invasive mtDNA clades in Central Europe. The analysed clades had rather similar realized niches in their native and invasive ranges, whereas inter‐clade niche differentiation was comparatively strong. However, we found only a weak correlation between geographic origin (i.e. mtDNA clade) and invasive occurrences. Clades with narrow realized niches still became successful invaders far outside their native range, most probably due to broader fundamental niches. The combined model using data for all invasive lineages achieved a much better prediction of the invasive potential. Conclusions Our results indicate that the observed niche differentiation among evolutionary lineages is mainly driven by niche realization and not by differences in the fundamental niches. Such cryptic niche conservatism might hamper the success of clade‐specific niche modelling. Cryptic niche conservatism may in general explain the invasion success of species in areas with apparently unsuitable climate.  相似文献   

2.
3.
In the current context of ongoing global change, the understanding of how the niches of invasive species may change between different geographical areas or time periods is extremely important for the early detection and control of future invasions. We evaluated the effect of climate and non‐climate variables and the sensitivity to various spatial resolutions (i.e. 1 and 20 km) on niche changes during the invasion of Taraxacum officinale and Ulex europaeus in South America. We estimated niche changes using a combination of principal components analyses (PCA) and reciprocal Ecological Niche Modelling (rENM). We further investigated future invasion dynamics under a severe warming scenario for 2050 to unravel the role of niche shifts in the future potential distribution of the species. We observed a clear niche expansion for both species in South America towards higher temperature, precipitation and radiation relative to their native ranges. In contrast, the set of environmental conditions only occupied in the native ranges (i.e. niche unfilling) were less relevant. The magnitude of the niche shifts did not depend on the resolution of the variables. Models calibrated with occurrences from native range predicted large suitable areas in South America (outside of the Andes range) where T. officinale and U. europaeus are currently absent. Additionally, both species could increase their potential distributions by 2050, mostly in the southern part of the continent. In addition, the niche unfilling suggests high potential to invade additional regions in the future, which is extremely relevant considering the current impact of these species in the Southern Hemisphere. These findings confirm that invasive species can occupy new niches that are not predictable from knowledge based only on climate variables or information from the native range.  相似文献   

4.
Whether or not species track native climatic conditions during invasions (i.e., climate match hypothesis) is fundamental to understand and prevent potential impacts of invasive species. Recent empirical work suggests that climatic mismatches between native and invasive ranges are pervasive. Whether these differences are due to adaptation to new climatic spaces in the invasive range or due to partial filling of the potential climatic space are still subject to debate. Here, we analyze climatic niche dynamics associated with the invasion of the two most common invasive plants in Brazilian semi-arid areas, Prosopis juliflora and Prosopis pallida. These species have been simultaneously introduced in the region, which creates a unique opportunity to compare their niche dynamics during invasion. Given that P. juliflora have a much wider native range size, we expect these species would present different dispersal potentials, which might translate into different unfilling levels. Using an ordination method with kernel smoother and null models, we contrasted climate spaces occupied by each species in both native and invasive ranges. We further used ecological niche models (ENMs) to compare reciprocal predictions of potentially suitable areas. Against our expectation based on differences in native range sizes, climatic niches of P. juliflora and P. pallida overlapped greatly, both in their native and invasive ranges. Our results support niche conservatism during the invasion process. Climatic mismatches among native and invaded ranges were exclusively attributed to unfilling of native climates in the invasive range. Both species showed similar unfilling levels. Likewise, ENMs predicted regions not yet occupied in the invasive range, revealing a potential for further expansion. We discuss colonization time lag and founder effect as potential mechanisms that may have prevented these species to fully occupy their native niches in the invasive range.  相似文献   

5.
Aim Niche‐based distribution models are often used to predict the spread of invasive species. These models assume niche conservation during invasion, but invasive species can have different requirements from populations in their native range for many reasons, including niche evolution. I used distribution modelling to investigate niche conservatism for the Asian tiger mosquito (Aedes albopictus Skuse) during its invasion of three continents. I also used this approach to predict areas at risk of invasion from propagules originating from invasive populations. Location Models were created for Southeast Asia, North and South America, and Europe. Methods I used maximum entropy (Maxent ) to create distribution models using occurrence data and 18 environmental datasets. One native model was created for Southeast Asia; this model was projected onto North America, South America and Europe. Three models were created independently for the non‐native ranges and projected onto the native range. Niche overlap between native and non‐native predictions was evaluated by comparing probability surfaces between models using real data and random models generated using a permutation approach. Results The native model failed to predict an entire region of occurrences in South America, approximately 20% of occurrences in North America and nearly all Italian occurrences of A. albopictus. Non‐native models poorly predict the native range, but predict additional areas at risk for invasion globally. Niche overlap metrics indicate that non‐native distributions are more similar to the native niche than a random prediction, but they are not equivalent. Multivariate analyses support modelled differences in niche characteristics among continents, and reveal important variables explaining these differences. Main conclusions The niche of A. albopictus has shifted on invaded continents relative to its native range (Southeast Asia). Statistical comparisons reveal that the niche for introduced distributions is not equivalent to the native niche. Furthermore, reciprocal models highlight the importance of controlling bi‐directional dispersal between native and non‐native distributions.  相似文献   

6.
Species introduction represents one of the most serious threats for biodiversity. The realized climatic niche of an invasive species can be used to predict its potential distribution in new areas, providing a basis for screening procedures in the compilation of black and white lists to prevent new introductions. We tested this assertion by modeling the realized climatic niche of the Eastern grey squirrel Sciurus carolinensis. Maxent was used to develop three models: one considering only records from the native range (NRM), a second including records from native and invasive range (NIRM), a third calibrated with invasive occurrences and projected in the native range (RCM). Niche conservatism was tested considering both a niche equivalency and a niche similarity test. NRM failed to predict suitable parts of the currently invaded range in Europe, while RCM underestimated the suitability in the native range. NIRM accurately predicted both the native and invasive range. The niche equivalency hypothesis was rejected due to a significant difference between the grey squirrel’s niche in native and invasive ranges. The niche similarity test yielded no significant results. Our analyses support the hypothesis of a shift in the species’ climatic niche in the area of introductions. Species Distribution Models (SDMs) appear to be a useful tool in the compilation of black lists, allowing identifying areas vulnerable to invasions. We advise caution in the use of SDMs based only on the native range of a species for the compilation of white lists for other geographic areas, due to the significant risk of underestimating its potential invasive range.  相似文献   

7.
Although of crucial importance for invasion biology and impact assessments of climate change, it remains widely unknown how species cope with and adapt to environmental conditions beyond their currently realized climatic niches (i.e., those climatic conditions existing populations are exposed to). The African clawed frog Xenopus laevis, native to southern Africa, has established numerous invasive populations on multiple continents making it a pertinent model organism to study environmental niche dynamics. In this study, we assess whether the realized niches of the invasive populations in Europe, South, and North America represent subsets of the species’ realized niche in its native distributional range or if niche shifts are traceable. If shifts are traceable, we ask whether the realized niches of invasive populations still contain signatures of the niche of source populations what could indicate local adaptations. Univariate comparisons among bioclimatic conditions at native and invaded ranges revealed the invasive populations to be nested within the variable range of the native population. However, at the same time, invasive populations are well differentiated in multidimensional niche space as quantified via n‐dimensional hypervolumes. The most deviant invasive population are those from Europe. Our results suggest varying degrees of realized niche shifts, which are mainly driven by temperature related variables. The crosswise projection of the hypervolumes that were trained in invaded ranges revealed the south‐western Cape region as likely area of origin for all invasive populations, which is largely congruent with DNA sequence data and suggests a gradual exploration of novel climate space in invasive populations.  相似文献   

8.
Aim We explore the impact of calibrating ecological niche models (ENMs) using (1) native range (NR) data versus (2) entire range (ER) data (native and invasive) on projections of current and future distributions of three Hieracium species. Location H. aurantiacum, H. murorum and H. pilosella are native to Europe and invasive in Australia, New Zealand and North America. Methods Differences among the native and invasive realized climatic niches of each species were quantified. Eight ENMs in BIOMOD were calibrated with (1) NR and (2) ER data. Current European, North American and Australian distributions were projected. Future Australian distributions were modelled using four climate change scenarios for 2030. Results The invasive climatic niche of H. murorum is primarily a subset of that expressed in its native range. Invasive populations of H. aurantiacum and H. pilosella occupy different climatic niches to those realized in their native ranges. Furthermore, geographically separate invasive populations of these two species have distinct climatic niches. ENMs calibrated on the realized niche of native regions projected smaller distributions than models incorporating data from species’ entire ranges, and failed to correctly predict many known invasive populations. Under future climate scenarios, projected distributions decreased by similar percentages, regardless of the data used to calibrate ENMs; however, the overall sizes of projected distributions varied substantially. Main conclusions This study provides quantitative evidence that invasive populations of Hieracium species can occur in areas with different climatic conditions than experienced in their native ranges. For these, and similar species, calibration of ENMs based on NR data only will misrepresent their potential invasive distribution. These errors will propagate when estimating climate change impacts. Thus, incorporating data from species’ entire distributions may result in a more thorough assessment of current and future ranges, and provides a closer approximation of the elusive fundamental niche.  相似文献   

9.
Furcraea foetida (Asparagaceae) is a native plant of Central America and northern South America but there is no information about its country of origin. The species was introduced into Brazil and is now considered invasive, particularly in coastal ecosystems. To date, nothing is known about the environmental factors that constrain its distribution and there is only inconclusive information about its location of origin. We used reciprocal distribution models (RDM) to assess invasion risk of F. foetida across Brazil and to identify source regions in its native range. We also tested the niche conservatism hypothesis using Principal Components Analyses and statistical tests of niche equivalency and similarity between its native and invaded ranges. For RDM analysis, we built two models using maximum entropy, one using records in the native range to predict the invaded distribution (forward‐Ecological Niche Model or forward‐ENM) and one using records in the invaded range to predict the native distribution (reverse‐ENM). Forward‐ENM indicated invasion risk in the Cerrado region and the innermost region of the Atlantic Forest, however, failed to predict the current occurrence in southern Brazil. Reverse‐ENM supported an existing hypothesis that F. foetida originated in the Orinoco river basin, Amazon basin and Caribbean islands. Prediction errors in the RDM and multivariate analysis indicated that the species expanded its realized niche in Brazil. The niche similarity test further suggested that the niche differences are because of differences in habitat availability between the two ranges, not because of evolutionary changes. We hypothesize that physiological pre‐adaptation (especially, the crassulacean acid metabolism), human‐driven propagule pressure and high competitive ability are the main factors determining the current spatial distribution of the species in Brazil. Our study highlights the need to include F. foetida in plant invasion monitoring programs, especially in priority conservation areas where the species has still not been introduced.  相似文献   

10.
Studies of realized niche shifts in alien species typically ignore the potential effects of intraspecific niche variation and different invaded‐range environments on niche lability. We incorporate our detailed knowledge of the native‐range source populations and global introduction history of the delicate skink Lampropholis delicata to examine intraspecific variation in realized niche expansion and unfilling, and investigate how alternative niche modelling approaches are affected by that variation. We analyzed the realized niche dynamics of L. delicata using an ordination method, ecological niche models (ENMs), and occurrence records from 1) Australia (native range), 2) New Zealand, 3) Hawaii, 4) the two distinct native‐range clades that were the sources for the New Zealand and Hawaii introductions, and 5) the species’ global range (including Lord Howe Island, Australia). We found a gradient of realized niche change across the invaded ranges of L. delicata: niche stasis on Lord Howe Island, niche unfilling in New Zealand (16%), and niche unfilling (87%) and expansion (14%) in Hawaii. ENMs fitted to native‐range data generally identified suitable climatic conditions at sites where the species has established non‐native populations, whereas ENMs based on native‐range source clades and non‐native populations had lower spatial transferability. Our results suggest that the extent to which realized niches are maintained during invasion does not depend on species‐level traits. When realized niche shifts are predominately due to niche unfilling, fully capturing species’ responses along climatic gradients by basing ENMs on native distributions may be more important for accurate invasion forecasts than incorporating phylogenetic differentiation, or integrating niche changes in the invaded range.  相似文献   

11.

Niche conservatism explains biological invasions worldwide. However, a plethora of ecological processes may lead invasive species to occupy environments that are different from those found within native ranges. Here, we assess the potential invadable areas of  the world’s most pervasive invasive amphibians: the cane toad, Rhinella marina?+?R. horribilis, and the North American bullfrog, Lithobates catesbeianus. The uncontrolled spread of such voracious, large-bodied, and disease-tolerant anurans has been documented to impact native faunas worldwide. To disentangle their invasion-related niche dynamics, we compared the predictive ability and distributional forecasts of ecological niche models calibrated with information from native, invaded and pooled (native?+?invaded) ranges. We found that including occurrences from invaded ranges improved model accuracy for both studied species. Non-native occurrences also accounted for 54% and 61% increase in the total area of potential distribution of the cane toad and bullfrog, respectively. Besides, the latter species occupied locations with climatic conditions that are more extreme than those found within its native range. Our results indicate that the occupancy of environments different from those found in native ranges increases the overall potential distribution of the studied invasive anuran species. Therefore, climate information on native ranges alone is insufficient to explain and anticipate the distributional patterns of invasion of cane toads and bullfrogs, underestimating predictions of potential invadable distribution. Moreover, such an observed expansion of realized niches towards occupancy of climates not found within native ranges also has clear implications for invasion risk assessments based on climate modelling worldwide.

  相似文献   

12.
Evidence of climatic niche shift during biological invasion   总被引:10,自引:1,他引:9  
Niche-based models calibrated in the native range by relating species observations to climatic variables are commonly used to predict the potential spatial extent of species' invasion. This climate matching approach relies on the assumption that invasive species conserve their climatic niche in the invaded ranges. We test this assumption by analysing the climatic niche spaces of Spotted Knapweed in western North America and Europe. We show with robust cross-continental data that a shift of the observed climatic niche occurred between native and non-native ranges, providing the first empirical evidence that an invasive species can occupy climatically distinct niche spaces following its introduction into a new area. The models fail to predict the current invaded distribution, but correctly predict areas of introduction. Climate matching is thus a useful approach to identify areas at risk of introduction and establishment of newly or not-yet-introduced neophytes, but may not predict the full extent of invasions.  相似文献   

13.
Analysis of an invasive species' niche shift between native and introduced ranges, along with potential distribution maps, can provide valuable information about its invasive potential. The tawny crazy ant, Nylanderia fulva, is a rapidly emerging and economically important invasive species in the southern United States. It is originally from east‐central South America and has also invaded Colombia and the Caribbean Islands. Our objectives were to generate a global potential distribution map for N. fulva, identify important climatic drivers associated with its current distribution, and test whether N. fulva's realized climatic niche has shifted across its invasive range. We used MaxEnt niche model to map the potential distribution of N. fulva using its native and invaded range occurrences and climatic variables. We used principal component analysis methods for investigating potential shifts in the realized climatic niche of N. fulva during invasion. We found strong evidence for a shift in the realized climatic niche of N. fulva across its invasive range. Our models predicted potentially suitable habitat for N. fulva in the United States and other parts of the world. Our analyses suggest that the majority of observed occurrences of N. fulva in the United States represent stabilizing populations. Mean diurnal range in temperature, degree days at ≥10°C, and precipitation of driest quarter were the most important variables associated with N. fulva distribution. The climatic niche expansion demonstrated in our study may suggest significant plasticity in the ability of N. fulva to survive in areas with diverse temperature ranges shown by its tolerance for environmental conditions in the southern United States, Caribbean Islands, and Colombia. The risk maps produced in this study can be useful in preventing N. fulva's future spread, and in managing and monitoring currently infested areas.  相似文献   

14.
Climatic niche conservatism, the tendency of species‐climate associations to remain unchanged across space and time, is pivotal for forecasting the spread of invasive species and biodiversity changes. Indeed, it represents one of the key assumptions underlying species distribution models (SDMs), the main tool currently available for predicting range shifts of species. However, to date, no comprehensive assessment of niche conservatism is available for the marine realm. We use the invasion by Indo‐Pacific tropical fishes into the Mediterranean Sea, the world's most invaded marine basin, to examine the conservatism of the climatic niche. We show that tropical invaders may spread far beyond their native niches and that SDMs do not predict their new distributions better than null models. Our results suggest that SDMs may underestimate the potential spread of invasive species and call for prudence in employing these models in order to forecast species invasion and their response to environmental change.  相似文献   

15.
Aim Niche conservatism is key to understanding species responses to environmental stress such as climate change or arriving in new geographical space such as biological invasion. Halotydeus destructor is an important agricultural pest in Australia and has been the focus of extensive surveys that suggest this species has undergone a niche shift to expand its invasive range inland to hotter and drier environments. We employ modern correlative modelling methods to examine niche conservatism in H. destructor and highlight ecological differences between historical and current distributions. Location Australia and South Africa. Methods We compile comprehensive distribution data sets for H. destructor, representing the native range in South Africa, its invasive range in Australia in the 1960s (40 yr post‐introduction) and its current range in Australia. Using MAXENT, we build correlative models and reciprocally project them between South Africa and Australia and investigate range expansion with models constructed for historical and current data sets. We use several recently developed model exploration tools to examine the climate similarity between native and invasive ranges and subsequently examine climatic variables that limit distributions. Results The invasive niche of H. destructor in Australia transgresses the native niche in South Africa, and the species has expanded in Australia beyond what is predicted from the native distribution. Our models support the notion that H. destructor has undergone a more recent range shift into hotter and drier inland areas of Australia since establishing a stable distribution in the 1960s. Main conclusions Our use of historical and current data highlights that invasion is an ongoing dynamic process and demonstrates that once a species has reached an established range, it may still expand at a later stage. We also show that model exploration tools help understand factors influencing the range of invasive species. The models generate hypotheses about adaptive shifts in H. destructor.  相似文献   

16.
Ecological niche modeling is an effective tool to characterize the spatial distribution of suitable areas for species, and it is especially useful for predicting the potential distribution of invasive species. The widespread submerged plant Hydrilla verticillata (hydrilla) has an obvious phylogeographical pattern: Four genetic lineages occupy distinct regions in native range, and only one lineage invades the Americas. Here, we aimed to evaluate climatic niche conservatism of hydrilla in North America at the intraspecific level and explore its invasion potential in the Americas by comparing climatic niches in a phylogenetic context. Niche shift was found in the invasion process of hydrilla in North America, which is probably mainly attributed to high levels of somatic mutation. Dramatic changes in range expansion in the Americas were predicted in the situation of all four genetic lineages invading the Americas or future climatic changes, especially in South America; this suggests that there is a high invasion potential of hydrilla in the Americas. Our findings provide useful information for the management of hydrilla in the Americas and give an example of exploring intraspecific climatic niche to better understand species invasion.  相似文献   

17.
Niche conservatism providing support for using ecological niche modeling in biological invasions has been widely noticed, however, the equilibrium state and geographic background effect on niche model transferability has received scant attention. The western conifer seed bug, Leptoglossus occidentalis, native to western North America, has expanded its range eastward and has become an invasive pest in Europe and Asia. Niche models calibrated on the ranges of a small native population and two large expanding populations were compared. We found that the climate niche of L. occidentalis is conserved during its steady expansion in North America and rapid spread in Europe. Models based on the small western native range successfully captured the eastern expanding and introduced European populations, whereas the large area-based models varied with the presumed state of equilibrium. The equilibrium state based model succeeded but the non-equilibrium based model failed to predict the range in Europe. Our study estimates global invasion risk zones for L. occidentalis and suggests that, based on niche conservatism, modeling based on a reasonable geographic distribution at a climatic equilibrium of a species could guarantee the transferability of niche model prediction. Caution is warranted in interpreting low niche model transferability with niche differentiation and forwarding message for management strategy.  相似文献   

18.
Niche conservatism, the hypothesis that niches remain constant through time and space, is crucial for the study of biological invasions as it underlies native‐range based predictions of invasion risk. Niche changes between native and non‐native populations are increasingly reported. However, it has been argued that these changes arise mainly because in their novel range, species occupy only a subset of the environments they inhabit in their native range, and not because they expand into environments entirely novel to them. Here, using occurrences of 29 vertebrate species native to either Europe or North America and introduced into the other continent, we assess the prevalence of niche changes between native and non‐native populations and assess whether the changes detected are caused primarily by native niche unfilling in the non‐native range rather than by expansion into novel environments. We show that niche overlap between native and non‐native populations is generally low because of a large degree of niche unfilling in the non‐native range. This most probably reflects an ongoing colonization of the novel range, as niche changes were smaller for species that were introduced longer ago and into a larger number of locations. Niche expansion was rare, and for the few species exhibiting larger amounts of niche overlap, an unfilling of the niche in the native range (e.g. through competition or dispersal limitations) is the most probable explanation. The fact that for most species, the realized non‐native niche is a subset of the realized native niche allows native‐range based niche models to generate accurate predictions of invasion risk. These results suggest that niche changes arising during biological invasions are strongly influenced by propagule pressure and colonization processes, and we argue that introduction history should be taken into account when evaluating niche conservatism in the context of biological invasions.  相似文献   

19.
Biological invasions threaten global biodiversity and natural resources. Anticipating future invasions is central to strategies for combating the spread of invasive species. Ecological niche models are thus increasingly used to predict potential distribution of invasive species. In this study, we compare ecological niches of Rhododendron ponticum in its native (Iberian Peninsula) and invasive (Britain) ranges. Here, we test the conservation of ecological niche between invasive and native populations of R. ponticum using principal component analysis, niche dynamics analysis, and MaxEnt‐based reciprocal niche modeling. We show that niche overlap between native and invasive populations is very low, leading us to the conclusion that the two niches are not equivalent and are dissimilar. We conclude that R. ponticum occupies novel environmental conditions in Britain. However, the evidence of niche shift presented in this study should be treated with caution because of nonanalogue climatic conditions between native and invasive ranges and a small population size in the native range. We then frame our results in the context of contradicting genetic evidence on possible hybridization of this invasive species in Britain. We argue that the existing contradictory studies on whether hybridization caused niche shift in R. ponticum are not sufficient to prove or disprove this hypothesis. However, we present a series of theoretical arguments which indicate that hybridization is a likely cause of the observed niche expansion of R. ponticum in Britain.  相似文献   

20.
Species climate requirements are useful for predicting their geographic distribution. It is often assumed that the niche requirements for invasive plants are conserved during invasion, especially when the invaded regions share similar climate conditions. California and central Chile have a remarkable degree of convergence in their vegetation structure, and a similar Mediterranean climate. Such similarities make these geographic areas an interesting natural experiment for testing climatic niche dynamics and the equilibrium of invasive species in a new environment. We tested to see if the climatic niche of Eschscholzia californica is conserved in the invaded range (central Chile), and we assessed whether the invasion process has reached a biogeographical equilibrium, i.e., occupy all the suitable geographic locations that have suitable conditions under native niche requirements. We compared the climatic niche in the native and invaded ranges as well as the projected potential geographic distribution in the invaded range. In order to compare climatic niches, we conducted a Principal Component Analysis (PCA) and Species Distribution Models (SDMs), to estimate E. californica''s potential geographic distribution. We also used SDMs to predict altitudinal distribution limits in central Chile. Our results indicated that the climatic niche occupied by E. californica in the invaded range is firmly conserved, occupying a subset of the native climatic niche but leaving a substantial fraction of it unfilled. Comparisons of projected SDMs for central Chile indicate a similarity, yet the projection from native range predicted a larger geographic distribution in central Chile compared to the prediction of the model constructed for central Chile. The projected niche occupancy profile from California predicted a higher mean elevation than that projected from central Chile. We concluded that the invasion process of E. californica in central Chile is consistent with climatic niche conservatism but there is potential for further expansion in Chile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号