首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent research in proteomics of the higher plant chloroplast has achieved considerable progress and added to our knowledge of lumenal chloroplast proteins. This work shows that chloroplast lumen has its own specific proteome and may comprise as many as 80 proteins. Although the new map of the lumenal proteome provides a great deal of information, it also raises numerous questions because the physiological functions of most of the novel lumenal proteins are unknown. In this Minireview, we summarize the latest discoveries regarding lumenal proteins and present the currently known facts about the lumenal chloroplast proteome of higher plants.  相似文献   

2.
Cyanobacteria perform oxygenic photosynthesis, which makes them unique among the prokaryotes, and this feature together with their abundance and worldwide distribution renders them a central ecological role. Cyanobacteria and chloroplasts of plants and algae are believed to share a common ancestor and the modern chloroplast would thus be the remnant of an endosymbiosis between a eukaryotic cell and an ancestral oxygenic photosynthetic prokaryote. Chloroplast metabolic processes are coordinated with those of the other cellular compartments and are strictly controlled by means of regulatory systems that commonly involve redox reactions. Disulphide/dithiol exchange catalysed by thioredoxin is a fundamental example of such regulation and represents the molecular mechanism for light-dependent redox control of an ever-increasing number of chloroplast enzymatic activities. In contrast to chloroplast thioredoxins, the functions of the cyanobacterial thioredoxins have long remained elusive, despite their common origin. The sequenced genomes of several cyanobacterial species together with novel experimental approaches involving proteomics have provided new tools for re-examining the roles of the thioredoxin systems in these organisms. Thus, each cyanobacterial genome encodes between one and eight thioredoxins and all components necessary for the reduction of thioredoxins. Screening for thioredoxin target proteins in cyanobacteria indicates that assimilation and storage of nutrients, as well as some central metabolic pathways, are regulated by mechanisms involving disulphide/dithiol exchange, which could be catalysed by thioredoxins or related thiol-containing proteins.  相似文献   

3.
4.
Proteomics is a very powerful approach to link the information contained in sequenced genomes, like Arabidopsis, to the functional knowledge provided by studies of plant cell compartments, such as chloroplast envelope membranes. This review summarizes the present state of proteomic analyses of highly purified spinach and Arabidopsis envelope membranes. Methods targeted towards the hydrophobic core of the envelope allow identifying new proteins, and especially new transport systems. Common features were identified among the known and newly identified putative envelope inner membrane transporters and were used to mine the complete Arabidopsis genome to establish a virtual plastid envelope integral protein database. Arabidopsis envelope membrane proteins were extracted using different methods, that is, chloroform/methanol extraction, alkaline or saline treatments, in order to retrieve as many proteins as possible, from the most to the less hydrophobic ones. Mass spectrometry analyses lead to the identification of more than 100 proteins. More than 50% of the identified proteins have functions known or very likely to be associated with the chloroplast envelope. These proteins are (a) involved in ion and metabolite transport, (b) components of the protein import machinery and (c) involved in chloroplast lipid metabolism. Some soluble proteins, like proteases, proteins involved in carbon metabolism or in responses to oxidative stress, were associated with envelope membranes. Almost one third of the newly identified proteins have no known function. The present stage of the work demonstrates that a combination of different proteomics approaches together with bioinformatics and the use of different biological models indeed provide a better understanding of chloroplast envelope biochemical machinery at the molecular level.  相似文献   

5.
Completion of the complex developmental program of Plasmodium in the mosquito is essential for parasite transmission, yet this part of its life cycle is still poorly understood. In recent years, considerable progress has been made in the identification and characterization of genes expressed during parasite development in the mosquito. This line of investigation was greatly facilitated by the availability of the genome sequence of several Plasmodium, and by the application of approaches such as proteomics, microarrays, gene disruption by homologous recombination (gene knockout) and by use of subtraction libraries. Here, we review what is presently known about genes expressed in gametocytes and during the Plasmodium life cycle in the mosquito.  相似文献   

6.
Chloroplast DNA sequences and microsatellites are useful tools for phylogenetic as well as population genetic analyses of plants. Chloroplast microsatellites tend to be less variable than nuclear microsatellites and therefore they may not be as powerful as nuclear microsatellites for within-species population analysis. However, chloroplast microsatellites may be useful for phylogenetic analysis between closely related taxa when more conventional loci, such as ITS or chloroplast sequence data, are not variable enough to resolve phylogenetic relationships in all clades. To determine the limits of chloroplast microsatellites as tools in phylogenetic analyses, we need to understand their evolution. Thus, we examined and compared phylogenetic relationships of species within the genus Clusia, using both chloroplast sequence data and variation at seven chloroplast microsatellite loci. Neither ITS nor chloroplast sequences were variable enough to resolve relationships within some sections of the genus, yet chloroplast microsatellite loci were too variable to provide any useful phylogenetic information. Size homoplasy was apparent, caused by base substitutions within the microsatellite, base substitutions in the flanking regions, indels in the flanking regions, multiple microsatellites within a fragment, and forward/reverse mutations of repeat length resulting in microsatellites of identical base composition that were not identical by descent.  相似文献   

7.
A single general import pathway in vascular plants mediates the transport of precursor proteins across the two membranes of the chloroplast envelope, and at least four pathways are responsible for thylakoid protein targeting. While the transport systems in the thylakoid are related to bacterial secretion systems, the envelope machinery is thought to have arisen with the endosymbiotic event and to be derived, at least in part, from proteins present in the original endosymbiont. Recently the moss Physcomitrella patens has gained worldwide attention for its ability to undergo homologous recombination in the nuclear genome at rates unseen in any other land plants. Because of this, we were interested to know whether it would be a useful model system for studying chloroplast protein transport. We searched the large database of P. patens expressed sequence tags for chloroplast transport components and found many putative homologues. We obtained full-length sequences for homologues of three Toc components from moss. To our knowledge, this is the first sequence information for these proteins from non-vascular plants. In addition to identifying components of the transport machinery from moss, we isolated plastids and tested their activity in protein import assays. Our data indicate that moss and pea (Pisum sativum) plastid transport systems are functionally similar. These findings identify P. patens as a potentially useful tool for combining genetic and biochemical approaches for the study of chloroplast protein targeting. Abbreviations: EST, expressed sequence tag; LHCP, light-harvesting chlorophyll-binding protein; NIBB, National Institute for Basic Biology; OE17, 17 kDa subunit of the oxygen-evolving complex; PC, plastocyanin; PEP, Physcomitrella EST Programme; SPP, stromal processing peptidase; SRP, signal recognition particle; Tat, twin-arginine translocation; Tic, translocon at the inner membrane of the chloroplast envelope; Toc, translocon at the outer membrane of the chloroplast envelope; TPP, thylakoid processing peptidase; TPR, tetratricopeptide repeatSupplementary material to this paper is available in electronic form at .This revised version was opublished online in July 2005 with corrected page numbers.  相似文献   

8.
Nowadays, the field of proteomics encompasses various techniques for the analysis of the entirety of proteins in biological samples. Not only 2D electrophoresis as the primary method, but also MS‐based workflows and bioinformatic tools are being increasingly applied. In particular, research in microbiology was significantly influenced by proteomics during the last few decades. Hence, this review presents results of proteomic studies carried out in areas, such as fundamental microbiological research and biotechnology. In addition, the emerging field of metaproteomics is addressed because high‐throughput genome sequencing and high‐performance MS facilitate the access to such complex samples from microbial communities as found in sludge from wastewater treatment plants and biogas plants. Both current technical limitations and new concepts in this growing and important area are discussed. Moreover, it was convincingly shown that future prospective applications of proteomics in technical and environmental microbiology might also be closely connected with other Omics approaches as well as bioinformatics for systems biology studies.  相似文献   

9.
Insects are among the most successful animals of the world in terms of species richness as well as abundance. Their biomass exceeds that of mammals by far. Among insects, ants are of particular interest not only because of their enormous ecological role in many terrestrial ecosystems, but also because they have developed an impressive behavioural repertoire. In fact, a key feature of the evolutionary success of ants is their ability to form complex societies with division of labour among individuals in a colony belonging to different castes such as workers and soldiers. In addition to these complex social interactions of ants, they have shown an extraordinary capacity to build up close associations with other organisms such as other insects, plants, fungi and bacteria. In the present review we attempt to provide an overview of the various symbiotic interactions that ants have developed with microorganisms.  相似文献   

10.
11.
Both insect and mammalian genes have previously been cloned by genetic complementation in yeast. In the present report, we show that the method can be applied also to plants. Thus, we have cloned a rape cDNA for 3-isopropylmalate dehydrogenase (IMDH) by complementation of a yeast leu2 mutation. The cDNA encodes a 52 kDA protein which has a putative chloroplast transit peptide. The in vitro made protein is imported into chloroplasts, concomitantly with a proteolytic cleavage. We conclude that the rape cDNA encodes a chloroplast IMDH. However, Southern analysis revealed that the corresponding gene is nuclear. In a comparison of IMDH sequences from various species, we found that the rape IMDH is more similar to bacterial than to eukaryotic proteins. This suggests that the rape gene could be of chloroplast origin, but has moved to the nucleus during evolution.  相似文献   

12.
头花杜鹃(Rhododendron capitatum)和陇蜀杜鹃(R. przewalskii)是极具观赏价值的野生花卉和药用植物。为探讨头花杜鹃和陇蜀杜鹃叶绿体基因组的遗传结构及进化特征,该研究利用 Illumina HiSeq 4000 平台对头花杜鹃和陇蜀杜鹃的叶绿体全基因组进行测序,经组装和注释后,结合 7 个已发表的杜鹃属植物叶绿体全基因组进行比较基因组学分析和系统发育分析。结果表明:(1)头花杜鹃和陇蜀杜鹃叶绿体全基因组呈典型的环状四分体结构,均由一个大单拷贝区(105 990、109 191 bp)、一个小单拷贝区(2 617、2 606 bp)和一对反向重复区(45 825、47 516 bp)构成,全长分别为200 257、206 829 bp。(2)头花杜鹃和陇蜀杜鹃叶绿体基因组中共鉴定出 263 个SSR位点,大部分 SSR 偏好使用 A/T 碱基,密码子偏好使用 A/U 结尾。(3)杜鹃属植物叶绿体全基因组中普遍存在基因丢失以及基因组重排等结构变异现象。该研究丰富了杜鹃属植物的基因组资源,为头花杜鹃、陇蜀杜鹃的资源开发、遗传进化、育种及系统发育相关研究提供了理论参考。  相似文献   

13.
蛋白质组分析是鉴定蛋白质种类和功能的有力工具之一。叶绿体作为光合作用的重要细胞器,叶绿体蛋白质组学成为了研究的热点,涉及的领域包括叶绿体的总蛋白质组学、亚细胞蛋白质组学、差异蛋白质组学和蛋白质的功能等。现主要介绍蛋白质组学的常用技术以及叶绿体蛋白质组学的最新研究进展。  相似文献   

14.
Summary We compared Brassica campestris mitochondrial and chloroplast DNAs from whole plants and from a 2-year-old cell culture. No differences were observed in the chloroplast DNAs (cpDNAs), whereas the culture mitochondrial DNA (mtDNA) was extensively altered. Hybridization analysis revealed that the alterations are due entirely to rearrangement. At least two inversions and one large duplication are found in the culture mtDNA. The duplication element is shown to have the usual properties of a plant mtDNA high frequency recombination repeat. The culture mtDNA exists as a complex heterogeneous population of rearranged and unrearranged molecules. Some of the culture-associated rearranged molecules are present in low levels in native plant tissue and appear to have sorted out and amplified in the culture. Other mtDNA rearrangements may have occurred de novo. In addition to alterations of the main mitochondrial genome, an 11.3 kb linear mtDNA plasmid present in whole plants is absent from the culture. Contrary to findings in cultured cells of other plants, small circular mtDNA molecules were not detected in the B. campestris cell culture.  相似文献   

15.
16.
Thioredoxins play key regulatory roles in chloroplasts by linking photosynthetic light reactions to a series of plastid functions. In addition to the established groups of thioredoxins, f, m, x, and y, novel plant thioredoxins were also considered to include WCRKC motif proteins, CDSP32, the APR proteins, the lilium proteins and HCF164. Despite their important roles, the subcellular locations of many novel thioredoxins has remained unknown. Here, we report a study of their subcellular location using the cDNA clone resources of TAIR. In addition to filling all gaps in the subcellular map of the established chloroplast thioredoxins f, m, x and y, we show that the members of the WCRKC family are targeted to the stroma and provide evidence for a stromal location of the lilium proteins. The combined data from this and related studies indicate a consistent stromal location of the known Arabidopsis chloroplast thioredoxins except for thylakoid-bound HCF164.  相似文献   

17.
Eric Lam  Richard Malkin   《BBA》1982,682(3):378-386
Photoreactions of cytochrome b6 have been studied using resolved chloroplast electron-transfer complexes. In the presence of Photosystem (PS) II and the cytochrome b6-f complex, photoreduction of the cytochrome can be observed. No soluble components are required for this reaction. Cytochrome b6 photoreduction was found to be inhibited by quinone analogs, which inhibit at the Rieske iron-sulfur center of the cytochrome complex, by the addition of ascorbate and by depletion of the Rieske center and bound plastoquinone from the cytochrome complex. Photoreduction of cytochrome b6 can also be demonstrated in the presence of the cytochrome complex and PS I. This photoreduction requires plastocyanin and a low-potential electron donor, such as durohydroquinone. Cytochrome b6 photoreduction in the presence of PS I is inhibited by quinone analogs which interact with the Rieske iron-sulfur center. These results are discussed in terms of a Q-cycle mechanism in which plastosemiquinone serves as the reductant for cytochrome b6 via an oxidant-induced reductive pathway.  相似文献   

18.
In higher plants, plastid and mitochondrial genomes occur at high copy numbers per cell. Several recent publications have suggested that, in higher plants like Arabidopsis and maize, chloroplast DNA is virtually absent in mature and old leaves. This conclusion was mainly based on DAPI staining of isolated chloroplasts. If correct, the finding that chloroplasts in mature leaves lack DNA would change dramatically our understanding of gene expression, mRNA stability and protein stability in chloroplasts. In view of the wide implications that the disposal of chloroplast DNA during leaf development would have, we have reinvestigated the age dependency of genome copy numbers in chloroplasts and, in addition, tested for possible changes in mitochondrial genome copy number during plant development. Analyzing chloroplast and mitochondrial DNA amounts in Arabidopsis and tobacco plants, we find that organellar genome copy numbers remain remarkably constant during leaf development and are present in essentially unchanged numbers even in the senescing leaves. We conclude that, during leaf development, organellar gene expression in higher plants is not significantly regulated at the level of genome copy number and we discuss possible explanations for the failure to detect DNA in isolated chloroplasts stained with DAPI.  相似文献   

19.
Summary Some striped plants were observed in plots of a long-grain mutant barley grown at a field nursery. All of the plants of these plots, which were naturally self pollinated, were individually harvested, and most of their progenies (92.5%) segregated seedlings carrying chlorophyll deficiencies (CD) as determined by greenhouse analysis. The majority of the mutant seedlings (84.3%) showed a pattern of longitudinal chlorophyll sectors. The spectrum of CD was wide among the solid mutant seedlings and consisted of three main types (albina, viridis and discontinuous). In association with some CD types morphological changes were frequently observed. Non-CD-associated morphological changes and diminished seed-set were scarce and, so far, none of them has proved to be inherited. Analysis of CD in reciprocal crosses and backcrosses proved that while CD were transmitted cytoplasmically their induction was controlled by a single nuclear mutator gene, active when homozygous. In addition once the CD were induced, they were expressed independently of the nuclear constitution. The results suggest that the mutator gene induces diverse mutational events on chloroplast (cp) DNA. In barley, as in other monocots, nuclear genes which are inductors of cytoplasmic genetic changes have been reported. However, all of them produced a narrower spectrum of CD and had a more rapid sorting-out of the cytoplasmic mutants than what we observed. On this basis a distinction between chloroplast and mitochondrial (mt) mutator genes is proposed. Accordingly, the chloroplast mutator here described would be the first one reported for monocots. Increased knowledge on this subject can play a fundamental role in elucidating organelle heredity and its interactions with the nuclear genome. Moreover, this material could be a valuable source of variability of the otherwise conservative genetic information encoded in the chloroplast.Paper GEN 792, Institute of Genetics, CICA, INTA, Castelar  相似文献   

20.
Lennon AM  Prommeenate P  Nixon PJ 《Planta》2003,218(2):254-260
The chloroplasts of many plants contain not only the photosynthetic electron transport chain, but also two enzymes, Ndh and IMMUTANS, which might participate in a chloroplast respiratory chain. IMMUTANS encodes a protein with strong similarities to the mitochondrial alternative oxidase and hence is likely to be a plastoquinol oxidase. The Ndh complex is a homologue of complex I of mitochondria and eubacteria and is considered to be a plastoquinone reductase. As yet these components have not been purified to homogeneity and their expression and orientation within the thylakoid remain ill-defined. Here we show that the IMMUTANS protein, like the Ndh complex, is a minor component of the thylakoid membrane and is localised to the stromal lamellae. Protease digestion of intact and broken thylakoids indicates that both Ndh and IMMUTANS are orientated towards the stromal phase of the membrane in Spinacia oleracea L. Such an orientation is consistent with a role for the Ndh complex in the energisation of the plastid membrane. In expression studies we show that IMMUTANS and the Ndh complex are present throughout the development of both Pisum sativum L. cv Progress No. 9 and Arabidopsis thaliana (L.) Heynh. leaves, from early expansion to early senescence. Interestingly, both the Ndh complex and the IMMUTANS protein accumulate within etiolated leaf tissue, lacking the photosystem II complex, consistent with roles outside photosynthetic electron transport.Abbreviations PQ plastoquinone - PSI, PSII photosystem I, II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号