首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Free radical research》2013,47(4):285-286
The purpose of this review is to bring together the different approaches for studying the oxidation of low density lipoproteins and try to identify some critical factors which will permit greater comparability between laboratories. These issues are discussed both in terms of the variety of exogenous mediators of oxidation applied (transition metal ions, haem proteins, azo initiators, peroxynitrite, cells etc.) and their raisons d'etre, as well as the methodologies (formation of conjugated dienes, hydroperoxides, decomposition products of lipid peroxidation, altered surface charge, macrophage uptake) applicable to the different stages of the oxidation and the factors underlying their accurate execution and interpretation.  相似文献   

2.
Reversible oxidation of the catalytic cysteine of protein-tyrosine phosphatases (PTPs) has emerged as a putative mechanism of activity regulation by physiological cell stimulation with growth factors, and by cell treatments with adverse agents such as UV irradiation. We compared SHP-1 and SHP-2, two structurally related cytoplasmic protein-tyrosine phosphatases with different cellular functions and cell-specific expression patterns, for their intrinsic susceptibility to oxidation by H(2)O(2). The extent of oxidation was monitored by detecting the modification of the PTP catalytic cysteine by three different methods, including a modified in-gel PTP assay, alkylation with a biotinylated iodoacetic acid derivative, and an antibody against oxidized PTPs. Dose-response curves for oxidation of the catalytic domains of SHP-1 and SHP-2 were similar. SHP-1 and -2 require relatively high H(2)O(2) concentrations for oxidation (half-maximal oxidation at 0.1-0.5 mM). For SHP-1, the SH2 domains had a significant protective function with respect to oxidation. In EOL-1 cells, SHP oxidation by exogenous H(2)O(2) in general and SHP-2 oxidation in particular was strongly diminished compared to HEK293 cells, at least partially related to a generally lower oxidant sensitivity of the EOL-1 cells. The data suggest that the differential cell functions of SHP-1 and SHP-2 are not related to differences in oxidation sensitivity. The modulating effects of SH2 domains for oxidation of these PTPs are in support of an enhanced oxidation susceptibility of activated SHPs.  相似文献   

3.
Efficient selective oxidation of alcohols to carbonyl compounds by molecular oxygen with isobutyraldehyde as oxygen acceptor in the presence of metalloporphyrins has been reported. Ruthenium (III) meso-tetraphenylporphyrin chloride (Ru(TPP)Cl) showed excellent activity and selectivity for oxidation of various alcohols under mild conditions. Moreover, different factors influencing alcohols oxidation, for example, catalyst, solvent, temperature, and oxidant, have been investigated. In large-scale oxidation of benzyl alcohol, the isolated yield of benzaldehyde of 89% was observed.  相似文献   

4.
Oxidation of the catalytic cysteine of protein-tyrosine phosphatases (PTP), which leads to their reversible inactivation, has emerged as an important regulatory mechanism linking cellular tyrosine phosphorylation and signalling by reactive-oxygen or -nitrogen species (ROS, RNS). This review focuses on recent findings about the involved pathways, enzymes and biochemical mechanisms. Both the general cellular redox state and extracellular ligand-stimulated ROS production can cause PTP oxidation. Members of the PTP family differ in their intrinsic susceptibility to oxidation, and different types of oxidative modification of the PTP catalytic cysteine can occur. The role of PTP oxidation for physiological signalling processes as well as in different pathologies is described on the basis of well-investigated examples. Criteria to establish the causal involvement of PTP oxidation in a given process are proposed. A better understanding of mechanisms leading to selective PTP oxidation in a cellular context, and finding ways to pharmacologically modulate these pathways are important topics for future research.  相似文献   

5.
Highly efficient controllable oxidation of alcohols to aldehydes or acids by sodium periodate in the presence of water-soluble manganese porphyrins (meso-tetrakis(N-ethylpyridinium-4-yl)manganese porphyrin, MnTEPyP) with different reaction media has been reported. The manganese porphyrin showed excellent activity for the controllable oxidation of various alcohols under mild conditions. Moreover, different factors influencing alcohol oxidation, for example, oxidant, catalyst amount, temperature, and solvent, have been investigated. A plausible mechanism for the controllable oxidation of alcohol has been proposed.  相似文献   

6.
For biological nitrification, a set of experiments were carried out to approximate the response of lag period along with ammonia oxidation rate with respect to different concentrations of cyanide (CN) and ammonia-oxidizing bacteria (AOB), and temperature variation in laboratory-scale batch reactors. The effects of simultaneous changes in these three factors on ammonia oxidation were quantitatively estimated and modeled using response surface analysis. The lag period and the ammonia oxidation rate responded differently to changes in the three factors. The lag period and the ammonia oxidation rate were significantly affected by the CN and AOB concentrations, while temperature changes only affected the ammonia oxidation rate. The increase of AOB concentration and temperature alleviated the inhibition effect of cyanide on ammonia oxidation. The statistical method used in this study can be extended to estimate the quantitative effects of other environmental factors that can change simultaneously.  相似文献   

7.
好氧氨氧化微生物系统发育及生理生态学差异   总被引:5,自引:0,他引:5  
作为好氧氨氧化的驱动者,氨氧化古菌(Ammonia-oxidizing archaea,AOA)和细菌(Ammonia-oxidizing bacteria,AOB)一直是氮的生物地球化学循环的研究热点之一。由于它们的相对丰度、群落结构和活性因环境而异,目前二者对全球氮循环的相对贡献仍存在争议。对培养物和环境样品的动力学、基因组学等研究结果表明,这种差异主要是由AOA和AOB的生理生态学差异导致的。氨浓度、pH、溶氧、温度等环境因素以及代谢途径等生理因素导致AOA和AOB的生态位分化。通过比较AOA和AOB在系统发育、对环境因子的响应以及代谢途径等方面的差异,对好氧氨氧化微生物相关研究成果进行概括和总结,以便深入了解它们在不同环境中对氮循环的相对贡献;同时对好氧氨氧化微生物今后的研究重点进行了展望。  相似文献   

8.
Twenty-six different species of keratinophilic fungi were examined to determine their ability to utilize free cystine. Of the fungi tested, the majority metabolized free L-cystine in a glucose-peptone culture medium. Cystine was used as source of sulfur, and carbon and nitrogen as well. Excess sulfur was excreted into the culture fluid, as thiosulfate and sulfate, following oxidation. The rate of cystine oxidation varied with the different fungal strains, but was maximal for Graphium penicilloideus (88.5%). Low quantities of thiols were found in the medium. Cystine oxidation and inorganic thiosulfate excretion were found to correlate significantly (r = 0.94).  相似文献   

9.
Xie H  Yang D  Heller A  Gao Z 《Biophysical journal》2007,92(8):L70-L72
The electrochemical behavior of guanine, guanosine, and guanosine monophosphate (GMP) at redox polymer film modified indium tin oxide electrodes is examined by voltammetry and redox titration. Utilizing the redox polymer-coated electrodes as indicator electrodes, a new method for measuring the oxidation potentials, based on monitoring their catalytic oxidation by different redox polymer coated electrodes at different pH, was proposed in this work. The oxidation potentials of 0.81 V and 1.02 V versus normal hydrogen electrode were determined for guanine and guanosine/GMP under physiological conditions, the lowest oxidation potentials ever reported, to our knowledge.  相似文献   

10.
Nitrite-dependent anaerobic methane oxidation (n-damo), mainly carried out by n-damo bacteria, is an important pathway for mitigating methane emission from freshwater lakes. Although n-damo bacteria have been detected in a variety of freshwater lakes, their potential and distribution, and associated environmental factors, remain unclear. Therefore, the current study investigated the potential and distribution of anaerobic methanotrophs in sediments from Erhai Lake and Dianchi Lake, two adjacent freshwater lakes in the Yunnan Plateau with different trophic status. Both lakes showed active anaerobic methane oxidation potential and harbored a high density of n-damo bacteria. Based on the n-damo pmoA gene, sediment n-damo bacterial communities mainly consisted of Candidatus Methylomirabils oxyfera and Candidatus Methylomirabils sinica, as well as novel n-damo organisms. Sediment anaerobic methane oxidation potential and the n-damo bacterial community showed notable differences among seasons and between lakes. The environmental variables associated with lake trophic status (e.g. total nitrogen, ammonia nitrogen, nitrate nitrogen, and total organic carbon) might have significant impacts on the anaerobic methane oxidation potential, as well as the abundance and community structure of n-damo bacteria. Therefore, trophic status could determine the n-damo process in freshwater lake sediment.  相似文献   

11.
Lipid oxidation is a common metabolic reaction in all biological systems, appearing in developmentally regulated processes and as response to abiotic and biotic stresses. Products derived from lipid oxidation processes are collectively named oxylipins. Initial lipid oxidation may either occur by chemical reactions or is derived from the action of enzymes. In plants this reaction is mainly catalyzed by lipoxygenase (LOXs) enzymes and during recent years analysis of different plant LOXs revealed insights into their enzyme mechanism. This review aims at giving an overview of concepts explaining the catalytic mechanism of LOXs as well as the different regio- and stereo-specificities of these enzymes.  相似文献   

12.
The addition of some fat co- and by-products to feeds is usual nowadays; however, the regulations of their use are not always clear and vary between countries. For instance, the use of recycled cooking oils is not allowed in the European Union, but they are used in other countries. However, oils recovered from industrial frying processes could show satisfactory quality for this purpose. Here we studied the effects of including oils recovered from the frying industry in rabbit and chicken feeds (at 30 and 60 g/kg, respectively) on the fatty acid (FA) and tocol (tocopherol + tocotrienol) compositon of meat, liver and plasma, and on their oxidative stability. Three dietary treatments (replicated eight times) were compared: fresh non-used oil (LOX); oil discarded from the frying industry, having a high content of secondary oxidation compounds (HOX); and an intermediate level (MOX) obtained by mixing 50 : 50 of LOX and HOX. The FA composition of oil diets and tissues was assessed by GC, their tocol content by HPLC, the thiobarbituric acid value was used to assess tissue oxidation status, and the ferrous oxidation-xylenol orange method was used to assess the susceptibility of tissues to oxidation. Our results indicate that FA composition of rabbit and chicken meat, liver and plasma was scarcely altered by the addition of recovered frying oils to feed. Differences were encountered in the FA composition between species, which might be attributed mainly to differences in the FA digestion, absorption and metabolism between species, and to some physiological dietary factors (i.e. coprophagy in rabbits that involves fermentation with FA structure modification). The α-tocopherol (αT) content of tissues was reduced in response to the lower αT content in the recovered frying oil. Differences in the content of other tocols were encountered between chickens and rabbits, which might be attributable to the different tocol composition of their feeds, as well as to species differences in the digestion and metabolism of tocols. Tissue oxidation and susceptibility to oxidation were in general low and were not greatly affected by the degree of oxidation of the oil added to the feeds. The relative content of polyunsaturated fatty acids/αT in these types of samples would explain the differences observed between species in the susceptibility of each tissue to oxidation. According to our results, oils recovered from the frying industry could be useful for feed uses.  相似文献   

13.
苏雷  向韬  李倩倩  马哲 《微生物学报》2023,63(4):1379-1391
厌氧氨氧化菌(anaerobic ammonia-oxidizing bacteria, AnAOB)的代谢多样性,使得该菌群能够在海洋、湿地和陆地等不同的自然生态系统中广泛分布,甚至在一些极热和极寒环境中也检测到了该菌群的存在。本文回顾并总结了厌氧氨氧化菌在不同生态系统中的发现、分布及脱氮贡献等方面的研究,分析了厌氧氨氧化菌分布的主要环境影响因素。该综述将帮助我们更好地理解全球氮循环中厌氧氨氧化菌的实际角色和功能,并基于厌氧氨氧化(anaerobicammoniaoxidation,anammox)过程,探究能与其进行协作的新型生物脱氮工艺,以期为这些工艺的研发和推广提供生态学基础和新的思考,从而实现脱氮工艺的技术变革。  相似文献   

14.
We have recently reported that dietary intake of soybean isoflavone phytoestrogens resulted in increased oxidation resistance of isolated low density lipoprotein (LDL). In order to explore the underlying mechanisms we designed two types of in vitro experiments. First, we prepared several different isoflavone fatty acid esters to increase their lipid solubility and studied their incorporation into LDL. Second, the oxidation resistance of the isoflavone-containing LDLs was investigated with Esterbauer's 'conjugated diene' method using Cu2+ as prooxidant. Unesterified daidzein and genistein as well as genistein stearic acid esters were incorporated into LDL to a relatively small extent (0.33 molecules per LDL particle, or less) and they did not significantly influence oxidation resistance. The oleic acid esters of isoflavones were incorporated more effectively, reaching a level of 2.19 molecules per LDL particle or more, and the 4',7-O-dioleates of daidzein and genistein exhibited prolongations of lag times by 46% (P<0.05) and 202% (P<0.01), respectively. A smaller but significant increase in lag time (20.5%, P<0.01) was caused by daidzein 7-mono-oleate. In summary, esterification of soybean isoflavones daidzein and genistein with fatty acids at different hydroxyl groups provided lipophilicity needed for incorporation into LDL. Some isoflavone oleic acid esters increased oxidation resistance of LDL following their incorporation.  相似文献   

15.
硫氧化细菌的种类及硫氧化途径的研究进展   总被引:3,自引:0,他引:3  
硫,作为生物必需的大量营养元素之一,参与了细胞的能量代谢与蛋白质、维生素和抗生素等物质代谢。自然界中,硫以多种化学形态存在,包括单质硫、还原性硫化物、硫酸盐和含硫有机物。硫氧化是硫元素生物地球化学循环的重要组成部分,通常是指单质硫或还原性硫化物被微生物氧化的过程。硫氧化细菌种类繁多,其硫氧化相关基因、酶和途径也多种多样。近几年,相关方面的研究已取得很多进展,但在不同层面仍存在一些尚未解决的科学问题。本文主要围绕硫氧化细菌的种类及硫氧化途径的研究进展进行了综述。  相似文献   

16.
The sensitive oxidations of sulfur containing amino acids (i.e., cysteines and methionines) commonly control protein function, and act as important signaling mechanisms to modify metabolic responses to environmental stressors. Mechanisms associated with cysteine oxidation to form sulfenic acid and disulfides (i.e., cystine and glutathione adducts), and their reversibility through thioredoxin-dependent mechanisms, are broadly appreciated as important regulatory mechanisms that control the function of a range of different proteins. Less commonly understood are the cellular consequences of methionine oxidation to form methionine sulfoxide, as the structural requirements for their thioredoxin-dependent reduction by methionine sulfoxide reductases limit the reversibility of methionine oxidation to sequences within surface exposed and conformationally disordered regions of proteins. Surface exposed methionines are commonly involved in molecular recognition between transient protein signaling complexes, where their oxidation disrupts productive protein-protein interactions linked to a range of cellular responses. Such a signaling protein is calmodulin, which represents an early and central point in calcium signaling pathways important to stress responses in plants. We describe recent work elucidating fundamental mechanisms of reversible methionine oxidation within calmodulin, including the physical basis for differences in the sensitivity of individual methionines within plant and animal calmodulin to reactive oxygen species (ROS), the structural and functional consequences of their oxidation, and the interactions of oxidized calmodulin with methionine sulfoxide reductase enzymes. It is suggested that, in combination with high-throughput proteomic methods and current generation informatics tools, these mechanistic insights permit useful predictions of oxidatively sensitive signaling proteins that act as redox and stress sensors in response to methionine oxidation.  相似文献   

17.
Gluconobacter oxydans is famous for its rapid and incomplete oxidation of a wide range of sugars and sugar alcohols. The organism is known for its efficient oxidation of D-glucose to D-gluconate, which can be further oxidized to two different keto-D-gluconates, 2-keto-D-gluconate and 5-keto-D-gluconate, as well as 2,5-di-keto-D-gluconate. For this oxidation chain and for further oxidation reactions, G. oxydans possesses a high number of membrane-bound dehydrogenases. In this review, we focus on the dehydrogenases involved in D-glucose oxidation and the products formed during this process. As some of the involved dehydrogenases contain pyrroloquinoline quinone (PQQ) as a cofactor, also PQQ synthesis is reviewed. Finally, we will give an overview of further PQQ-dependent dehydrogenases and discuss their functions in G. oxydans ATCC 621H (DSM 2343).  相似文献   

18.
The sulfonephthalein indicator, phenol red, exhibits an unusually slow rate of oxidation by laccase from Poliporus pinsitus, in spite of the fact that it is a phenol and therefore a natural substrate for this phenoloxidase enzyme. Nevertheless, after prolonged exposure to laccase (24 h) phenol red is oxidized by more than 90%. We found that phenol red, which can be oxidatively converted into a resonance-stabilized phenoxy radical, performs as a mediator in the laccase-catalyzed oxidation of a nonphenolic substrate (4-methoxybenzyl alcohol) and also of a hindered phenol (2,4,6-tri-tert-butylphenol). In particular, phenol red was found to be at least 10 times more efficient than 3-hydroxyanthranilate (a reported natural phenolic mediator of laccase) in the oxidation of 4-methoxybenzyl alcohol. Other phenols, which do not bear structural analogies to phenol red, underwent rapid degradation and did not perform as laccase mediators. On the other hand, several variously substituted sulfonephthaleins, of different pK2 values, mediated the laccase catalysis, the most efficient being dichlorophenol red, which has the lowest pK2 of the series. The mediating efficiency of phenol red and dichlorophenol red was found to be pH dependent, as was their oxidation Ep value (determined by cyclic voltammetry). We argue that the relative abundance of the phenoxy anion, which is easier to oxidize than the protonated phenol, may be one of the factors determining the efficiency of a phenolic mediator, together with its ability to form relatively stable oxidized intermediates that react with the desired substrate before being depleted in undesired routes.  相似文献   

19.
Effect of oxidation on the properties of apolipoproteins A-I and A-II   总被引:7,自引:0,他引:7  
Purified apolipoprotein A-I has been separated by reversed-phase high performance liquid chromatography (HPLC) into multiple peaks and these peaks have been characterized. One peak, apoA-Ib had a relatively longer retention time on HPLC but its retention time could be shortened by treatment by hydrogen peroxide. CNBr cleavage studies indicated that the differences in apoA-Ib and in its oxidation product, apoA-Ia, were due to the different oxidation states of methionine. This phenomenon was also observed in apoA-II, where methionine oxidation produced two more forms of this apolipoprotein in addition to the native form. These isomers were found to have different secondary structures and affinities for lipid. Model peptide analogs of the amphipathic helix with the same sequence but with methionine and methionine sulfoxide at the nonpolar face of the amphipathic helix were synthesized and studied. It was found that the lipid affinities of these synthetic peptide isomers were very different. They also differed in their secondary structures as studied by circular dichroism (CD). We propose that methionine oxidation introduces hydrophilic residues at the nonpolar face of the amphipathic helical domains of these apolipoproteins and, therefore, alters their secondary structure and lipid affinity.  相似文献   

20.
The kinetics of Coprinus cinereus peroxidase-catalyzed 1-naphthol, 2-naphthol, and 4-hydroxybiphenyl oxidation was investigated. The initial rates of the naphthols' and 4-hydroxybiphenyl oxidations were linearly dependent on enzyme concentration. The rates depended on substrate concentration and saturated at concentrations above 100 microM of hydrogen peroxide, 25-50 microM of naphthols, and 10 microM of 4-hydroxybiphenyl. At the peroxide concentration 100 microM calculated K(m) and the maximal rate (V(max)) were 74.7 microM and 0.53 microM/sec or 175 microM and 2.0 microM/sec for 1- or 2-naphthol, respectively, and 29.68 microM and 0.42 microM/sec for 4-hydroxybiphenyl. Kinetic measurements of exhaustive naphthol and 4-hydroxybiphenyl oxidation showed that peroxidase is inactivated during the oxidation of the substrates. Different factors and additives, water soluble polymers and albumins (PEG, PEI, PL, BSA, HSA), influenced the initial naphthols and 4-hydroxybiphenyl oxidation rates, peroxidase inactivation rates, and the degree of the substrate conversion. Addition of albumin increased turnover number of naphthols oxidation 1.5-4 times. Light scattering increase was observed when peroxidase-catalyzed oxidation reaction was investigated and suggested that insoluble particles were formed during the process. The addition of polymers, change of concentration and ionic strength of the solution as well as the number of other factors influenced the observed light scattering. The number of particles formed during peroxidase-catalyzed naphthols' and 4-hydroxybiphenyl oxidation and their distribution according to size in the interval 2.5-300 microm were detected by particle counting in solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号