首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
3.
4.
E Moon  T H Kao    R Wu 《Nucleic acids research》1987,15(2):611-630
We describe the isolation of two rice chloroplast HindIII fragments (9.5 kb and 5.3 kb) each containing a gene cluster coding for the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL), beta and epsilon subunits of ATPase (atpB and atpE), tRNAmet (trnM) and tRNAval (trnV). All five genes contained in the 9.5 kb fragment are potentially functional, whereas in the 5.3 kb fragment, rbcL is truncated and atpB is frame-shift mutated. The copy number of the 9.5 kb fragment is 10 times that of the 5.3 kb fragment, indicating that the two fragments are probably located on different chloroplast genomes and represent two different (major and minor) genomic populations. Thus, the rice chloroplast genome appears to be heterogeneous, contrary to general belief. We also describe the isolation of a rice mitochondrial HindIII fragment (6.9 kb) which contains an almost complete transferred copy of this chloroplast gene cluster. In this transferred copy, the coding sequences of rbcL, atpE and trnM contain perfectly normal reading frames, whereas atpB has become grossly defective and trnV is truncated.  相似文献   

5.
Two alloplasmic wheat lines having the same common wheat nucleus but the cytoplasms of Aegilops crassa and Ae. columnaris together with the corresponding normal line (control) were used in the two-dimensional gel electrophoresis of soluble and thylakoid membrane proteins of the chloroplast. Three chloroplast polypeptides: the Rubisco large subunit, the beta subunit of ATP synthase, and an unidentified 31 kDa protein, differed in the common wheat and two Aegilops cytoplasms. Three chloroplast genes, atpB, atpE and trnM, that respectively encode the beta and epsilon subunits of ATP synthase and tRNA(met), were sequenced. The atpB gene differed by two synonymous base substitutions, whereas the other two genes were identical in the two Aegilops cytoplasms. From the predicted amino acid sequences, the beta subunits of the ATP synthase in the Aegilops cytoplasms were assumed to have three amino acid substitutions: Ala by Val, Asp- by Ala, and Gln by Lys+, in contrast to the cytoplasm of common wheat. This accounts for the difference in pI values found for the common wheat and Aegilops cytoplasms. The two base substitutions for the atpE genes of common wheat and the Aegilops cytoplasms were synonymous. The differences detected in the genes encoding the two subunits of ATP synthase do not appear to be ascribable to the differences in phenotypic effects for the common wheat and Aegilops cytoplasms. The base substitution rate of the atpB-atpE-trnM gene cluster was similar to that of the rbcL gene. From the rate for the atpB gene alone, evolutionary divergence of the wheat-Aegilops complex is assumed to have begun ca. 3.0 x 10(6) years ago, as compared to ca. 8.0 x 10(6) years ago for the divergence of the wheat-Aegilops complex and barley.  相似文献   

6.
7.
8.
9.
10.
A cluster of genes encoding subunits of ATP synthase of Anabaena sp. strain PCC 7120 was cloned, and the nucleotide sequences of the genes were determined. This cluster, denoted atp1, consists of four F0 genes and three F1 genes encoding the subunits a (atpI), c (atpH), b' (atpG), b (atpF), delta (atpD), alpha (aptA), and gamma (atpC) in that order. Closely linked upstream of the ATP synthase subunit genes is an open reading frame denoted gene 1, which is equivalent to the uncI gene of Escherichia coli. The atp1 gene cluster is at least 10 kilobase pairs distant in the genome from apt2, a cluster of genes encoding the beta (atpB) and epsilon (atpE) subunits of the ATP synthase. This two-clustered ATP synthase gene arrangement is intermediate between those found in chloroplasts and E. coli. A unique feature of the Anabaena atp1 cluster is overlap between the coding regions for atpF and atpD. The atp1 cluster is transcribed as a single 7-kilobase polycistronic mRNA that initiates 140 base pairs upstream of gene 1. The deduced translation products for the Anabaena sp. strain PCC 7120 subunit genes are more similar to chloroplast ATP synthase subunits than to those of E. coli.  相似文献   

11.
12.
Summary We have previously reported the isolation and partial sequence analysis of a rice mitochondrial DNA fragment (6.9 kb) which contains a transferred copy of a chloroplast gene cluster coding for the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL), and subunits of ATPase (atpB and atpE), methionine tRNA (trnM) and valine tRNA (trnV). We have now completely sequenced this 6.9 kb fragment and found it to also contain a sequence homologous to the chloroplast gene coding for the ribosomal protein L2 (rpl2), beginning at a site 430 bp downstream from the termination codon of rbcL. In the chloroplast genome, two copies of rpl2 are located at distances of 20 kb and 40 kb, respectively, from rbcL. We have sequenced these two copies of rice chloroplast rpl2 and found their sequences to be identical. In addition, a 151 bp sequence located upstream of the chloroplast rpl2 coding region is also found in the 3 noncoding region of chloroplast rbcL and other as yet undefined locations in the rice chloroplast genome. Hybridization analysis revealed that this 151 bp repeat sequence identified in rice is also present in several copies in 11 other plant species we have examined. Findings from these studies suggest that the translocation of rpl2 to the rbcL gene cluster found in the rice mitochondrial genome might have occurred through homologous recombination between the 151 bp repeat sequence present in both rpl2 and rbcL.  相似文献   

13.
Zurawski G  Clegg MT  Brown AH 《Genetics》1984,106(4):735-749
Analysis of a 2175-base pair (bp) SmaI-HindIII fragment of barley chloroplast DNA revealed that rbcL (the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase) and atpB (the gene for the beta subunit of ATPase) are transcribed divergently and are separated by an untranscribed region of 155-166 bp. The rbcL mRNA has a 320-residue untranslated leader region, whereas the atpB mRNA has a 296- to 309-residue leader region. The sequence of these regions, together with the initial 113 bp of the atpB-coding region and the initial 1279 bp of the rbcL-coding region, is compared with the analogous maize chloroplast DNA sequences. Two classes of nucleotide differences are present, substitutions and insertions/deletions. Nucleotide substitutions show a 1.9-fold bias toward transitions in the rbcL-coding region and a 1.5-fold bias toward transitions in the noncoding region. The level of nucleotide substitutions between the barley and maize sequences is about 0.065/bp. Seventy-one percent of the substitutions in the rbcL-coding region are at the third codon position, and 95% of these are synonymous changes. Insertion/deletion events, which are confined to the noncoding regions, are not randomly distributed in these regions and are often associated with short repeated sequences. The extent of change for the noncoding regions (about 0.093 events/bp) is less than the extent of change at the third codon positions in the rbcL-coding region (about 0.135 events/bp), including insertion/delection events. Limited sequence analysis of the analogous DNA from a wild line ( Hordeum spontaneum) and a primitive Iranian barley (H. vulgare) suggested a low rate of chloroplast DNA evolution. Compared to spinach chloroplast DNA, the barley rbcL-atpB untranslated region is extremely diverged, with only the putative rbcL promoters and ribosome-binding site being extensively conserved.  相似文献   

14.
We compared the performances of the candidate loci for moss DNA barcoding and the primers used in amplifying the loci. Primers for three coded loci (matK, rps4 and rbcL a) and four non coded loci (atpB rbcL, atpF H, psbK I and trnH psbA) of the chloroplast genome, one from the mitochondrial genome (nad5), and one from the nucleus genome (ITS2) were evaluated. Seventy four samples representing 14 species belonging to five genera of Trachypodoaceae (or Meteoriaceae) were screened. All primers for matK and a pair of primers for trnH psbA failed. Low successes were encountered with the primers for atpF H and psbK I. The primers for psbK I produced several bands and the PCR products of atpF H were difficult to sequence. The powers of the remaining six loci were compared using the variability, identification success and the resolutions. It was found that ITS2 is the most promising candidate for DNA barcoding for mosses. Among the chloroplast genes, atpB rbcL exhibited the highest resolution. Although trnH psbA is very variable, it is too short to be an ideal barcode alone. Combinations of chloroplast genes were also tried and Ps of both atpB rbcL+trnH psbA and rbcL a++trnH psbA were 64% using NJ method. More additions of loci did not increase the resolution. No barcoding gap exists for all these loci. Phylogenetic analyses were carried out prior to the DNA barcoding evaluation and some taxonomic problems do exist. This study exemplifies the necessity of correct species delimitation and the adoption of both plastid and nuclear loci in plant DNA barcoding.  相似文献   

15.
16.
17.
18.
Kuroda H  Maliga P 《Plant physiology》2001,125(1):430-436
The objective of this study was to determine if mRNA sequences downstream of the translation initiation codon are important for translation of plastid mRNAs. We have employed a transgenic approach, measuring accumulation of the neomycin phosphotransferase (NPTII) reporter enzyme translationally fused with 14 N-terminal amino acids encoded in the rbcL or atpB plastid genes. NPTII accumulation from wild-type and mutant rbcL and atpB segments was compared. We report that silent mutations in the rbcL segment reduced NPTII accumulation 35-fold. In contrast, mutations in the atpB mRNA reduced NPTII accumulation only moderately from approximately 7% (w/w) to approximately 4% (w/w) of the total soluble cellular protein, indicating that the importance of sequences downstream of the translation initiation codon are dependent on the individual mRNA. Information provided here will facilitate transgene design for high-level expression of recombinant proteins in chloroplasts by translational fusion with the N-terminal segment of highly expressed plastid genes or by introduction of silent mutations in the N-terminal part of the coding region.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号