首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Interspecific somatic hybrid plants were obtained by symmetrical electrofusion of mesophyll protoplasts of Medicago sativa with callus protoplasts of Medicago arborea. Somatic hybrid calli were picked manually from semi-solid culture medium after they were identified by their dual color in fluorescent light. Twelve putative hybrid calli were selected and one of them regenerated plants. The morphogenesis of the somatic hybrid calli was induced by the synthetic growth regulator 1,2 benzisoxazole-3-acetic acid. Somatic hybrid plants showed intensive genome rearrangements, as evidenced by isozyme and RFLP analysis. The morphology of somatic hybrid plants was in general intermediate between the parents. The production of hybrids by protoplast fusion between sexually incompatible Medicago species is related to the in vitro respon siveness of the parental protoplasts. The possibility of using somatic hybrid plants in alfalfa breeding is discussed.  相似文献   

2.
Summary New interspecific hybrids between alfalfa (Medicago sativa L.) and several perennial Medicago species were obtained by embryo rescue techniques. The methodology, designated ovule-embryo culture, involved preculturing the fertilized ovule (10 to 20 days post-pollination) for a period of six to 12 days followed by excision and direct culture of the embryo. Placement of the hybrid embryo directly onto culture medium without the interim ovule culture was unsuccessful. Ovule culture to germination without removing the embryo also was unsuccessful. Ovule-embryo culture was essential for recovering interspecific hybrids between diploid alfalfa (2n=2x=16) and the following diploid (2n=2x=16) species: M. hybrida Traut., M. marina L., M. papillosa Boiss., M. rhodopea Velen. and M. rupestris M.B. In addition, trispecies hybrids between M. sativa x M. dzhawakhetica Bordz. F1 hybrids (2n=3x=24) and either M. cancellata M.B. (2n=6x=48) or M. saxatilis M.B. (2n=6x=48) were obtained from ovuleembryo culture. Media manipulations using M. sativa x M. rupestris F1 and first backcross generation embryos demonstrated the optimum concentration of 12.5 mM NH4 + for successful embryo rescue; ammonium salt formulation (whether chloride, nitrate or sulfate) was not critical. From a few thousand crosses, hybrids between M. sativa and either M. rhodopea or M. rupestris were recovered relatively efficiently with 157 and 66 hybrids, respectively. However, only 13 hybrids between M. sativa and M. papillosa were obtained from more than 2,000 crosses, and just two hybrids each have been recovered from the combinations M. sativa x M. hybrida and M. sativa x M. marina from 2,000 to 3,000 crosses. The predominant chromosome number between diploid alfalfa and the other diploid perennial species was 2n=2x=16. Morphology of the hybrids was generally intermediate. Electrophoretic analysis of the F1 hybrids and parental clones on uniform or gradient polyacrylamide gels demonstrated that peroxidase phenotypes could be used to confirm hybridity. For all interspecific combinations there was at least one peroxidase isozyme unique to the wild species that was present in the F1 interspecific hybrid.  相似文献   

3.
Summary An efficient procedure for obtaining somatic hybrids between B. oleracea and B. campestris has been developed. Hypocotyl protoplasts of B. oleracea were fused with mesophyll protoplasts from three different varieties of B. campestris by the polyethylene glycoldimethylsulfoxide method. The selection of somatic hybrids utilized the inactivation of B. oleracea protoplasts by iodoacetamide (IOA) and the low regeneration ability of B. campestris. The efficiency of recovery of somatic hybrids depended upon the IOA concentration, and when 15 mM IOA was used, 90% of the regenerated plants were found to be hybrid. The somatic hybrids were examined for i) leaf morphology, ii) leucine aminopeptidase (LAP) isozyme and iii) chromosome number. All the hybrids had intermediate leaf morphology and possessed LAP isozymes of both parental species. The chromosome analysis revealed a considerable variation in chromosome number of somatic hybrids, showing the occurrence of multiple fusion and chromosome loss during the culture. Some of the hybrids flowered and set seeds.  相似文献   

4.
Summary Thirteen nuclear asymmetric hybrids were regenerated under selective conditions following fusion of chlorophyll-deficient protoplasts from cultivated tomato (Lycopersicon esculentum Mill.) and -(-irradiated protoplasts from the wild species Lycopersicon peruvianum var. dentatum Dun. All hybrid plants were classified as being asymmetric based on morphological traits, chromosome numbers and isozyme patterns. The majority of the hybrids inherited Lycopersicon peruvianum var. dentatum chloroplasts. Mitochondrial DNA analysis revealed mixed mitochondria populations deriving from both parents in some of the hybrids and rearranged mitochondrial DNA in others. The asymmetric hybrids express some morphological traits that are not found in either of the parental species. Fertile F1 plants were obtained after self-pollination of the asymmetric hybrids in four cases. The results obtained confirm the potential of asymmetric hybridization as a new source of genetic variation, and as a method for transferring of a part of genetic material from donor to recipient, and demonstrate that it is possible to produce fertile somatic hybrids by this technique.  相似文献   

5.
Summary Symmetric somatic hybrid plants have been produced by electrofusion of leaf protoplasts of Medicago sativa and callus protoplasts of Medicago coerulea. The selection of hybrid individuals has been performed at the cellular level by recording the positions of single heterocaryons immobilized in a semisolid culture medium. The hybrid nature of the heterokaryons was assessed in fluorescent light on the basis of their color. Hybrid minicalli were picked up manually and grown first on propagating, and then on regenerating, media. Six putative hybrid calli were selected and two of them regenerated several plants. The hybrid nature of the regenerants was confirmed by cytological and isozyme analysis. Among the several morphological traits taken into account for the characterization of somatic hybrid plants, some were intermediate, some lower, and some higher, with respect to the parents. The somatic hybrid plants were fertile and set seed. The production of somatic hybrid plants in the genus Medicago is discussed in relation to the regenerating capability of parental protoplasts.This research was supported by the National Research Council of Italy, Special Project RAISA, Subproject N. 2 paper N. 347  相似文献   

6.
Summary Somatic hybrid plants were produced by fusion of birdsfoot trefoil (Lotus corniculatus) cv Leo and L. conimbricensis Willd. protoplasts. Birdsfoot trefoil etiolated hypocotyl protoplasts were inactivated with iodoacetate to inhibit cell division prior to fusion with L. conimbricensis suspension culture protoplasts. L. conimbricensis protoplasts divided to form callus which did not regenerate plants. Thus, plant regeneration from protoplast-derived callus was used to tentatively identify somatic hybrid cell lines. Plants regenerated from three cell lines exhibited additive combinations of parental isozymes of phosphoglucomutase, and L. conimbricensis-specific esterases indicating that they were somatic hybrids. The somatic chromosome number of one somatic hybrid was 36. The other somatic hybrid exhibited variable chromosome numbers ranging from 33 to 40. These observations approximate the expected combination of the birdsfoot trefoil (2n=4x=24) and L. conimbricensis (2n=2x=12) genomes. Somatic hybrid flowers were less yellow than birdsfoot trefoil flowers and had purple keel tips, a trait inherited from the white flowered L. conimbricensis. Somatic hybrids also had inflorescence structure that was intermediate to the parents. Fifteen somatic hybrid plants regenerated from the three callus lines were male sterile. Successul fertilization in backcrosses with birdsfoot trefoil pollen has not yet been obtained suggesting that the hybrids are also female sterile. This is the first example of somatic hybridization between these two sexually incompatible Lotus species.Formerly USDA-ARS, St. Paul, Minn, USA  相似文献   

7.
Summary In order to produce fertile somatic hybrids, mesophyll protoplasts from eggplant were electrofused with those from one of its close related species, Solanum aethiopicum L. Aculeatum group. On the basis of differences in the cultural behavior of the parental and hybrid protoplasts, 35 somatic hybrid plants were recovered from 85 selected calli. When taken to maturity either in the greenhouse or in the field, the hybrid plants were vigorous, all rapidly overtopping parental individuals. The putative hybrids were intermediate with respect to morphological traits, and all of their organs were larger, particularly the leaves and stems. DNA analysis of the hybrids using flow cytometry in combination with cytological analysis showed that 32 were tetraploids, 1 hexaploid and 2 mixoploids. The hybrid nature of the 35 selected plants was confirmed by a comparison of the isoenzyme patterns of isocitrate dehydrogenase (Idh), 6-phosphogluconate dehydrogenase (6-Pgd) and phosphoglucomutase (Pgm). Chloroplast DNA (ctDNA) restriction analysis using Bam HI revealed that among the 27 hybrid plants analyzed, 10 had S. aethiopicum patterns and the 17 remaining hybrids exhibited bands identical with those of eggplant without any changes. All of the somatic hybrid plants flowered. Both parental plants had 94% stainable pollen, while the hybrids varied widely in pollen viability ranging from 30% to 85%. The somatic hybrids showed high significant variation in fruit production. Nevertheless, there was a tendency for low fertility to be associated often with S. aethiopicum chloroplast type and/or with an abnormal ploidy level, while good fertility was mostly associated with the tetraploid level and eggplant chloroplasts. Interestingly, 2 tetraploid somatic hybrid clones were among the most productive, yielding up to 9 kg/plant. As far as the fertility of the F1 sexual counterpart was concerned, only 2 fruits of 50 g were obtained. Hybrid fertility in relation to phylogenetic affinities of the fusion partners is discussed.  相似文献   

8.
Intertribal Brassica napus (+) Lesquerella fendleri hybrids have been produced by polyethylene glycol-induced fusions of B. napus hypocotyl and L. fendleri mesophyll protoplasts. Two series of experiments were performed. In the first, symmetric fusion experiments, protoplasts from the two materials were fused without any pretreatments. In the second, asymmetric fusion experiments, X-ray irradiation at doses of 180 and 200 Gy were used to limit the transfer of the L. fendleri genome to the hybrids. X-ray irradiation of L. fendleri mesophyll protoplasts did not suppress the proliferation rate and callus formation of the fusion products but did significantly decrease growth and differentiation of non-fused L. fendleri protoplasts. In total, 128 regenerated plants were identified as intertribal somatic hybrids on the basis of morphological criteria. Nuclear DNA analysis performed on 80 plants, using species specific sequences, demonstrated that 33 plants from the symmetric fusions and 43 plants from the asymmetric fusions were hybrids. Chloroplast and mitochondrial DNA analysis revealed a biased segregation that favoured B. napus organelles in the hybrids from the symmetric fusion experiments. The bias was even stronger in the hybrids from the asymmetric fusion experiments where no hybrids with L. fendleri organelles were found. X-ray irradiation of L. fendleri protoplasts increased the possibility of obtaining mature somatic hybrid plants with improved fertility. Five plants from the symmetric and 24 plants from the asymmetric fusion experiments were established in the greenhouse. From the symmetric fusions 2 plants could be fertilised and set seeds after cross-pollination with B. napus. From the asymmetric fusions 9 plants could be selfed as well as fertilised when backcrossed with B. napus. Chromosome analysis was performed on all of the plants but 1 that were transferred to the greenhouse. Three plants from the symmetric fusions contained 50 chromosomes, which corresponded to the sum of the parental genomes. From the asymmetric fusions, 11 hybrids contained 38 chromosomes. Among the other asymmetric hybrids, plants with 50 chromosomes and with chromosome numbers higher than the sum of the parental chromosomes were found. When different root squashes of the same plant were analysed, a total of 6 plants were found that had different chromosome numbers.  相似文献   

9.
The aim of this study was to produce somatic hybrids between tetraploid (2n=4x=32) M. sativa and diploid (2n=2x=16) M. ?falcata and analyse their genomic structure. Protoplasts from genotypes selected for regeneration ability from the cultivar Rangelander of M. sativa and Wisfal-1 of M. falcata were electrofused. Seven somatic hybrid calli were produced and one of them regenerated plants. The hybrid nature of these plants and their genetic composition were assessed with morphological, cytological, and molecular analyses. The resulting plants were hyper-aneuploid (2n=33) and contained one extra long chromosome, indicating that a translocation had taken place. The presence of both types of parental sequences in the RAPDs analysis confirmed the true hybrid nature of the plants. Rearrangements within the parental genomes and the presence of somaclonal variation among hybrid plants were observed through an RFLP analysis of the nucleolar organizing region (NOR). The possible causes for the gross genomic alterations, and the suitability of this method for transferring useful agronomic traits from wild species to cultivated alfalfa, are discussed.  相似文献   

10.
Borgato L  Conicella C  Pisani F  Furini A 《Planta》2007,226(4):961-969
In crop plants the shift from being annuals to perennials may allow future agricultural systems requiring less energy inputs. The practicability of this was tested for Solanum melongena. Leaf protoplasts of S. melongena (2n = 2x = 24) and one of the related arborescent species Solanum marginatum (2n = 2x = 24) were electrofused and fertile somatic hybrids with arborescent habit regenerated. The magnetic cell sorter (MACS) technique was used for the selection of heterokaryons. The hybrid nature of 18 regenerated plants was assessed on the banding patterns generated by inter-simple sequence repeat PCR. When taken to maturity in the greenhouse, hybrids grew more vigorously compared to the parental species. Their morphological traits were intermediate between those of S. melongena and S. marginatum. Hybrids flowered and produced an average of 85% stainable viable pollen and fertile fruits. The somatic hybrids were maintained in the greenhouse for more than 3 years and continued to produce flowers developing into two types of fruits with plentiful seeds. Fruits were either striated green containing non-germinable seeds or yellow with fully germinable seeds. Their S1 progenies showed common features with S0 hybrids, including fertility and arborescent habit. Cytologically, somatic hybrids exhibited the expected chromosome number of 2n = 4x = 48, while chromosome pairing during microsporogenesis was associated with a low frequency of intergenomic pairing. It is concluded that an arborescent perennial species has been obtained by somatic hybridization. The usefulness of this species per se or in eggplant breeding will depend not only on the transmission of the arborescent habit to cultivated eggplant varieties, but also on the variability that should be created from backcrossing the S. melongena + S. marginatum hybrids to S. melongena.  相似文献   

11.
Following protoplast fusion between Nicotiana tabacum (dhfr) and N. megalosiphon (nptII) somatic hybrids were selected on the basis of dual resistance to kanamycin and methotrexate. Despite strong selection for parental nuclear-encoded resistances, only nine N. tabacum (+) N. megalosiphon somatic hybrids were obtained. A preferential loss of the parental N. tabacum nuclear and organelle genome was apparent in some plants in spite of the lack of genomic inactivation by the irradiation or chemical treatment of the parental protoplasts. Only six of the nine hybrids recovered possessed both parental profiles of nuclear RFLPs and isoenzymes. The remaining three hybrids were highly asymmetric with two being identical to N. megalosiphon except for minor morphological differences and rearranged or recombined mitochondrial DNAs (mtDNA), while the other one was distinguishable only by the presence of a rearranged or recombined mtDNA, and was therefore possibly a cybrid. Overall, eight somatic hybrids possessed rearranged or recombined mtDNAs and chloroplast inheritance was non-random since eight possessed N. megalosiphon-type chloroplasts and only one had N. tabacum chloroplasts. In contrast, using the same selection approach, numerous morphologically similar symmetric somatic hybrids with nuclear RFLPs and isozymes of both the parental species were recovered from control fusions between N. tabacum and the more closely related N. sylvestris. In spite of the low frequency of recovery of symmetric N. tabacum (+) N. megalosiphon hybrids in this study, one of these hybrids displayed a significant degree of self-fertility allowing for back-crosses to transfer N. megalosiphon disease-resistance traits to N. tabacum. Plant Research Centre Contribution No. 1579  相似文献   

12.
Summary Somatic hybrid plants regenerated following the fusion of leaf mesophyll protoplasts of Petunia parodii with those isolated from a cell suspension of albino P. inflata. These two species exhibit a unilateral cross-incompatability with a pre-zygotic mode of reproductive isolation preventing hybridizations with P. inflata as the maternal parent. Selection of somatic hybrids relied on the fact that unfused or homokaryon protoplasts of P. parodii did not develop beyond the cell colony stage while those of the putative somatic hybrids and albino P. inflata parent produced callus. Green somatic hybrid calluses were readily identified against the white background of P. inflata following complementation to chlorophyll synthesis proficiency and continued growth in hybrid cells. Shoots, and ultimately flowering plants, were identified as somatic hybrids based on their floral morphology and colour, chromosome number and the fact that they segregated for parental characters. The frequency of somatic hybrid production was comparable to that previously established for two sexually compatible Petunia species.  相似文献   

13.
Restriction fragment polymorphisms were used to identify and quantify the nuclear contributions from each parent to somatic hybrid plants between tomato (Lycopersicon esculentum Mill.) cv. Sub-Arctic Maxi and Solanum lycopersicoides Dun. Three single-copy clones, 2–13, 2–17, and 3–288, and a clone for the 45s ribosomal RNA, pHA2, all mapped to chromosome 2 of tomato, were used in analysis of 47 somatic hybrids. The amount of hybridizing probe for each parental band was quantified by densitometry of the autoradiograph film. Analyses with the three single-copy clones indicated that there were more than two S. lycopersicoides copies in most somatic hybrid plants. For at least one somatic hybrid there was a loss of one tomato copy. No evidence was found for more than two copies donated from tomato or loss of a copy from S. lycopersicoides. Most of the observed variation in copy number of the single-copy clones was consistent with chromosomal changes occurring in the suspension cells from which S. lycopersicoides parental protoplasts were derived.The number of copies of rDNA derived from each parent varied independently of the number of copies of single-copy clones from each parent. Changes in the copy number of rDNA occurred in both tomato and S. lycopersicoides genomes.  相似文献   

14.
Somatic hybrid plants produced by protoplast fusion between tetraploid Medicago sativa (2n= 4x=32) and the diploid species Medicago coerulea (2n= 2x=16) have been RFLP fingerprinted to establish their nuclear composition. Although all of the chromosomes were present, molecular analysis revealed an incomplete incorporation of the alleles of the diploid parent in the fusion products. In the polycross progeny the alleles of both parents segregated in a Mendelian mode. Cytological observations indicated that in the somatic hybrid population minor abnormalities are present; these are restricted mainly to the formation of univalents and lagging chromosomes. Meiosis appeared to be more stable than has been previously reported in the hexaploids of alfalfa. The somatic hybrids grown in the field had a rather vigorous aspect, particularly with respect to the vegetative organs. Forage yield was comparable to that of thmore productive parent. The results are discussed with a view to utilizing the somatic hybrids as starting material for breeding alfalfa at the hexaploid level.This paper was supported by the National Research Council of Italy, Special Project RAISA, Sub-project No.2 paper No. 1911  相似文献   

15.
Summary Intergeneric somatic hybrids Diplotaxis catholica (2n=18) + Brassica juncea (2n=36) were produced by fusing mesophyll protoplasts of the former and hypocotyl protoplasts of the latter using polyethylene glycol. Out of 52 somatic embryos, 24 produced plants of intermediate morphology. Cytological analysis of 16 plants indicated that 15 were symmetric hybrids carrying 54 chromosomes, the sum of the parental chromosome numbers. One hybrid was asymmetric with 45 chromosomes. Nuclear hybridity of five putative hybrids was confirmed by the Southern hybridization pattern of full length 18s-25s wheat nuclear rDNA probe which revealed the presence of Hind III fragments characteristic of both the parental species. The hybridization pattern of mitochondria specific gene probe cox I indicated that three of the hybrids carried B. juncea mitochondria and one carried mitochondria of D. catholica. Presence of novel 3.5 kb Hind III and 4.8 kb Bgl II fragments suggested the occurrence of mtDNA recombination in one of the hybrids. The hybrids were pollen sterile. However, seeds were obtained from most of the hybrids by back crossing with B. juncea.  相似文献   

16.
Fourteen somatic hybrids generated by electrofusion of mesophyll protoplasts from a non-flowering dihaploid S. tuberosum clone, DHAK-11, and a male-sterile dihaploid clone S. tuberosum, DHAK-33, were grown in the greenhouse and subjected to morphological assessments and tests for fertility and resistance to the white potato cyst nematode Globodera pallida pathotypes Pa2 and Pa3. The ploidy level of the hybrids ranged from 38 to 63 chromosomes. All hybrids developed flowers with violet petals except for one, hy-56, that possessed red petals. The colour of the tuber skin was purple in all hybrids except in hy-56 where the tuber skin was red. All of the hybrids were female fertile and generated viable seeds. Near-tetraploid hybrids produced the highest number of seeds per fruit and these seeds had a normal size. Hybrids with 58 or more chromosomes produced smaller seeds and less seeds per fruit. The germination frequency of the seeds was not influenced by the chromosome number of the hybrids. Pollen viability was determined and the male fertility of three hybrids was tested. Pollination with these three hybrids gave rise to fruit development, but only one produced viable seeds. The hybrids were tested for resistance to G. pallida pathotypes Pa2 and Pa3. A high level of resistance to Pa3, inherited from one parental clone, DHAK-11, and a high level of resistance to Pa2, inherited from the other parental clone, DHAK-33, was combined in four hybrids. These results demonstrate, that protoplast fusion is an efficient method for restoring the fertility of somatic hybrids generated from sterile parent clones, and is a powerful procedure for the complementation of multigenetic disease resistance traits in potato breeding lines.  相似文献   

17.
Summary Two somatic hybrid plants generated from a single fusion event between Lycopersicon esculentum and irradiated L. pennellii protoplasts have been analyzed at the molecular level. Over 30 loci have been analyzed using isozymes and RFLPs. All loci tested on chromosomes 2–10 were heterozygous, while those loci on chromosome 12 were homozygous L. pennellii in both somatic hybrids. In one of the somatic hybrids, 2850, loci on chromosome 1 were also homozygous L. pennellii. The other somatic hybrid, 28F5, was heterozygous at all chromosome 1 loci tested, but exhibited altered stoichiometry of parental bands as compared to the sexual hybrid. Loci on chromosome 2 from both somatic hybrids have altered stoichiometry, with L. pennellii alleles being four times more abundant than expected. Both somatic hybrids contain the L. esculentum chloroplast genome, while only L. pennellii polymorphisms have been detected in the mitochondrial genome.  相似文献   

18.
Intergeneric somatic hybrids have been produced between Brassica juncea (2n=36, AABB) cv. RLM-198 and Moricandia arvensis (2n=28, MM) by protoplast fusion. Hypocotyl protoplasts of B. juncea were fused with mesophyll protoplasts of M. arvensis using polyethylene glycol. Fusion frequency, estimated on the basis of differential morphological characterstics of parental protoplasts was about 5%. Of the 156 calli obtained, four calli produced shoots intermediate in morphology between the parents. Hybrid nature of the plants was confirmed using wheat nuclear rDNA probe. Hybridization of total DNA with a mitochondrial DNA probe carrying 5s–18s rRNA genes of maize showed that the mitochondria of the somatic hybrids were derived from the wild species M. arvensis. Meiosis in the only hybrid that produced normal flowers revealed the occurrence of 64 chromosomes, the sum of chromosomes of parental species. Inspite of complete pollen sterility, siliquas were produced in this hybrid by back-crossing with B. juncea. These siliquas on in vitro culture produced 12 seeds.  相似文献   

19.
Summary Somatic hybrid plants were regenerated following calcium-high pH fusion of the unidirectional, sexually incompatible cross of Petunia parodii wild-type leaf mesophyll protoplasts with protoplasts from a cytoplasmic determined chlorophyll-deficient mutant of P. inflata. Genic complementation to chlorophyll synthesis and sustained growth in the selective medium was used to visually identify hybrid calluses. Hybrid calluses were subsequently regenerated to shoots, rooted, and confirmed as somatic hybrids by their intermediate floral and leaf morphology based on comparison to the 2 n = 4 x = 28 sexual counterpart, dominant anthocyanin expression in the corolla, chromosome number, and peroxidase and maleic dehydrogenase isozyme patterns. Certain cytologically stable somatic hybrids displayed aberrant reproductive and floral morphologies including subtle to moderate corolla and leaf pigment variegation, floral dimension changes and reduced pollen viability. In contrast, cytologically unstable somatic hybrids showed various degrees of aneuploidy coupled with corolla splitting, and irregularities in reproductive organs such as double stigmas and styles in addition to reduced pollen viability. Postulated mechanisms to account for these phenotypic changes in stable and unstable somatic hybrids include nuclear-cytoplasmic genomic incompatibility, chromosome loss in a biparental cytoplasm, or a phenomenon similar to hybrid dysgenesis occurring as a result of somatic fusion.Michigan Agricultural Experiment Station Journal Article No. 11376. Supported by Grant No. I-134-79 from BARD — The United States — Israel Binational Agricultural Research and Development Fund, and by grant 11-77-4 from American Florists Endowment  相似文献   

20.
 A highly repeated sequence (C300) was cloned from Medicago coerulea and its organization in the M. sativa-coerulea-falcata complex, M. arborea, and three somatic hybrids involving M. sativa, was investigated. Southern-blot analysis revealed a tandemly repeated array and a species-specificity of the sequence to those species belonging to the complex. Various degrees of amplification of C300 were detected among the species of the complex and the outcome in the somatic hybrids was dependent on parental composition. Sequence analysis revealed strong homology (96%) of C300 with a clone (E180) previously isolated from M. sativa. As FISH analysis showed that C300 was dispersed along the chromosomes of Medicago spp., it should prove a valid tool for establishing the chromosome origin of somatic hybrids. Received: 14 April 1997 / Accepted: 18 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号