首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MnNC-1008(NN) (referred to as MN-1008) is a tetraploid alfalfa mutant with two recessive genes (nn 1 and nn 2 )conditioning the non-nodulating trait. The tetraploid level (2n=4x=32) of this Medicago sativa germ plasm was reduced to the diploid (2n=2x=16) level using the 4x-2x genetic cross originally described as a workable method for the induction of haploidy in alfalfa by T. E. Bingham. In our experiments more than 7000 emasculated flowers of a single non-nodulating MN-1008 mutant alfalfa plant with purple petals were cross-pollinated with pollen from a single, diploid, yellow-flowered alfalfa plant. Mature seeds from these crosses were collected and germinated, after which the plants were subjected to morphological and cytogenetic analyses as well as to DNA fingerprinting. Out of 26 viable progeny, 6 were hybrid plants, 19 proved to be self-mated derivatives of MN-1008, while one descendant turned out to be a diploid (2n=2x=16), purple flowered, non-nodulating plant denoted as M. sativa DN-1008. This diploid, non-nodulating alfalfa plant can serve as starting material to facilitate the comprehensive morphological, physiological and genetic analysis (gene mapping and cloning) of nodulation in order to learn more about the biology of the symbiotic root nodule development. To produce diploid, nodulating hybrid F1 plants, DN-1008 was crossed with a diploid, yellow-flowered M. sativa ssp. quasifalcata plant. An F2 population segregating the nn 1 and nn 2 genes in a diploid manner, in which the genetic analysis is more simple than in a tetraploid population, can be established by self-mating of the F1 plants.  相似文献   

2.
Summary A high frequency of paternal plastid transmission occurred in progeny from crosses among normal green alfalfa plants. Plastid transmission was analyzed by hybridization of radiolabeled alfalfa plastid DNA (cpDNA) probes to Southern blots of restriction digests of the progeny DNA. Each probe revealed a specific polymorphism differentiating the parental plastid genomes. Of 212 progeny, 34 were heteroplastidic, with their cpDNAs ranging from predominantly paternal to predominantly maternal. Regrowth of shoots from heteroplasmic plants following removal of top growth revealed the persistence of mixed plastids in a given plant. However, different shoots within a green heteroplasmic plant exhibited paternal, maternal, or mixed cpDNAs. Evidence of maternal nuclear genomic influence on the frequency of paternal plastid transmission was observed in some reciprocal crosses. A few tetraploid F1 progeny were obtained from tetraploid (2n=4x=32) Medicago sativa ssp. sativa x diploid (2n=2x=16) M. sativa ssp. falcata crosses, and resulted from unreduced gametes. Here more than the maternal genome alone apparently functioned in controlling plastid transmission. Considering all crosses, only 5 of 212 progeny cpDNAs lacked evidence of a definitive paternal plastid fragment.Contribution No. 89-524-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan  相似文献   

3.
Summary In the genus Medicago, it is known that 2n gametes have been important in the evolution and breeding of cultivated alfalfa, which is a natural polysomic polyploid (2n=4x=32), however little is known on the frequency of male and female 2n gametes in diploid relatives of alfalfa. To obtain data on the frequency of 2n gametes, more than 12,000 2x–4x and 4x–2x crosses were made in 1982 at Madison (USA). Diploid parents in crosses were from four populations of M. coerulea, two of M. falcata and one diploid population of cultivated M. sativa which was derived by haploidy. The tetraploid seed parent in the crosses was a male-sterile M. sativa clone and vigorous tetraploid M. sativa plants were used as pollen parents. Each of 274 diploid plants was utilized both as male and as female. Of the 548 cross combinations, 266 crosses produced variable quantities of seeds which were sown in 1983 in a greenhouse at Perugia (Italy); the plants were subsequently space transplanted in the field in 1984. The identification of ploidy level of these genotypes was made on the basis of morphological characters, plant fertility, pollen stainability and chromosome counts.Of the 515 plants analyzed, the majority behaved as normal tetraploids indicating that many diploid plants produced 2n gametes. Diplogynous and diplandrous gamete production was not correlated with each other, which indicated a different genetic control of 2n sporogenesis in the 2 sexes. Only 4 F1 triploid plants confirmed the presence of a very effective triploid block in alfalfa. In consequence, bilateral sexual polyploidization is a more likely alternative for the origin of tetraploid alfalfa than triploid bridges. The present study showed that it is possible to efficiently identify genotypes able to produce high frequencies of 2n gametes within natural populations of diploids Medicago that are useful in alfalfa breeding.Part of this study was conducted at the Agronomy Department, University of Wisconsin, Madison, Wis, USA, while one of us (F. Veronesi) was in receipt of financial assistance provided by the National Research Council of Italy; part was conducted at Centro di Studio per il Miglioramento Genetico delie Piante Foraggere, C.N.R., Perugia, Italy. The paper was presented at the Eucarpia Fodder Crops Section Meeting, Svalöv, Sweden, 16–19th September 1985  相似文献   

4.
Summary Intergeneric hybrids of Triticum aestivum (2n=42,AABBDD) with Agropyron ciliare (2n= 28,SSYY), A. trachycaulum (2n=28,SSHH), A. yezoense (2n=28,SSYY) and A. scirpeum (2n=28) are reported for the first time. F1 hybrids of T. aestivum were also produced with A. intermedium (2n=42,E1E1E2E2Z1Z1) and A. junceum (2n=14,JuJu). All wheat-Agropyron hybrids were obtained by embryo rescue technique. Cultivars and reciprocal crosses differed for seed set, seed development and F1 plant production. The F1 hybrids were sterile. Attempts to obtain amphiploids were unsuccessful. However, backcross derivatives were obtained with wheat as the recurrent parent.The level of chromosome pairing in A. trachycaulum x wheat, A. yezoense x wheat and wheat x A. junceum hybrids provided no evidence of homologous or homoeologous pairing. Mean pairing frequencies in A. ciliare x wheat, wheat x A. scirpeum and wheat x A. intermedium hybrids indicated homoeologous or autosyndetic pairing. Ph gene was more effective in regulating homoeologous pairing in A. yezoense x wheat hybrids than in A. ciliare x wheat hybrid. Chromosome pairing data of BC1 derivatives indicated that either some of the wheat chromosomes were eliminated or Agropyron chromosomes caused reduced pairing of wheat homologues.Contribution No. 82-653-J, Department of Plant Pathology, Kansas State Agricultural Experiment Station, Manhattan, Kan, USA  相似文献   

5.
Cultivated common bean (Phaseolus vulgaris L.) and tepary bean (Phaseolus acutifolius A. Gray) genotypes possessing desirable agronomic traits were hybridized. The F1 hybrids were backcrossed twice with the common bean (i.e., recurrent backcrossing). Also, alternate backcrosses with common and tepary beans (i.e., congruity backcrossing) were carried out. Embryo culture was necessary for all initial interspecific crosses, and its requirement was proportionally lower when the common bean was used as the recurrent parent and as the last parent of congruity backcrosses. Modification of the embryo culture technique was necessary to produce congruity hybrids. Effects of both tepary and common bean genotypes on the success rate of hybridization were observed. Tepary accession G 40001 and common bean cultivar ICA Pijao facilitated interspecies hybridization. Growth of hybrid embryos before rescue, recovery of mature hybrid plants, and the vigor and fertility of F1 hybrids all increased with increased recurrent and congruity backcrosses and intermatings between male-sterile F1 and selected fertile F2 plants of the third and fifth congruity backcrosses. Introgression of tepary genes was verified by means of seed protein electrophoretic analysis and morphological markers. The results suggest that congruity backcrossing can help to gradually reduce or overcome P. vulgaris x P. acutifolius hybridization barriers such as genotype incompatibility, early embryo abortion, hybrid sterility, and lower frequencies of hybridization.  相似文献   

6.
Summary A high efficiency of Hordeum bulbosum-mediated haploid production in barley has been achieved using a floret culture technique in which florets pollinated with Hordeum bulbosum are cultured on modified N6 media containing 0.5 mg/l kinetin and 1.2 mg/l2,4-D. Cultures were maintained at 25 °C with a 16 h photoperiod for 9 days before embryo rescue. In a comparison of haploid production efficiency using five F1 hybrids from winter x winter and winter x spring barley crosses, 41.6 haploid plants/100 florets pollinated were produced using floret culture. Using detached tiller culture, 13.5 haploid plants/100 florets pollinated were produced. Higher efficiencies achieved with floret culture are attributed to the formation of larger, differentiated embryos. Such embryos lead to higher frequencies of plant regeneration. The F1 from a winter x winter cross was inferior in haploid production compared to F1s from winter x spring crosses. No genotype x technique interaction was observed.Oregon Agricultural Experiment Station Technical Paper No. 8653  相似文献   

7.
Summary The frequency of aborted fruits and the changes and abnormalities that occur during the embryo development in intraspecific crosses of sweet-potato Ipomoea batatas (2n=6x=90) and interspecific crosses between I. batatas and I. trifida (2n=2x=30) were investigated in order to study the causes of the low seed production. Three genotypes of I. batatas and 18 genotypes of I. trifida were intermated. The frequency of aborted fruits was below 25% in the intraspecific crosses and over 90% in the interspecific crosses. Paraffin sections were used to examine the developmental stages of fruits and seeds. Embryos in different developmental stages were observed to determine the stage of abortion. These observations permitted the identification of developmental stages of embryo rescue in interspecific crosses. There were no significant differences in the frequency of embryo abortion before the early globular stage among female sweet-potato progenitors for the intraspecific and interspecific crosses. The frequency of the late occurrence of embryo abortion (when embryo abortion occurs after the pre-globular stage) was higher in interspecific crosses (19.1%) than in intraspecific crosses (5.5%). The frequency of the late occurrence of embryo abortion in interspecific crosses was higher at the globular stage (9.6%) than at the heart stage (4.3%). Providing that embryo rescue is conducted in interspecific crosses, the estimated number of potentially viable embryos could be increased: 30 times with embryos at the globular stage; 20 times with embryos at the heart stage; and 11 times if embryos at the torpedo stage were used for the rescue with respect to the seed set. The results suggested that the appropriate time for embryo rescue in interspecific crosses is at the globular stage. If embryos could be rescued at the globular stage, it would be possible to increase the number of surviving embryos up to 30 times in interspecific crosses and 0.02 times in intraspecific crosses with respect to natural conditions without embryo rescue.This research was initiated during sabbatical of M.I. at the Asian Vegetable Research and Development Center (AVRDC) in Taiwan  相似文献   

8.
Oryza australiensis, a diploid wild relative of cultivated rice, is an important source of resistance to brown planthopper (BPH) and bacterial blight (BB). Interspecific hybrids between three breeding lines of O. sativa (2n=24, AA) and four accessions of O. australiensis (2n=24, EE) were obtained through embryo rescue. The crossability ranged from 0.25% to 0.90%. The mean frequency of bivalents at diakinesis/metaphase I in F1 hybrids (AE) was 2.29 to 4.85 with a range of 0–8 bivalents. F1 hybrids were completely male sterile. We did not obtain any BC1 progenies even after pollinating 20,234 spikelets of AE hybrids with O. sativa pollen. We crossed the artificially induced autotetraploid of an elite breeding line (IR31917-45-3-2) with O. australiensis (Acc. 100882) and, following embryo rescue, produced six F1 hybrid plants (AAE). These triploid hybrids were backcrossed to O. sativa. The chromosome number of 16 BC1 plants varied from 28 to 31, and all were male sterile. BC2 plants had 24–28 chromosomes. Eight monosomic alien addition lines (MAALs) having a 2n chromosome complement of O. sativa and one chromosome of O. australiensis were selected from the BC2 F2 progenies. The MAALs resembled the primary trisomies of O. sativa in morphology, and on the basis of this morphological similarity the MAALs were designated as MAAL-1, -4, -5, -7, -9, -10, -11, and -12. The identity of the alien chromosome was verified at the pachytene stage of meiosis. The alien chromosomes paired with the homoeologous pairs to form trivalents at a frequency of 13.2% to 24.0% at diakinesis and 7.5% to 18.5% at metaphase I. The female transmission rates of alien chromosomes varied from 4.2% to 37.2%, whereas three of the eight MAALs transmitted the alien chromosome through the male gametes. BC2 progenies consisting of disomic and aneuploid plants were examined for the presence of O. australiensis traits. Alien introgression was detected for morphological traits, such as long awns, earliness, and Amp-3 and Est-2 allozymes. Of the 600 BC2 F4 progenies 4 were resistant to BPH and 1 to race 6 of BB. F3 segregation data suggest that earliness is a recessive trait and that BPH resistance is monogenic recessive in two of the four lines but controlled by a dominant gene in the other two lines.  相似文献   

9.
Somatic hybrid plants produced by protoplast fusion between tetraploid Medicago sativa (2n= 4x=32) and the diploid species Medicago coerulea (2n= 2x=16) have been RFLP fingerprinted to establish their nuclear composition. Although all of the chromosomes were present, molecular analysis revealed an incomplete incorporation of the alleles of the diploid parent in the fusion products. In the polycross progeny the alleles of both parents segregated in a Mendelian mode. Cytological observations indicated that in the somatic hybrid population minor abnormalities are present; these are restricted mainly to the formation of univalents and lagging chromosomes. Meiosis appeared to be more stable than has been previously reported in the hexaploids of alfalfa. The somatic hybrids grown in the field had a rather vigorous aspect, particularly with respect to the vegetative organs. Forage yield was comparable to that of thmore productive parent. The results are discussed with a view to utilizing the somatic hybrids as starting material for breeding alfalfa at the hexaploid level.This paper was supported by the National Research Council of Italy, Special Project RAISA, Sub-project No.2 paper No. 1911  相似文献   

10.
Summary Interspecific hybrids of the mungbean, Vigna radiata (L.) Wilczek (2n=22) and V. glabrescens (2n=44) were generated with the aid of embryo culture. V. glabrescens x V. radiata hybrids were recovered via germination of the immature embryos. Reciprocal hybrids were obtained via shoot formation from embryonic callus. The authenticity of the hybrids was determined by morphological characteristics, chromosome number, and isozyme patterns. The hybrids were highly sterile upon selfing, but backcrossing to the diploid parent yielded viable seeds. Some of the plants resembled the diploid parent morphologically while others resembled neither parent. The backcross plants were sufficiently fertile to give a large number of mature, selfed seeds. Plants obtained differed morphologically and in their isozyme patterns from either parent, indicating introgression. These progeny populations will be used as bridging materials to transfer pest resistance from the wild tetraploid to the cultivated mungbean.  相似文献   

11.
Summary The potential breeding value of 2n gametes from diploid alfalfa (2n = 2x = 16) was tested by comparing single cross alfalfa hybrids produced via 2n = 2x gametes from diploids versus n = 2x gametes from somatic-chromosome-doubled, tetraploid counterparts. Three diploid clones, designated 2x-(rprp), homozygous for the gene rp (conditions 2n gamete formation by a first division restitution mechanism) were colchicine-doubled to produce their tetraploid counterparts, designated 4x-(SCD). These six clones were crossed as males to the same cytoplasmic male sterile clone. Yield comparisons of progeny from the six clones demonstrated a significant yield increase of the hybrid progeny from 2n = 2x gametes from the diploids over the hybrid progeny from n = 2x gametes from the chromosome doubled tetraploid counterparts. The yield gain ranged from a 12% increase to a 32% increase. Theoretical comparisons indicated the 2n = 2x gametes from diploids would have 12.5 to 50% more heterozygous loci, on average, than the n = 2x gametes derived from somatic doubling. These results confirm the importance of heterozygosity on alfalfa yield, and the results demonstrate that 2n gametes formed by first division restitution offer a unique method for producing highly heterotic alfalfa hybrids.  相似文献   

12.
Non-embryogenic protoplasts of Medicago rugosa and M. scutellata were electro-fused with iodoacetic acid-treated protoplasts of M. sativa (alfalfa). Putative somatic hybrid callus were obtained and some plants regenerated from both combinations. Hybridity of regenerants was confirmed by morphology, molecular means and cytological observations. Parental specific bands were recognized in somatic hybrids by Southern analysis. The somatic hybrids were perennial and their morphology was similar to M. sativa. Cytological observations were carried out on the somatic hybrids, their vegetative clones and self-pollinated offspring. Original somatic hybrids were aneuploids (2n=31–59), but during vegetative proliferation, their chromosome numbers reduced to 32. Those clones of hybrids formed seeds from M. sativa (+) M. rugosa by self-crossing. Chromosomal rearrangements within the parental genomes were observed in vegetative clones of hybrids and their S1 offspring by Genomic in situ Hybridization (GISH). Some of S1 offspring from M. sativa (+) M. rugosa showed better spring growth than parental M. sativa and tend to be tolerant to Alfalfa weevil. It was considered that these traits were introduced from the genome transferring M.␣rugosa chromosome to M. sativa. The cell fusion may still have a potential in transferring alien chromosomes in order to increase the genetic variation for crop breeding.  相似文献   

13.
Wide crosses have been used for decades as a method for transferring novel genetic material and traits in plant breeding. Historically, many products of wide crosses require tedious and inefficient surgical embryo rescue prior to embryo abortion to recover single plantlets. We have utilized transgenic switchgrass (Panicum virgatum L. cv Alamo) as a pollen donor in conjunction with antibiotic or herbicide selection for recovery of intra‐and interspecific F1 crosses by using developing ovules from the female parent and selecting for embryogenic cultures derived from the in situ immature embryo. Using this approach, several intravarietial crosses were generated between transgenic Alamo and the switchgrass varieties Kanlow, Blackwell and Cave ‐ in ‐ Rock as well as an interspecific cross with Atlantic coastal panicgrass. This procedure selected F1 embryogenic callus produced from the developing embryo contained within isolated immature ovules. Several clonal plants were successfully regenerated from each cross. Southern blot, PCR, phenotypic analyses and genomic analysis confirmed F1 hybrids. Using genotyping‐by‐sequencing shows the hybridization of the recovered plants by determining the ratio of transgressive markers to total compared markers between parents and their potential offspring. The ratio of transgressive markers to total compared markers was significantly lower between parents and their predicted offspring than between parents and offspring unrelated to them. This approach provides the possibility to move useful transgenes into varieties that are recalcitrant to direct transformation which can be optionally segregated thus useful to create new hybrids, as well as recovery of wide crosses that are either difficult or impossible using traditional techniques.  相似文献   

14.
Summary Tetraploid F1 hybrids between Ipomoea batatas, sweet potato (2n = 6x = ca. 90), and diploid (2n = 2x = 30) I. trifida (H. B. K.) Don. showed various degrees of fertility reduction. The present study aimed to clarify its causes by cytological analysis of meiotic chromosome behavior in the diploid and sweet potato parents and their tetraploid hybrids. The diploid parents showed exclusively 15 bivalents, and the sweet potato parents exhibited almost perfect chromosome pairing along with predominant multivalent formation. Their hybrids (2n = 4x= 57–63) formed 2.6–5.0 quadrivalents per cell, supporting the autotetraploid nature. The meiotic aberratios of the hybrids were characterized by the formation of univalents, micronuclei, and abnormal sporads (monad, dyad, triad, and polyad). The causes underlying these aberrations were attributed in part to the multivalent formation, and in part to a disturbance in the spindle function. Three hybrids showing serious meiotic aberrations were very low in fertility. The utilization of the sweet potato-diploid I. trifida hybrids for sweet potato improvement is described and, further, the role of interploidy hybridization in the study of the sweet potato evolution is discussed.  相似文献   

15.
Summary Interspecific hybrids and amphidiploids of Nicotiana knightiana Goodspeed (n= 12)x N. umbratica Burbidge (n = 23) resembled either parent in some characters and were intermediate in other characters. The F1 hybrids (2n = 35) showed mostly univalents during meiosis, while the amphidiploids (2n = 70) formed bivalents almost regularly. The former were completely sterile and the latter fully male fertile but predominantly female sterile. This female sterility was due to disintegration of the embryo sacs leading to collapsed ovules. The few fertile ovules, however, showed normal development of embryo sac and embryo. The occurrence of fertile and sterile ovules was believed to be due to segregation of the genes governing sterility.  相似文献   

16.
Summary Interspecific crosses of Hordeum brachyantherum (2n = 28) and H. depressum (2n = 28) with H. bulbosum (2n = 14 or 28) and H. vulgare (2n = 14 or 28) were made. Crosses between brachyantherum and diploid bulbosum resulted in dihaploids (2n = 14) of brachyantherum and hybrids (2n = 21), whilst the crosses of brachyantherum by tetraploid bulbosum or vulgare gave hybrid progeny. Similarly, crosses between H. depressum and diploid bulbosum resulted in dihaploids (2n = 14) of depressum and hybrids (2n = 21), whereas depressum by tetraploid bulbosum or vulgare invariably produced hybrids.Cytological observations on 12 day old embryos obtained from these crosses revealed chromosome variability down to 14 in crosses with diploid bulbosum indicating thereby that chromosome elimination leads to haploid formation. Embryonic cells from the brachyantherum by diploid vulgare cross also exhibited a certain degree of chromosomal instability as micronuclei.The results indicate that the ratio of parental genomes in the zygote determines whether haploids or hybrids will be produced in crosses of brachyantherum or depressum with bulbosum. Furthermore, brachyantherum appears to be more efficient in eliminating bulbosum chromosomes in comparison with depressum.  相似文献   

17.
Summary More than 28,000 pollinations were carried out between 5 Ipomoea batatas and 41 diploid I. trifida accessions of diverse origins to obtain 4x interspecific hybrids. From the resultant 730 seeds, 248 plants were finally obtained. Ploidy level determination of the progeny showed unexpected results: 52 individuals were hexaploid, 5 were pentaploid, 190 were tetraploid, as expected, and one was not determined. The existence of 5x and 6x progenies from 6x x 2x crosses not only confirmed the presence of 2n gametes but also their successful function in gene flow between ploidy levels and polyploidization within this genus. The progeny and their cultivated parents were planted in an observation field. The cultivated parents produced 0.49 kg/plant or less. Most 4x progenies did not produce storage roots or had very poor yields; nonetheless, and despite their cultivated parents' poor yields, 8 genotypes yielded between 0.81 and 1.50 kg/plant.A new scheme, using the 4x interspecific hybrids, is proposed for evaluating 2x and 4x wild accessions of the section Batatas to which the sweet potato belongs. Other possible uses of the 4x hybrids in breeding and genetics of the sweet potato are also discussed.  相似文献   

18.
Summary A direct comparison of microspore culture and anther culture was made in Brassica napus using F1 crosses of Regent (canola) by Golden (rapeseed), and their reciprocals, as well as a hybrid between Reston and a highly embryogenic, canola-quality breeding line (G231) as donor plants. The study confirmed that microspore culture can be ten times more efficient than anther culture for embryo production. Embryo yields from cultures initiated from the Reston x G231 were four-fold greater than those initiated from the Regent x Golden crosses, and significant differences were also detected among cultures initiated from the different Regent x Golden crosses. These results illustrate the influence that donor plant genotype has on embryo production. However, superior embryogenic potential among donor material was not always coincident with superior plant production. The average haploid-todiploid ratio in microspore-derived regenerates was 21 for the population obtained from the Regent x Golden crosses but 11 for the Reston x G231 cross. For both types of material, the frequency of diploids increased upon repeated cycles of explanting. A field study showed that there were no differences between the populations of anther-derived and microspore-derived spontaneous diploid and doubled haploid lines, with respect to the days required for them to flower or to mature. The information is valuable for canola breeding programs considering the use of haploidy.  相似文献   

19.
Summary Intergeneric hybrids between Triticum aestivum cv Chinese Spring (2n=6x=42, AABBDD) and Agropyron michnoi Roshev. (2n=4x=28, PPPP) were obtained by embryo culture. Their spike characteristics were similar to those of common wheat but, unlike their parents, they were long-awned. The average meiotic chromosome pairing at MI of F1 hybrids was: 6.39 I +3.75 rodII+8.64 ringII+0.81 III+0.30 IV+0.04 V, the bivalent and multivalent formation of which was much higher than expected from the genomic formulae. It is especially worthwhile to note that the F1 hybrids were self-fertile, self set being 0.15%, and seeds were easily obtained from the backcross of f1 plants with hexaploid and tetraploid wheats; here the seed set was more than 20.0%. The polyploid taxa and the position of A. Michnoi in Agropyron are discussed.  相似文献   

20.
Summary Pearl millet, Pennisetum americanum L. Leeke-napiergrass, Pennisetum purpureum Schum. amphiploids (2n=42) were crossed with pearl millet X Pennisetum squamulatum Fresen. interspecific hybrids (2n=41) to study the potential of germplasm transfer from wild Pennisetum species to pearl millet. These two interspecific hybrids were highly cross-compatible and more than two thousand trispecific progenies were produced from 17 double crosses. All doublecross hybrids were perennial and showed a wide range of morphological variations intermediate to both parents in vegetative and inflorescence characteristics. Some crosses resulted in sublethal progenies. Chromosomes paired mainly as bivalents (¯x15.88) or remained as univalents. At metaphase I, trivalents, quadrivalents, an occasional hexavalent and a high frequency of bivalents indicated some homeology among the genomes of the three species. Delayed separation of bivalents, unequal segregation of multivalents, lagging chromosomes, and chromatin bridges were observed at anaphase I. Although approximately 93% of the double-cross hybrids were male-sterile, pollen stainability in male-fertile plants ranged up to 94%. Seed set ranged from 0 to 37 seed per inflorescence in 71 plants under open-pollinated conditions. Apomictic embryo sac development was observed in double-cross progenies when crosses involved a pearl millet x P. squamulatum apomictic hybrid as pollen parent. These new double-cross hybrids may serve as bridging hybrids to transfer genes controlling apomixis and other plant characteristics from the wild Pennisetum species to pearl millet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号