首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo analyze electromyographic (EMG) patterns and isokinetic muscle performance of shoulder abduction movement in individuals who sustained a cerebrovascular accident (CVA).DesignTwenty-two individuals who sustained a CVA and 22 healthy subjects volunteered for EMG activity and isokinetic shoulder abduction assessments. EMG onset time, root mean square (RMS) for upper trapezius and deltoid muscles, as well as the isokinetic variables of peak torque, total work, average power and acceleration time were compared between limbs and groups.ResultsThe paretic side showed a different onset activation pattern in shoulder abduction, along with a lower RMS for both muscles (21.8 ± 13.4% of the maximal voluntary isometric contraction (MVIC) for the deltoid and 25.9 ± 15.3% MVIC for the upper trapezius, about 50% lower than the control group). The non-paretic side showed a delay in both muscles activation and a lower RMS for the deltoid (32.2 ± 13.7% MVIC, about 25% lower than the control group). Both sides of the group of individuals who sustained a CVA presented a significantly lower isokinetic performance compared to the control group (paretic side ~60% lower; non-paretic side ~35% lower).ConclusionsShoulder abduction muscle performance is impaired in both paretic and non-paretic limbs of individuals who sustained a CVA.  相似文献   

2.
This study investigated whether pain-induced changes in cervical muscle activation affect myoelectric manifestations of cervical muscle fatigue. Surface EMG signals were detected from the sternocleidomastoid and splenius capitis muscles bilaterally from 14 healthy subjects during 20-s cervical flexion contractions at 25% of the maximal force. Measurements were performed before and after the injection of 0.5 ml of hypertonic (painful) or isotonic (control) saline into either the sternocleidomastoid or splenius capitis in two experimental sessions. EMG average rectified value and mean power spectral frequency were estimated throughout the sustained contraction. Sternocleidomastoid or splenius capitis muscle pain resulted in lower sternocleidomastoid EMG average rectified value on the side of pain (P < 0.01). However, changes over time of sternocleidomastoid EMG average rectified value and mean frequency (myoelectric manifestations of fatigue) during sustained flexion were not changed during muscle pain. These results demonstrate that pain-induced modifications of cervical muscle activity do not change myoelectric manifestations of fatigue. This finding has implications for interpreting the mechanisms underlying greater cervical muscle fatigue in people with neck pain disorders.  相似文献   

3.
Motor control and learning possibilities of scapular muscles are of clinical interest for restoring scapular muscle balance in patients with neck and shoulder disorders. The aim of the study was to investigate whether selective voluntary activation of intra-muscular parts within the serratus anterior can be learned with electromyographical (EMG) biofeedback, and whether the lower serratus anterior and the lower trapezius muscle comprise the lower scapula rotation force couple by synergistic activation. Nine healthy males practiced selective activation of intra-muscular parts within the serratus anterior with visual EMG biofeedback, while the activity of four parts of the serratus anterior and four parts of the trapezius muscle was recorded. One subject was able to selectively activate both the upper and the lower serratus anterior respectively. Moreover, three subjects managed to selectively activate the lower serratus anterior, and two subjects learned to selectively activate the upper serratus anterior. During selective activation of the lower serratus anterior, the activity of this muscle part was 14.4 ± 10.3 times higher than the upper serratus anterior activity (P < 0.05). The corresponding ratio for selective upper serratus vs. lower serratus anterior activity was 6.4 ± 1.7 (P < 0.05). Moreover, selective activation of the lower parts of the serratus anterior evoked 7.7 ± 8.5 times higher synergistic activity of the lower trapezius compared with the upper trapezius (P < 0.05). The learning of complete selective activation of both the lower and the upper serratus anterior of one subject, and selective activation of either the upper or lower serratus anterior by five subjects designates the promising clinical application of EMG biofeedback for restoring scapular muscle balance. The synergistic activation between the lower serratus anterior and the lower trapezius muscle was observed in only a few subjects, and future studies including more subjects are required before conclusions of a lower scapula rotation couple can be drawn.  相似文献   

4.
The aims of this study were to examine if surface EMG signals can be detected from the quadriceps femoris muscle of severely obese patients and to investigate if differences exist in quadriceps force and myoelectric manifestations of fatigue between obese patients and lean controls.Fourteen severely obese patients (body mass index, BMI, mean ± SD: 44.9 ± 6.3 kg/m2) and fourteen healthy controls (BMI: 23.7 ± 2.5 kg/m2) were studied. The vastus medialis and lateralis of the dominant thigh were concurrently investigated during voluntary isometric contractions (10-s long at submaximal and maximal intensities and intermittent submaximal contractions until exhaustion) and sustained (120-s long) electrically elicited contractions.We found that the detection of surface EMG signals from the quadriceps is feasible also in severely obese subjects presenting increased thickness of the subcutaneous fat tissue. In addition, we confirmed and extended previous findings showing that the volume conductor properties determine the amplitude and spectral features of the detected surface EMG signals: the lower the subcutaneous tissue thickness, the higher the amplitude and mean frequency estimates. Further, we found no differences in the mechanical and myoelectric manifestations of fatigue during intermittent voluntary and sustained electrically elicited contractions between obese patients and lean controls.  相似文献   

5.
The purpose of the study was to explore changes in the spatial distribution of erector spinae electromyography amplitude during static, sustained contractions and during contractions of increasing load. Surface electromyographic (EMG) signals were detected from nine healthy subjects using a grid of 13 × 5 electrodes placed unilaterally over the lumbar erector spinae musculature. Subjects stood in a 20° forward flexed position and performed: (1) six 20-s long contractions with loads ranging from 2.5 kg to 12.5 kg (2.5 kg increments) and (2) a 6 min sustained contraction with 7.5 kg load. Root mean square (RMS) and mean power spectral frequency (MNF) were computed from the recorded EMG signals. EMG RMS increased (P < 0.0001) and MNF remained constant during contractions of increased load. During the sustained contraction, MNF decreased (P < 0.0001) and RMS did not change over time. The centroid (center of activity) of the RMS map shifted caudally (P < 0.0001) with time during the sustained contraction but did not change with varying load. These results suggest a change in the distribution of erector spinae muscle activity with fatigue and a uniform distribution of muscle activation across loads.  相似文献   

6.
IntroductionWe aimed to determine whether the changes in muscle activity (in terms of both gross electromyography (EMG) and motor unit (MU) discharge characteristics) observed during pain are spatially organized with respect to pain location within a muscle which is the main contributor of the task.MethodsSurface and fine-wire EMG was recorded during matched low-force isometric plantarflexion from soleus (from four quadrants with fine-wire EMG and from the medial/lateral sides with surface EMG), both gastrocnemii heads, peroneus longus, and tibialis anterior. Four conditions were tested: two control conditions that each preceded contractions with pain induced in either the lateral (PainL) or medial (PainM) side of soleus.ResultsNeither the presence (p = 0.28) nor location (p = 0.19) of pain significantly altered gross muscle activity of any location (lateral/medial side of soleus, gastrocnemii, peroneus longus and tibialis anterior). Group data from 196 MUs show redistribution of MU activity throughout the four quadrants of soleus, irrespective of pain location. The significant decrease of MU discharge rate during pain (p < 0.0001; PainL: 7.3 ± 0.9–6.9 ± 1.1 Hz, PainM: 7.0 ± 1.1 to 6.6 ± 1.1 Hz) was similar for all quadrants of the soleus (p = 0.43), regardless of the pain location (p = 0.98). There was large inter-participant variation in respect to the characteristics of the altered MU discharge with pain.ConclusionResults from both surface and fine-wire EMG recordings do not support the hypothesis that muscle activity is reorganized in a simple systematic manner with respect to pain location.  相似文献   

7.
Vaginal probes may induce changes in pelvic floor muscle (PFM) recruitment by the very presence of the probes. Fine-wire electrodes allow us to detect muscle activation parameters without altering the natural position and shape of the PFMs. The purpose of this study was to determine whether PFM activation is altered by changes in sensory feedback, muscle length or tissue position caused by two different vaginal probes used to record surface electromyography (EMG). Twelve continent women (30.1 ± 5.4 years), performed PFM maximal voluntary contractions (MVCs) in supine while fine-wire EMG was recorded bilaterally from the PFMs under three conditions: (a) without any probe inserted into the vagina, (b) while a Femiscan? probe was in situ, and (c) while a Periform? vaginal probe was in situ. The reliability of the fine wire EMG data was assessed using intra-class correlation coefficients (ICCs) and coefficients of variation (CV). A repeated measures analysis of variance (ANOVA) model was used to determine if there were differences in EMG amplitude recorded when the different vaginal probes were in situ. For each condition the between-trial reliability was excellent, ICC(3,1) = 0.93–0.96, (p < 0.001) and CV = 11.2–21.8%. There were no differences in peak EMG amplitude recorded during the MVCs across the three conditions (no probe 63.4 ± 48.4 μV, Femiscan? 55.3 ± 42.4 μV, Periform? 59.4 ± 42.2 μV, p = 0.178). These results suggest that women produce consistent MVCs over multiple contractions, and that PFM muscle activation is not affected by different probes inserted into the vagina.  相似文献   

8.
Interhemispheric connections have been demonstrated between the motor cortex controlling muscle pairs. However, these investigations have tended to concentrate upon hand muscles. We have extended these investigations to proximal muscles that control the scapula upon the trunk and help to move and stabilise the shoulder. Using a paired pulse transcranial magnetic stimulation protocol, the interhemispheric interactions between different shoulder girdle muscle pairs, serratus anterior, upper trapezius and lower trapezius were investigated. Test motor evoked potentials were conditioned using conditioning pulse intensities of 80% and 120% of active motor threshold at three different condition-test intervals, during three different tasks. Interhemispheric inhibition was observed in upper trapezius using a conditioning intensity of 120% and condition-test interval of 8 ms (17 ± 18%, p < 0.007). A trend towards inhibition was observed in lower trapezius and serratus anterior using a conditioning intensity of 120% and a condition-test interval of 8 ms (13 ± 22%; p < 0.07 and 10 ± 19% respectively; p < 0.07). No interhemispheric facilitation was evoked. The study demonstrates that a low level of interhemispheric inhibition rather than interhemispheric facilitation could be evoked between these muscle pairs.  相似文献   

9.
Subjects reporting neck/shoulder pain have been shown to generate less force during maximal voluntary isometric contractions (MVC) of the shoulder muscles compared to healthy controls. This has been suggested to be caused by a pain-related decrease in voluntary activation (VA) rather than lack of muscle mass. The aim of the present study was to investigate VA of the trapezius muscle during MVCs in subjects with and without neck/shoulder pain by use of the twitch interpolation technique.Ten cases suffering from pain and ten age and gender matched, healthy controls were included in the study. Upper trapezius muscle thickness was measured using ultrasonography and pain intensity was measured on a 100 mm visual analog scale (VAS). VA was calculated from five maximal muscle activation attempts. Superimposed stimuli were delivered to the accessory nerve at peak force and during a 2% MVC following the maximal contraction.Presented as mean ± SD for cases and controls, respectively: VAS; 16.0 ± 14.4 mm and 2.1 ± 4.1 mm (P = 0.004), MVC; 545 ± 161 N and 664 ± 195 N (P = 0.016), upper trapezius muscle thickness; 10.9 ± 1.9 mm and 10.4 ± 1.5 mm (P = 0.20), VA; 93.6 ± 14.2% and 96.3 ± 6.0% (P = 0.29).In spite of significantly eight-fold higher pain intensity and ∼20% lower MVC for cases compared to controls, no difference was found in VA. Possible explanations for the reduction in MVC could be differences in co-activation of antagonists and synergists as well as muscle quality.  相似文献   

10.
The purpose of this experiment was to obtain electromyographic (EMG) activity from a sample of healthy shoulders to allow a reference database to be developed and used for comparison with pathological shoulders. Temporal and intensity shoulder muscle activation characteristics during a coronal plane abduction/adduction movement were evaluated in the dominant healthy shoulder of 24 subjects. Surface and intramuscular fine wire electrodes recorded EMG activity from 15 shoulder muscles (deltoid × 3, trapezius × 3, subscapularis × 2, latissimus dorsi, pectoralis major, pectoralis minor, supraspinatus, infraspinatus, serratus anterior and rhomboids) at 2000 Hz for 10 s whilst each subject performed 10 dynamic coronal plane abduction/adduction movements from 0° to 166° to 0° with a light dumbbell. Results revealed that supraspinatus (?.102 s before movement onset) initiated the movement with middle trapezius (?.019 s) and middle deltoid (?.014 s) also activated before the movement onset. Similar patterns were also found in the time of peak amplitude and %MVC with a pattern emerging where the prime movers (supraspinatus and middle deltoid) were among the first to reach peak amplitude or display the highest %MVC values. In conclusion, the most reproducible patterns of activation arose from the more prime mover muscle sites in all EMG variables analysed and although variability was present, there emerged ‘invariant characteristics’ that were considered ‘normal’ for this group of non pathological shoulders. The authors believe that the methodology and certain parts of the analysis in this study can be duplicated and used by future researchers who require a reference database of muscle activity for use as a control group in comparisons to their respective pathological shoulder group.  相似文献   

11.
Work related musculoskeletal disorders (WMSDs) are common among dentists and possibly caused by prolonged static load. The aim of this study was to assess the contraction pattern of neck and shoulder muscles of orthodontists in natural environments.Electromyographic (EMG) activity of right sternocleidomastoid and trapezius muscles were recorded by means of portable recorders in eight orthodontists during working conditions, and both active and resting non-working conditions. Recordings were analysed in terms of contraction episode (CE) count, amplitude, and duration.The sternocleidomastoid and trapezius muscles contracted about 40–70 times per hour in the natural environment. Their EMG activity pattern mainly consisted of short-lasting, low-amplitude CEs. The counts and amplitude of sternocleidomastoid CEs did not differ across vocational and non-vocational conditions. The number and amplitude of trapezius CEs were slightly but significantly higher during the vocational condition. There were highly significant (p < 0.001) differences in duration of CEs across conditions, with two to threefold increase in the average duration of trapezius muscle contractions found in the vocational setting.During orthodontic work, operators commonly hold muscular contractions for significantly longer periods than are encountered in non-vocational settings. This behaviour may be associated causally with the increases seen in WMSDs through proposed pathophysiological mechanisms occurring at the motor unit level. Our findings may also be valid for other occupations characterised by seated static postures with precision hand and wrist movements.  相似文献   

12.
The aim of this study was to assess H-reflex plasticity and activation pattern of the plantar flexors during a sustained contraction where voluntary EMG activity was controlled via an EMG biofeedback. Twelve healthy males (28.0 ± 4.8 yr) performed a sustained isometric plantar flexion while instructed to maintain summed EMG root mean square (RMS) of gastrocnemius lateralis (GL) and gastrocnemius medialis (GM) muscles fixed at a target corresponding to 80% maximal voluntary contraction torque via an EMG biofeedback. Transcutaneous electrical stimulation of the posterior tibial nerve was evoked during the contraction to obtain the maximal H-reflex amplitude to maximal M-wave amplitude ratio (Hsup/Msup ratio) from GL, GM and soleus (SOL) muscles. Neuromuscular function was also assessed before and immediately after exercise. Results showed a decrease in SOL activation during sustained flexion (from 65.5 ± 6.4% to 42.3 ± 3.8% maximal EMG, p < 0.001), whereas summed EMG RMS of GL and GM remained constant (59.7 ± 4.8% of maximal EMG on average). No significant change in the Hsup/Msup ratio was found for SOL, GL and GM muscles. Furthermore, it appears that the decrease in maximal voluntary contraction torque (?20.4 ± 2.9%, p < 0.001) was related to both neural and contractile impairment. Overall, these findings indicate that the balance between excitation and inhibition affecting the motoneuron pool remains constant during a sustained contraction where myoelectrical activity is controlled via an EMG biofeedback or let free to vary.  相似文献   

13.
Functional shoulder assessments require the use of objective and reliable standardized outcome measures. Therefore, the aim of this study was to examine the between-day reliability of a hand-held dynamometer when measuring muscle strength during flexion, abduction, and internal and external rotation as well as surface electromyography (EMG) when measuring muscle activity from m. trapezius superior and deltoideus anterior. Twenty-four healthy subjects participated and performed four isometric contractions measured with a hand-held dynamometer and EMG. Both relative and absolute reliability were calculated based on the mean of the last three of the four repetitions. EMG amplitude was assessed calculating both absolute and normalized root-mean-square (RMS) values. The reliability of the hand-held dynamometer was high (LOA = 3.2–7.6% and ICC = 0.89–0.98). The absolute reliability for EMG showed similar results for absolute RMS values (LOA = 20.0–68.4%) and normalized RMS values (LOA = 42.4–66.5%). However, the results concerning the relative reliability showed higher ICC for absolute RMS values (ICC = 0.82–0.92) compared with normalized values (ICC = 0.57–0.72).The outcome measurements of this study with healthy subjects were found reliable and, therefore, have the potential to detect changes in muscle strength and muscle activity.  相似文献   

14.
This study investigated the effect of prolonged walking with load carriage on muscle activity and fatigue in children. Fifteen Chinese male children (age = 6 years, height = 120.0 ± 5.4 cm, mass = 22.9 ± 2.6 kg) performed 20-min walking trials on treadmill (speed = 1.1 m s−1) with different backpack loads (0%, 10%, 15% and 20% body weight). Electromyography (EMG) signals from upper trapezius (UT), lower trapezius (LT) and rectus abdominis (RA) were recorded at several time intervals (0, 5, 10, 15 and 20 min), and were normalized to the signals collected during maximum voluntary contraction. Integrated EMG signal (IEMG) was calculated to evaluate the muscle activity. Power spectral frequency analysis was applied to evaluate muscle fatigue by the shift of median power frequency (MPF). Results showed that a 15% body weight (BW) load significantly increased muscle activity at lower trapezius when the walking time reached 15 min. When a 20% BW load was being carried, increase in muscle activity was found from 5 min, and muscle fatigue was found from 15 min. In upper trapezius, increase of muscle activity was not found within the 20-min period, however, muscle fatigue was found from 10 min. No increased muscle activity or muscle fatigue was found in rectus abdominis. It is suggested that backpack loads for children should be restricted to no more than 15% body weight for walks of up to 20 min duration to avoid muscle fatigue.  相似文献   

15.
Residual force enhancement (RFE) and force depression (FD) refer to an increased or decreased force following an active lengthening or shortening contraction, respectively, relative to the isometric force produced at the same activation level and muscle length. Our intent was to determine if EMG characteristics differed in the RFE or FD states compared with a purely isometric reference contraction for maximal and submaximal voluntary activation of the adductor pollicis muscle. Quantifying these alterations to EMG in history-dependent states allows for more accurate modeling approaches for movement control in the future. For maximal voluntary contractions (MVC), RFE was 6–15% (P < 0.001) and FD was 12–19% (P < 0.001). The median frequency of the EMG was not different between RFE, FD and isometric reference contractions for the 100% and 40% MVC intensities (P > 0.05). However, root mean square EMG (EMGRMS) amplitude for the submaximal contractions was higher in the FD and lower in the RFE state, respectively (P < 0.05). For maximal contractions, EMGRMS was lower for the FD state but was the same for the RFE state compared to the isometric reference contractions (P > 0.05). Neuromuscular efficiency (NME; force/EMG) was lower in the force depressed state and higher in the force enhanced state (P < 0.05) compared to the isometric reference contractions. EMG spectral properties were not altered between the force-enhanced and depressed states relative to the isometric reference contractions, while EMG amplitude measures were.  相似文献   

16.
Repetitive motion-induced fatigue not only alters local motion characteristics but also provokes global reorganization of movement. However, the three-dimensional (3D) characteristics of these reorganization patterns have never been documented in detail. The goal of this study was to assess the effects of repetitive reaching-induced arm fatigue on the whole-body, 3D biomechanical task characteristics. Healthy subjects (N = 14) stood and performed a continuous reaching task (RRT) between two targets placed at shoulder height to fatigue. Whole-body kinematic (Vicon©), kinetic (AMTI© force platforms) and electromyographic (EMG, Noraxon©) characteristics were recorded. Maximal voluntary isometric efforts (MVIE) of the shoulder and elbow were measured pre- and post-RRT. Post-RRT shoulder elevation MVIE was reduced by 4.9 ± 8.3% and trapezius EMG amplitude recorded during the RRT increased by 46.9 ± 49.9% from the first to last minute of the RRT, indicating that arm fatigue was effectively induced. During fatigued reaching, subjects elevated their shoulder (11.7 ± 10.5 mm) and decreased their average shoulder abduction angle by 8.3 ± 4.4°. These changes were accompanied by a lateral shift of the body’s center of mass towards the non-reaching arm. These findings suggest a compensatory strategy to decrease the load on the fatigued shoulder musculature.  相似文献   

17.
The purpose of the present study was to examine the patterns of responses for torque, electromyographic (EMG) amplitude, EMG mean power frequency (MPF), mechanomyographic (MMG) amplitude, and MMG MPF across 30 repeated maximal isometric (ISO) and concentric (CON) muscle actions of the leg extensors. Twelve female subjects (21.1 ± 1.4 yrs; 63.3 ± 7.4 kg) performed ISO and CON fatigue protocols with EMG and MMG signals recorded from the vastus lateralis. The relationships for torque, EMG amplitude, EMG MPF, MMG amplitude, and MMG MPF versus repetition number were examined using polynomial regression. The results indicated there were decreases (p < 0.05) across the ISO muscle actions for torque (r2 = 0.95), EMG amplitude (R2 = 0.44), EMG MPF (r2 = 0.62), and MMG MPF (r2 = 0.48), but no change in MMG amplitude (r2 = 0.07). In addition, there were decreases across the CON muscle actions for torque (R2 = 0.97), EMG amplitude (R2 = 0.46), EMG MPF (R2 = 0.86), MMG amplitude (R2 = 0.44), and MMG MPF (R2 = 0.80). Thus, the current findings suggested that the mechanisms of fatigue and motor control strategies used to modulate torque production were similar between maximal ISO and CON muscle actions.  相似文献   

18.
The first aim of this investigation was to quantify the distribution of trapezius muscle activity with different scapular postures while seated. The second aim of this investigation was to examine the association between changes in cervical and scapular posture when attempting to recruit different subdivisions of the trapezius muscle. Cervical posture, scapular posture, and trapezius muscle activity were recorded from 20 healthy participants during three directed shoulder postures. Planar angles formed by reflective markers placed on the acromion process, C7, and tragus were used to quantify cervical and scapular posture. Distribution of trapezius muscle activity was recorded using two high-density surface electromyography (HDsEMG) electrodes positioned over the upper, middle, and lower trapezius. Results validated the assumption that directed scapular postures preferentially activate different subdivisions of the trapezius muscle. In particular, scapular depression was associated with a more inferior location of trapezius muscle activity (r = 0.53). Scapular elevation was coupled with scapular abduction (r = 0.52). Scapular adduction was coupled with cervical extension (r = 0.35); all other changes in cervical posture were independent of changes in scapular posture. This investigation provides empirical support for reductions in static loading of the upper trapezius and improvements in neck posture through verbal cueing of scapular posture.  相似文献   

19.
The purpose of this paper was to compare the effects of different data reduction procedures on the values of variables characterizing the time pattern of trapezius muscle activity during full work shifts. Surface electromyography (EMG) of the right and left upper trapezius muscles were obtained from 40 young subjects in different occupations, mainly electricians, hairdressers and students. The target EMG variables were gap frequency, muscle rest, and the number and duration of episodes with sustained muscle activity (from 0.13 s to 30 min as minimum duration). These variables were derived from the EMG recordings using different Root Mean Square (RMS) windows (from 0.13 to 6.38 s), and discrimination levels between “activity” and “rest” (0.5%, 1% and 2% of maximal EMG).The results give basis for practical suggestions for EMG analyses of full work shifts. For most variables, a discrimination level of 0.5% EMGmax showed to be preferable. The time proportion of muscle rest and sustained muscle activity should, in general, be preferred over the corresponding frequency measures. Sustained muscle activity should be calculated using a RMS window between 1 and 3 s, and preferably be stated in terms of variables describing time proportions of activity. Uninterrupted activity episodes longer than 10 min proved not to be a useful variable due to limited occurrence in many work shifts.  相似文献   

20.
The value of electromyography (EMG) is sensitive to many physiological and non-physiological factors. The purpose of the present study was to determine if the torque–velocity test (T–V) can be used to normalize EMG signals into a framework of biological significance. Peak EMG amplitude of gluteus maximus (GMAX), vastus lateralis (VL), rectus femoris (RF), biceps femoris long head (BF), gastrocnemius medialis (GAS) and soleus (SOL) was calculated for nine subjects during isometric maximal voluntary contractions (IMVC) and torque–velocity bicycling tests (T–V). Then, the reference EMG signals obtained from IMVC and T–V bicycling tests were used to normalize the amplitude of the EMG signals collected for 15 different submaximal pedaling conditions. The results of this study showed that the repeatability of the measurements between IMVC (from 10% to 23%) and T–V (from 8% to 20%) was comparable. The amplitude of the peak EMG of VL was 99 ± 43% higher (p < 0.001) when measured during T–V. Moreover, the inter-individual variability of the EMG patterns calculated for submaximal cycling exercises differed significantly when using T–V bicycling normalization method (GMAX: 0.33 ± 0.16 vs. 1.09 ± 0.04, VL: 0.07 ± 0.02 vs. 0.64 ± 0.14, SOL: 0.07 ± 0.03 vs. 1.00 ± 0.07, RF: 1.21 ± 0.20 vs. 0.92 ± 0.13, BF: 1.47 ± 0.47 vs. 0.84 ± 0.11). It was concluded that T–V bicycling test offers the advantage to be less time and energy-consuming and to be as repeatable as IMVC tests to measure peak EMG amplitude. Furthermore, this normalization method avoids the impact of non-physiological factors on the amplitude of the EMG signals so that it allows quantifying better the activation level of lower limb muscles and the variability of the EMG patterns during submaximal bicycling exercises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号