首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
The aims of this study were to examine if surface EMG signals can be detected from the quadriceps femoris muscle of severely obese patients and to investigate if differences exist in quadriceps force and myoelectric manifestations of fatigue between obese patients and lean controls.Fourteen severely obese patients (body mass index, BMI, mean ± SD: 44.9 ± 6.3 kg/m2) and fourteen healthy controls (BMI: 23.7 ± 2.5 kg/m2) were studied. The vastus medialis and lateralis of the dominant thigh were concurrently investigated during voluntary isometric contractions (10-s long at submaximal and maximal intensities and intermittent submaximal contractions until exhaustion) and sustained (120-s long) electrically elicited contractions.We found that the detection of surface EMG signals from the quadriceps is feasible also in severely obese subjects presenting increased thickness of the subcutaneous fat tissue. In addition, we confirmed and extended previous findings showing that the volume conductor properties determine the amplitude and spectral features of the detected surface EMG signals: the lower the subcutaneous tissue thickness, the higher the amplitude and mean frequency estimates. Further, we found no differences in the mechanical and myoelectric manifestations of fatigue during intermittent voluntary and sustained electrically elicited contractions between obese patients and lean controls.  相似文献   

2.
This study investigated (a) the feasibility and repeatability of intramuscular fine-wire electromyographic (fEMG) recordings from leg muscles during the repetitive, high-velocity cycling movement, (b) the influence of amplitude normalization technique on repeatability and statistical sensitivity, (c) the influence of test-retest interval duration on repeatability, and (d) differences between fEMG and surface EMG (sEMG) recordings of cycling. EMG activity of leg muscles was recorded using surface and fine-wire electrodes during one (n = 12, to investigate statistical sensitivity and compare sEMG and fEMG) or two sessions (T1 and T2, 5–20 days apart, n = 10, to investigate repeatability). fEMG recordings were feasible and there was high repeatability of fEMG recordings normalised to maximum measured EMG amplitude (MAX); mean coefficients of multiple correlation (CMC) ranged from .83 ± .13 to .88 ± .07. Data normalised to maximal (MVC) or submaximal contractions (sMVC) were less repeatable (p < .01). Statistical sensitivity was also greatest for data normalised to MAX (p < .01). Repeatability of fEMG increased with greater test-retest intervals (p < .01). The global pattern of muscle recruitment was consistent between sEMG and fEMG but sEMG recordings were characterized by additional myoelectric content. These findings support and guide the use of fEMG techniques to investigate leg muscle recruitment during cycling.  相似文献   

3.
Studies have demonstrated that the electromyographic (EMG) amplitude versus submaximal isometric force relationship is relatively linear. The purpose of this investigation was to determine the minimum number of contractions required to study this relationship. Eighteen men (mean age = 23 years) performed isometric contractions of the leg extensors at 10–90% of the maximum voluntary contraction (MVC) in 10% increments while surface EMG signals were detected from the vastus lateralis and vastus medialis. Linear regression was used to determine the coefficient of determination, slope coefficient, and y-intercept for each muscle and force combination with successively higher levels included in the model (i.e., 10–30%,  10–90% MVC). For the slope coefficients, there was a main effect for force combination (P < .001). The pairwise comparisons showed there was no difference from 10–60% through 10–90% MVC. For the y-intercepts, there were main effects for both muscle (vastus lateralis [4.3 μV RMS] > vastus medialis [−3.7 μV RMS]; P = .034) and force combination (P < .001), with similar values shown from 10–50% through 10–90% MVC. The linearity of the absolute EMG amplitude versus isometric force relationship for the vastus lateralis and vastus medialis suggests that investigators may exclude high force contractions from their testing protocol.  相似文献   

4.
Vaginal probes may induce changes in pelvic floor muscle (PFM) recruitment by the very presence of the probes. Fine-wire electrodes allow us to detect muscle activation parameters without altering the natural position and shape of the PFMs. The purpose of this study was to determine whether PFM activation is altered by changes in sensory feedback, muscle length or tissue position caused by two different vaginal probes used to record surface electromyography (EMG). Twelve continent women (30.1 ± 5.4 years), performed PFM maximal voluntary contractions (MVCs) in supine while fine-wire EMG was recorded bilaterally from the PFMs under three conditions: (a) without any probe inserted into the vagina, (b) while a Femiscan? probe was in situ, and (c) while a Periform? vaginal probe was in situ. The reliability of the fine wire EMG data was assessed using intra-class correlation coefficients (ICCs) and coefficients of variation (CV). A repeated measures analysis of variance (ANOVA) model was used to determine if there were differences in EMG amplitude recorded when the different vaginal probes were in situ. For each condition the between-trial reliability was excellent, ICC(3,1) = 0.93–0.96, (p < 0.001) and CV = 11.2–21.8%. There were no differences in peak EMG amplitude recorded during the MVCs across the three conditions (no probe 63.4 ± 48.4 μV, Femiscan? 55.3 ± 42.4 μV, Periform? 59.4 ± 42.2 μV, p = 0.178). These results suggest that women produce consistent MVCs over multiple contractions, and that PFM muscle activation is not affected by different probes inserted into the vagina.  相似文献   

5.
Previous studies on intramuscular EMG based control used offline data analysis. The current study investigates the usability of intramuscular EMG in two degree-of-freedom using a Fitts’ Law approach by combining classification and proportional control to perform a task, with real time feedback of user performance. Nine able-bodied subjects participated in the study. Intramuscular and surface EMG signals were recorded concurrently from the right forearm. Five performance metrics (Throughput, Path efficiency, Average Speed, Overshoot and Completion Rate) were used for quantification of usability. Intramuscular EMG based control performed significantly better than surface EMG for Path Efficiency (80.5 ± 2.4% vs. 71.5 ± 3.8%, P = 0.004) and Overshoot (22.0 ± 3.0% vs. 45.1 ± 6.6%, P = 0.01). No difference was found between Throughput and Completion Rate. However the Average Speed was significantly higher for surface (51.8 ± 5.5%) than for intramuscular EMG (35.7 ± 2.7%). The results obtained in this study imply that intramuscular EMG has great potential as control source for advanced myoelectric prosthetic devices.  相似文献   

6.
The possible dependence of T-wave alternans (TWA) on T-wave amplitude was investigated in 3 orthogonal leads (X, Y, Z) 20-min resting ECG recordings and in the derived vector magnitude (VM) from 176 healthy (H) subjects and 200 coronary-artery-disease (CAD) patients. After application of our adaptive-match-filter based method for parameterization of TWA in terms of its amplitude (TWA_A) and product-magnitude (TWA_PM, defined as the product of TWA_A times TWA duration), and once a TW_A parameter was defined for T-wave amplitude quantification, the existence of intra- and inter-subjects relationships of TWA_A and TWA_PM vs. TW_A was tested. Compared to the H-population, the CAD-population showed a significant (P < 0.05) increase of TWA_A (62 ± 38 μV vs. 54 ± 25 μV) and TWA_PM (4029 ± 2974 beat μV vs. 3107 ± 1976 beat μV) and a significant decrease of TW_A (298 ± 194 μV vs. 467 ± 246 μV). These repolarization changes, however, occurred with no significant intra- or inter-subjects relationships of TWA_A and TWA_PM vs. TW_A. Thus, in our CAD and H populations there was no evidence of TWA dependence on T-wave amplitude.  相似文献   

7.
The purpose of the present study was to examine the influence of activation capabilities on the electromyography (EMGRMS) and mechanomyography amplitude (MMGRMS)–force relationships of the vastus lateralis (VL) and rectus femoris (RF). Thirteen men (mean ± SD; age = 22 ± 3 year) performed nine submaximal contractions (10–90% maximal voluntary contraction [MVC]) with the interpolated twitch technique performed during a separate contraction at 90% MVC to calculate percent voluntary activation (%VA). Nine participants with >90% VA were categorized into the high-activated group with the remaining categorized into the moderate-activated group. Slopes (b terms) were calculated from the log-transformed EMGRMS and MMGRMS–force relationships. The b terms (collapsed across the VL and RF) for the EMGRMS–force relationships were greater for the high- (1.29 ± 0.31) than the moderate-activated (1.10 ± 0.20) group. In contrast, there were no differences in the b terms for the MMGRMS–force relationships between the high- and moderate-activated groups. For the EMGRMS and MMGRMS–force relationships, the b terms were greater for the RF (1.38 ± 0.30, 0.81 ± 0.20) than the VL (1.08 ± 0.19, 0.60 ± 0.13) collapsed across groups. The b terms from the EMGRMS–force relationships, but not the MMGRMS–force relationships, reflected differences in %VA.  相似文献   

8.
The study compared the distribution of electromyographic (EMG) signal amplitude in the upper trapezius muscle in 10 women with fibromyalgia and in 10 healthy women before and after experimentally-induced muscle pain. Surface EMG signals were recorded over the right upper trapezius muscle with a 10 × 5 grid of electrodes during 90° shoulder abduction sustained for 60 s. The control subjects repeated the abduction task following injections of isotonic and hypertonic (painful) saline into the upper trapezius muscle. The EMG amplitude was computed for each electrode pair and provided a topographical map of the distribution of muscle activity. The pain level rated by the patients at the beginning of the sustained contraction was 5.9 ± 1.5. The peak pain intensity for the control group following the injection of hypertonic saline was 6.0 ± 1.6. During the sustained contractions, the EMG amplitude increased relatively more in the cranial than caudal region of the upper trapezius muscle for the control subjects (shift in the distribution of EMG amplitude: 2.3 ± 1.3 mm; P < 0.01). The patient group showed lower average EMG amplitude than the controls during the contraction (P < 0.05) and did not show different changes in EMG amplitude between different regions of the upper trapezius. A similar behavior was observed for the control group following injection of hypertonic saline. The results indicate that muscle pain prevents the adaptation of upper trapezius activity during sustained contractions as observed in non-painful conditions, which may induce overuse of similar muscle compartments with fatigue.  相似文献   

9.
This study investigated the effect of water immersion on surface electromyography (EMG) signals recorded from the brachioradial muscle of 11 healthy subjects, both in a dry environment and a thermo-neutral forearm bath (36 °C). EMG measurements were registered in a sitting position, using waterproof electrodes under 3 conditions: relaxed muscle, maximum voluntary isometric contraction (MVC, 1 s, grip test) and 70% of the MVC (5 s). In relaxed muscle, mean EMG values were significantly higher under immersion compared to the dry conditions (dry: 5.4 ± 3.6 μV; water: 19.5 ± 14.9 μV; p = 0.014). In maximum voluntary isometric contraction, there was a significant difference, though not in the same direction (dry: 145.9 ± 58.9 μV; water: 73.2 ± 35.0 μV; p = 0.003). Under 70% MVC, there was no difference between wet and dry conditions (dry: 102.4 ± 75.0 μV; water: 100.4 ± 65.3 μV; p = 0.951). Results suggest that dry and underwater conditions influence EMG readings; however, the results are inconsistent. These findings indicate additional influences on resting muscle activity, as well as MVC. Further measurements with other muscle groups and different types of immersion are needed to clarify conflicting observations.  相似文献   

10.
《Journal of biomechanics》2014,47(16):3891-3897
This study attempted to estimate TMJ loading during incisal loading using a custom load-cell device and surface electromyographic (sEMG) recordings of the main jaw closers to assess the outcome correlation. Study participants were 23 healthy volunteers. The incisal loads having submaximal and mean intensity were recorded using a calibrated electronic load cell; simultaneously, surface electromyography (sEMG) of the right and left masseter and temporalis muscles was recorded. Readings of the resting, clenching in maximal and submaximal intercuspal positions and mean (50%) incisal loads were recorded. Clenching sEMG activity was used as a reference for normalization. The mean (SD) submaximal incisal load recorded was 498 (305.78) N, and the mean at 50% of the submaximal load was 268.93 (147.37) N. Mean (SD) sEMG activity during submaximal clenching was 141.23 (87.76) μV, with no significant differences between the four muscles. During submaximal voluntary incisal loading, the normalized mean sEMG activity was 49.99 (34.54) µV %, and 27.17(15.29) µV % during mean (50%) effort. The incisal load was generated mainly by the masseter muscles, as these showed a positive correlation during mean but not during submaximal effort. In the edge-to-edge jaw position, the mean incisal load effort seems to be physiological, but excessive TMJ loads can be expected from chronic or excessive incisal loading. In conclusion, incisal loads require the activity of the masseter muscles, which show a positive correlation between sEMG activity and effective incisal loads during mean, but not during submaximal, effort, and the masseter muscles are dominant over the temporalis muscles during submaximal incisal biting.  相似文献   

11.
This study aimed at investigating two aspects of neuromuscular control around the hip and knee joint while executing the roundhouse kick (RK) using two techniques: Impact RK (IRK) at trunk level and No-Impact RK at face level (NIRK). The influence of technical skill level was also investigated by comparing two groups: elite Karateka and Amateurs. Surface electromyographic (sEMG) signals have been recorded from the Vastus Lateralis (VL), Biceps Femoris (BF), Rectus Femoris (RF), Gluteus Maximum (GM) and Gastrocnemious (GA) muscles of the kicking leg in six Karateka and six Amateurs performing the RKs. Hip and knee kinematics were also assessed. EMG data were rectified, filtered and normalized to the maximal value obtained for each muscle over all trials; co-activation (CI) indexes of antagonist vs. overall (agonist and antagonist) activity were computed for hip and knee flexion and extension. Muscle Fiber Conduction Velocity (CV) obtained from VL and BF muscles was assessed as well. The effect of group and kick on angular velocity, CIs, and CVs was tested through a two-way ANOVA (p < 0.05). An effect of group was showed in both kicks. Karateka presented higher knee and hip angular velocity; higher BF-CV (IRK: 5.1 ± 1.0 vs. 3.5 ± 0.5 m/s; NIRK: 5.7 ± 1.3 vs. 4.1 ± 0.5 m/s), higher CIs for hip movements and knee flexion and lower CI for knee extension. The results obtained suggest the presence of a skill-dependent activation strategy in the execution of the two kicks. CV results are suggestive of an improved ability of elite Karateka to recruit fast MUs as a part of training induced neuromuscular adaptation.  相似文献   

12.
The purpose of the present study was to examine the patterns of responses for torque, electromyographic (EMG) amplitude, EMG mean power frequency (MPF), mechanomyographic (MMG) amplitude, and MMG MPF across 30 repeated maximal isometric (ISO) and concentric (CON) muscle actions of the leg extensors. Twelve female subjects (21.1 ± 1.4 yrs; 63.3 ± 7.4 kg) performed ISO and CON fatigue protocols with EMG and MMG signals recorded from the vastus lateralis. The relationships for torque, EMG amplitude, EMG MPF, MMG amplitude, and MMG MPF versus repetition number were examined using polynomial regression. The results indicated there were decreases (p < 0.05) across the ISO muscle actions for torque (r2 = 0.95), EMG amplitude (R2 = 0.44), EMG MPF (r2 = 0.62), and MMG MPF (r2 = 0.48), but no change in MMG amplitude (r2 = 0.07). In addition, there were decreases across the CON muscle actions for torque (R2 = 0.97), EMG amplitude (R2 = 0.46), EMG MPF (R2 = 0.86), MMG amplitude (R2 = 0.44), and MMG MPF (R2 = 0.80). Thus, the current findings suggested that the mechanisms of fatigue and motor control strategies used to modulate torque production were similar between maximal ISO and CON muscle actions.  相似文献   

13.
This study aimed to determine the characteristics of the in vivo behaviour of human muscle architecture during a pre-motion silent period (PMSP) using ultrasonography. Subjects were requested to perform rapid knee extension with vertical jumping. Electromyographic signals were recorded from the vastus lateralis (VL), vastus medialis, and biceps femoris muscles. Ultrasonic images were recorded from the VL. We found that the cross point between the fascicle and deep aponeurosis in the VL moved to the distal side before the rapid vertical jumps with PMSP. This cross point movement with PMSP was of low amplitude (mean: 1.0 ± 0.3 mm) and velocity (22.2 ± 6.1 mm/s). The amplitude and velocity of the cross point movement were significantly positively related to the angular peak velocity of knee extensor during rapid vertical jumping in trials with PMSP. These results suggest that although low levels of pre-movement muscle architectural change with PMSP may be the result of muscle relaxation behaviour rather than the result of muscle stretching behaviour, this pre-movement effect can influence subsequent muscular performance during a rapid voluntary movement. PMSP may allow pre-movement muscle architectural change to generate a better muscular condition to increase neural activation during the subsequent rapid voluntary contraction.  相似文献   

14.
Residual force enhancement (RFE) and force depression (FD) refer to an increased or decreased force following an active lengthening or shortening contraction, respectively, relative to the isometric force produced at the same activation level and muscle length. Our intent was to determine if EMG characteristics differed in the RFE or FD states compared with a purely isometric reference contraction for maximal and submaximal voluntary activation of the adductor pollicis muscle. Quantifying these alterations to EMG in history-dependent states allows for more accurate modeling approaches for movement control in the future. For maximal voluntary contractions (MVC), RFE was 6–15% (P < 0.001) and FD was 12–19% (P < 0.001). The median frequency of the EMG was not different between RFE, FD and isometric reference contractions for the 100% and 40% MVC intensities (P > 0.05). However, root mean square EMG (EMGRMS) amplitude for the submaximal contractions was higher in the FD and lower in the RFE state, respectively (P < 0.05). For maximal contractions, EMGRMS was lower for the FD state but was the same for the RFE state compared to the isometric reference contractions (P > 0.05). Neuromuscular efficiency (NME; force/EMG) was lower in the force depressed state and higher in the force enhanced state (P < 0.05) compared to the isometric reference contractions. EMG spectral properties were not altered between the force-enhanced and depressed states relative to the isometric reference contractions, while EMG amplitude measures were.  相似文献   

15.
The aim of this study was to assess H-reflex plasticity and activation pattern of the plantar flexors during a sustained contraction where voluntary EMG activity was controlled via an EMG biofeedback. Twelve healthy males (28.0 ± 4.8 yr) performed a sustained isometric plantar flexion while instructed to maintain summed EMG root mean square (RMS) of gastrocnemius lateralis (GL) and gastrocnemius medialis (GM) muscles fixed at a target corresponding to 80% maximal voluntary contraction torque via an EMG biofeedback. Transcutaneous electrical stimulation of the posterior tibial nerve was evoked during the contraction to obtain the maximal H-reflex amplitude to maximal M-wave amplitude ratio (Hsup/Msup ratio) from GL, GM and soleus (SOL) muscles. Neuromuscular function was also assessed before and immediately after exercise. Results showed a decrease in SOL activation during sustained flexion (from 65.5 ± 6.4% to 42.3 ± 3.8% maximal EMG, p < 0.001), whereas summed EMG RMS of GL and GM remained constant (59.7 ± 4.8% of maximal EMG on average). No significant change in the Hsup/Msup ratio was found for SOL, GL and GM muscles. Furthermore, it appears that the decrease in maximal voluntary contraction torque (?20.4 ± 2.9%, p < 0.001) was related to both neural and contractile impairment. Overall, these findings indicate that the balance between excitation and inhibition affecting the motoneuron pool remains constant during a sustained contraction where myoelectrical activity is controlled via an EMG biofeedback or let free to vary.  相似文献   

16.
This study examined the reliability and scaling of the flexor carpi radialis (FCR) V-wave during submaximal and maximal voluntary muscle contractions (MVC). 23 participants were tested on three separate sessions. For each session, participants performed isometric wrist flexions at five contraction levels (20, 40, 60, 80 and 100 %MVC). When the target contraction level was reached, a supramaximal electrical stimulus was applied to the median nerve in order to elicit an FCR V-wave. Across all participants, the FCR V-wave amplitude, normalized to its superimposed M-wave amplitude, increased from 0.030 ± 0.001 to 0.143 ± 0.015 (P < 0.001) as the muscle contraction increased from 20 to 100 %MVC. Contraction level did not influence the reliability of evoking the FCR V-wave, as the V-wave demonstrated both stability and consistency. With the exception of a single day main effect during the 20 %MVC condition, V:Msup was not different across days or trials (P > 0.05) indicating measurement stability. High reliability co-efficients (0.827–0.913) at each contraction level signified measurement consistency. This study establishes that FCR V-waves can be reliably evoked during both submaximal and maximal muscle contractions and suggests the possibility for FCR V-wave recordings to be used to document neuromuscular adaptations associated with factors such as training or fatigue.  相似文献   

17.
The purpose of this study was to determine whether surface electromyography (EMG) assessment of myoelectric manifestations of muscle fatigue is capable of detecting differences between the vastus lateralis and medialis muscles which are consistent with the results of previous biopsy studies. Surface EMG signals were recorded from the vastus medialis longus (VML), vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during isometric knee extension contractions at 60% and 80% of the maximum voluntary contraction (MVC) for 10 s and 60 s, respectively. Initial values and rate of change of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. Comparisons between the two force levels revealed that the initial values of MNF for the VL muscle were greater at 80% MVC compared to 60% MVC (P < 0.01). Comparisons between the vasti muscles demonstrated lower initial values of CV for VMO compared to VL at 60% MVC (P < 0.01) and lower than VML and VL at 80% MVC (P < 0.01). In addition, initial values of MNF were higher for VL with respect to both VML and VMO at 80% MVC (P < 0.01) and initial estimates of ARV were higher for VMO compared to VML at both force levels (P < 0.01 at 60% MVC and P < 0.05 at 80% MVC). For the sustained contraction at 80% MVC, VL demonstrated a greater decrease in CV over time compared to VMO (P < 0.05).These findings suggest that surface EMG signals and their time course during sustained isometric contractions may be useful to non-invasively describe functional differences between the vasti muscles.  相似文献   

18.
PurposeThe present study was designed to investigate the electromyographic (EMG) response in leg muscles to whole-body vibration while using different body positions and vibration frequencies.MethodsTwenty male sport sciences students voluntarily participated in this single-group, repeated-measures study in which EMG data from the vastus lateralis (VL) and the lateral gastrocnemius (LG) were collected over a total of 36 trials for each subject (4 static positions × 9 frequencies).ResultsWe found that vibration frequency, body position and the muscle stimulated had a significant effect (P-values ranged from 0.001 to 0.031) on the EMG response. Similarly, the muscle × frequency and position × muscle interactions were significant (P < 0.001). Interestingly, the frequency × positions interactions were not significant (P > 0.05).ConclusionsOur results indicate that lower frequencies of vibration (25–35 Hz) result in maximal activation of LG, whereas higher frequencies (45–55 Hz) elicit the highest responses in the VL. In addition, the position P2 (half squat position with the heels raised) is beneficial both for VL and LG, independently of the vibration frequency.  相似文献   

19.
Torque steadiness and low-frequency fatigue (LFF) were examined in the human triceps brachii after concentric or eccentric fatigue protocols. Healthy young males (n = 17) performed either concentric or eccentric elbow extensor contractions until the eccentric maximal voluntary torque decreased to 75% of pre-fatigue for both (concentric and eccentric) protocols. The number of concentric contractions was greater than the number of eccentric contractions needed to induce the same 25% decrease in eccentric MVC torque (52.2 ± 2.9 vs. 41.5 ± 2.1 for the concentric and eccentric protocols, respectively, p < .01). The extent of peripheral fatigue was ~12% greater after the concentric compared to the eccentric protocol (twitch amplitude), whereas LFF (increase in double pulse torque/single pulse torque), was similar across protocols. Steadiness, or the ability for a subject to hold a submaximal isometric contraction, was ~20 % more impaired during the Ecc protocol (p = .052). Similarly, the EMG activity required to hold the torque steady was nearly 20% greater after the eccentric compared to concentric protocol. These findings support that task dependent eccentric contractions preferentially alter CNS control during a precision based steadiness task.  相似文献   

20.
We examined the availability and reliability of surface electromyography (EMG) signals from the iliopsoas muscle (IL). Using serial magnetic resonance images from fifty healthy young males, we evaluated whether the superficial region of IL was adequate for attaching surface EMG electrodes. Subsequently, we assessed EMG cross-talk from the sartorius muscle (SA)—the nearest to IL—using a selective cooling method in fourteen subjects. The skin above SA was cooled, and the median frequencies of EMG signals from IL and SA were determined. The maximum voluntary contraction during isometric hip flexion was measured before and after selective cooling, and surface EMG signals from SA and IL were measured. The superficial area of IL was adequately large (13.2 ± 2.7 cm2) for recording surface EMG in all fifty subjects. The maximum perimeter for the medial–lateral skin facing IL was noted at a level 3–5 cm distal to the anterior superior iliac spine. Following cooling, the median frequency for SA decreased significantly (from 70.1 to 51.9 Hz, p < 0.001); however, that for IL did not alter significantly. These results demonstrated that EMG cross-talk from SA was negligible for surface EMG signals from IL during hip flexion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号