首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although glucocorticoids (GCs) are physiologically essentialfor bone metabolism, it is generally accepted that high dosesof GCs cause bone loss through a combination of decreased boneformation and increased bone resorption. However, the actionof GCs on mature osteoclasts remains contradictory. In thisstudy, we have examined the effect of GCs on osteoclasticbone-resorbing activity and osteoclast apoptosis, by using twodifferent cell types, rabbit unfractionated bone cells andhighly enriched mature osteoclasts (>95% of purity).Dexamethasone (Dex, 10-10–10-7 M) inhibited resorption pit formation on a dentine slice by the unfractionated bone cells in a dose- and time-dependent manner.However, Dex had no effect on the bone-resorbing activity of the isolated mature osteoclasts. When the isolated osteoclastswere co-cultured with rabbit osteoblastic cells, the osteoclastic bone resorption decreased in response to Dex,dependent on the number of osteoblastic cells. Like the effecton the bone resorption, Dex induced osteoclast apoptosis in cultures of the unfractionated bone cells, whereas it did not promote the apoptosis of the isolated osteoclasts. An inhibitorof caspases, Z-Asp-CH2-DCB attenuated both the inhibitory effecton osteoclastic bone resorption and the stimulatory effect onthe osteoclast apoptosis. In addition, the osteoblastic cellswere required for the osteoclast apoptosis induced by Dex. These findings indicate that the main target cells of GCs arenon-osteoclastic cells such as osteoblasts and that GCsindirectly inhibit bone resorption by inducing apoptosis ofthe mature osteoclasts through the action of non-osteoclasticcells. This study expands our knowledge about the multifunctional roles of GCs in bone metabolism.  相似文献   

2.
The cells of bone are of two lineages, the osteoblasts arising from pluripotential mesenchymal cells and osteoclasts from hemopoietic precursors of the monocyte-macrophage series. Resorption of bone by the multinucleate osteoclast requires the generation of new osteoclastsw and their activation. Many hormones and cytokines are able to promote bone resorption by influencing these processes, but they achieve this without acting directly on osteoclastws. Most evidence indicates that their actions are mediated by cells of the osteoblast lineage. Evidence for hormone-and cytokine-induced activation of osteoclasts requiring the mediation of osteoblasts comes from studies of rsorption by isolated osteoclasts. However, consistent evidence for a spiceific “activating factor” is lacking, and the argument is presented that the isolated osteoclast resorption assays have not been shown convincingly to be assays of osteoclast activation. The view is presented that osteoblast-mediated osteoclast activation is the result of several events in the microenvironment without necessarily requiring the existence of a spicific, essential osteoclast activator. On the other hand, a specific promoter of osteoclast differentiation does seem likely to be a product of cells of the stromal/osteoblast series. Evidence in facour of this comes from studies of osteoclast generation in co-cultures of osteoblast/stromal cells with hemopoietic cells. Conflicting view, maintaining that osteoclasts can develop from hemooietic cells without stromal intervention, might be explaind by varying criteria used in identification of osteoclasts. Osteoblastic and osteoclastic renewal, and the interactions of these lineages, are central to the process of bone remodeling.  相似文献   

3.
Skeletal mass is maintained by a balance between cells which resorb bone (osteoclasts) and cells which form bone (osteoblasts). Bone development and growth is an on-going, life-long process. Bone is formed during embryonic life, grows rapidly through childhood, and peaks around 20 years of age (formation exceeds resorption). For humans the skeleton then enters a long period, approximately 40 years, when bone mass remains relatively stable. Skeletal turnover continues but the net effect of resorption and formation on bone mass is zero. For women this ends when they enter menopause and similar bone loss occurs for men, but later in life. These opposite functions are coupled, resorption precedes formation, and osteoblasts, or their precursors, stromal cells, regulate osteoclast formation and activity. Until recently, the molecular nature of this regulation, was poorly understood. However, recent observations have identified members of the TNF family of ligands and receptors as critical regulators of osteoclastogenesis. Osteoprotegerin (OPG) a decoy receptor was first identified. Its ligand, receptor activator of nuclear factor-kappaB ligand (RANKL), was quickly found, and shown to be expressed on stromal cells and osteoblasts. Its cognate receptor, RANK, was found to be expressed in high levels on osteoclast precursors. The interaction between RANKL and RANK was shown to be required for osteoclast formation. These observations have provided a molecular understanding of the coupling between osteoclastic bone resorption and osteoblastic bone formation. Moreover, they provide a framework on which to base a clear understanding of normal (e.g. postmenopausal osteoporosis and age associated bone loss) and pathologic skeletal changes (e.g. osteopetrosis, glucocorticoid-induced osteoporosis, periodontal disease, bone metastases, Paget's disease, hyperparathyroidism, and rheumatoid arthritis).  相似文献   

4.
Activin A is an essential cofactor for osteoclast induction   总被引:4,自引:0,他引:4  
Recently, receptor activator of NF-kappaB ligand (RANKL) was shown to be necessary for osteoclast formation. We now report that activin A, a cytokine enriched in bone matrix and secreted by osteoblasts and osteoclasts, powerfully synergized with RANKL for induction of osteoclast-like cells (OCL) from bone marrow precursors depleted of stromal cells. Moreover, OCL formation in RANKL was virtually abolished by soluble type II A activin receptors (ActR-II(A)), suggesting that activin A is essential for OCL formation. Activin A was most effective when precursors were exposed to RANKL and activin A simultaneously: resistance to OCL-induction that occurs when precursors are pre-incubated in M-CSF was reduced. Incubation on bone matrix also enhanced the sensitivity of precursors to OCL-induction by RANKL; and this was prevented by soluble ActR-II(A). Thus, activin A in bone matrix, or released from osteoblastic or other cells, enhances the osteoclast-forming potential of precursors and synergizes with RANKL in inducing osteoclastic differentiation.  相似文献   

5.
Although high inorganic phosphate (Pi) concentration in culture media directly inhibits generation of new osteoclasts and also inhibits bone resorption by mature osteoclasts, its precise mechanism and the physiological role have not been elucidated. The present study was performed to investigate these issues. Increase in extracellular Pi concentration ([Pi](e)) (2.5-4 mM) concentration dependently inhibited 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] or parathyroid hormone (PTH)-(1-34)-induced osteoclast-like cell formation from unfractionated bone cells in the presence of stromal cells. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited 1,25(OH)(2)D(3)-, PTH-(1-34)-, or receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF)-induced osteoclast-like cell formation from hemopoietic blast cells in the absence of stromal cells. Increase in [Pi](e) (2.5-4 mM) dose dependently stimulated the expression of osteoprotegerin (OPG) mRNA and increased the expression of OPG mRNA suppressed by PTH-(1-34) or 1,25(OH)(2)D(3) in unfractionated bone cells, while it did not affect RANKL mRNA. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited the bone-resorbing activity of isolated rabbit osteoclasts. Increase in [Pi](e) (4 mM) induced the apoptosis of isolated rabbit osteoclasts while it did not affect the apoptosis of osteoclast precursor cells and mouse macrophage-like cell line C7 cells that can differentiate into osteoclasts in the presence of RANKL and M-CSF. These results indicate that increase in [Pi](e) inhibits osteoclast differentiation both by up-regulating OPG expression and by direct action on osteoclast precursor cells. It is also indicated that increase in [Pi](e) inhibits osteoclastic activity at least in part by the direct induction of apoptosis of osteoclasts.  相似文献   

6.
Giant cell tumor of bone is a progressive, potentially malignant process which destroys skeletal tissue by virtue of its osteoclast complement. As a biological entity it provides a unique natrual model of bone resorption by osteoclasts whose recruitment and development is controlled by a neoplastic population of fibroblast-like cells. Understanding of the etiopathogenesis of this tumor could provide new insights into the mechanisms underlying osteoblast–osteoclast interactions in normal and diseased bone. Recent studies have shown that the stromal cell component in giant cell tumors is the only proliferating subpopulation of cells, and the giant cells themselves are nonproliferative and reactive. These stromal cells express several genes associated with the osteoblastic phenotype, synthesize, to a limited degree, certain matrix proteins associated with bone, and express several factors which are presumably involved in the recruitment of osteoclasts. In culture, giant cell tumor–associated stromal cells promote the fusion of monocytes and the proliferation of osteoblasts either by the secretion of factors or cell–cell contact. Hence, giant cell tumor of bone is a self-contained biosystem in which cells of both the stromal and hematopoietic lineages interact in a fashion similar to that observed in normal skeletal remodeling. The neoplastic nature of the stromal component, however, drives the hematopoietic precursors to undergo fusion, produces aggressive bone resorption, and results in extensive skeletal destruction. Examination of the various components of this system could lead to new directions for investigations aimed at a better understanding of osteoblast–osteoclast interactions. © 1994 Wiley-Liss, Inc.  相似文献   

7.
ATP (adenosine 5'-triphosphate) is one of the most important extracellular regulatory molecules in the skeleton. Extracellular ATP and other nucleotides signal through P2 receptors, a diverse group of receptors that are widely expressed by bone cells. P2 receptors are divided into two subclasses; P2Y G-protein coupled receptors, and P2X ligand-gated ion channels, and there is functional and molecular evidence for the expression of these receptors on both osteoblasts and osteoclasts. In order to activate P2 receptors, nucleotides must be released into the bone microenvironment. ATP is present in mmol concentrations in cells and can be released by cell lysis, cell trauma or physiological mechanisms, possibly through ABC transporters. Following co-activation of P2Y and PTH1 receptors on osteoblasts, there are multiple levels of interaction in downstream signalling that eventually lead to synergistic expression of osteoblastic genes, providing a mechanism for integrating local and systemic regulatory signals in bone particularly with regard to the activation of bone remodelling. Activation of P2Y1 receptors on osteoblasts enhances expression of RANKL leading indirectly to an increase in osteoclast formation and resorption. Expression of P2X7 inducible pores on osteoclast precursor cell membranes allows fusion to form multinucleated osteoclasts and blockade of this receptor inhibits resorption. The capacity of extracellular nucleotides to provide a highly localized and transient signal coupled with the profound effects of P2 receptor activation on osteoblastic and osteoclastic cells and the synergistic interactions with systemic hormones, indicate that nucleotides have a strong influence over bone tissue growth and regeneration.  相似文献   

8.
Antigen- or mitogen-stimulated leukocytes release bone-resorbing activity into culture supernatants in vitro. Among the agents likely to be present in such supernatants are monocyte-derived tumor necrosis factor (TNF-alpha) and lymphocyte-derived tumor necrosis factor (TNF-beta) (lymphotoxin), both of which have recently been shown to stimulate bone resorption in organ culture. To identify the mechanism of action of these agents, we compared bone resorption by isolated osteoclasts with bone resorption by osteoclasts cocultured with osteoblastic cells, and with bone resorption by osteoclasts incubated with supernatants from osteoblastic cells, in the presence and absence of recombinant TNF-alpha and TNF-beta. We found that neither TNF-alpha nor TNF-beta had any significant effect on bone resorption by isolated osteoclasts, but in the presence of osteoblasts the agents caused a twofold to threefold stimulation of bone resorption. A similar degree of stimulation was achieved by supernatants from osteoblasts incubated with TNF before addition to osteoclasts, compared with supernatants to which TNF were added after osteoblast incubation. These experiments suggest that TNF-alpha and TNF-beta stimulate bone resorption through a primary effect on osteoblastic cells, which are induced by TNF to produce a factor that stimulates osteoclastic resorption. Half-maximal stimulation of resorption occurred at 1.5 X 10(-10) M and 2.5 X 10(-10) M for TNF-alpha and TNF-beta, respectively. This degree of potency is comparable to that of parathyroid hormone, the major physiologic systemic regulator of bone resorption, and suggests that the TNF may exert a significant influence on osteoclastic bone resorption in vivo.  相似文献   

9.
Colony stimulating factors (CSFs) regulate the survival, proliferation and differentiation of haemopoietic progenitor cells, as well as the functional activity of mature cells. Because the osteoclast is derived from haemopoietic tissue, and because osteoblastic cells produce CSFs, we tested the effects of several CSFs on bone resorption by osteoclasts disaggregated from neonatal rat long bone. We found that recombinant macrophage (M)-CSF was a potent inhibitor of bone resorption, causing significant inhibition at concentrations similar to those required to support the growth of macrophage colonies in agar. Unlike other inhibitors of osteoclastic resorption, M-CSF did not alter cytoplasmic motility in time-lapse recordings, suggesting that M-CSF may inhibit osteoclasts through a different transduction mechanism. None of the remaining cytokines tested (granulocyte-macrophage CSF, interleukin 3, interleukin 6, or interferon γ) influenced bone resorption. M-CSF production may be a mechanism by which osteoblastic cells, which produce M-CSF, may regulate osteoclastic function. Alternatively, inhibition of osteoclastic resorption by a CSF that is responsible for amplification of the macrophage compartment may reflect a close lineage relationship between mononuclear phagocytes, in which M-CSF induces a diversion of lineage resources away from osteoclastic function.  相似文献   

10.
Osteoclasts, the multinucleated giant cells that resorb bone, develop from monocyte-macrophage lineage cells. Osteoblasts or bone marrow stromal cells have been suggested to be involved in osteoclastic bone resorption. The recent discovery of new members of the tumor necrosis factor (TNF) receptor-ligand family has elucidated the precise mechanism by which osteoblasts/stromal cells regulate osteoclast differentiation and function. Osteoblasts/stromal cells express a new member of the TNF-ligand family "osteoclast differentiation factor(ODF)/osteoprotegerin ligand (OPGL)/TNF-related activation-induced cytokine (TRANCE)/receptor activator of NF-kB ligand (RANKL)" as a membrane associated factor. Osteoclast precursors which possess RANK, a TNF receptor family member, recognize ODF/OPGL/TRANCE/RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of macrophage colony-stimulating factor. Mature osteoclasts also express RANK, and their bone-resorbingactivity is also induced by ODF/OPGL/TRANCE/RANKL which osteoblasts/stromal cells possess. Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor (OCIF)/TNF receptor-like molecule 1 (TR1) is a soluble decoy receptor for ODF/OPGL/TRANCE/RANKL. Activation of NF-kB and c-Jun N-terminal kinase through the RANK-mediated signaling system appears to be involved in differentiation and activation of osteoclasts.  相似文献   

11.
Osteoclasts are unique cells that resorb bone, and are involved in not only bone remodeling but also pathological bone loss such as osteoporosis and rheumatoid arthritis. The regulation of osteoclasts is based on a number of molecules but full details of these molecules have not yet been understood. MicroRNAs are produced by Dicer cleavage an emerging regulatory system for cell and tissue function. Here, we examine the effects of Dicer deficiency in osteoclasts on osteoclastic activity and bone mass in vivo. We specifically knocked out Dicer in osteoclasts by crossing Dicer flox mice with cathepsin K‐Cre knock‐in mice. Dicer deficiency in osteoclasts decreased the number of osteoclasts (N.Oc/BS) and osteoclast surface (Oc.S/BS) in vivo. Intrinsically, Dicer deficiency in osteoclasts suppressed the levels of TRAP positive multinucleated cell development in culture and also reduced NFATc1 and TRAP gene expression. MicroRNA analysis indicated that expression of miR‐155 was suppressed by RANKL treatment in Dicer deficient cells. Dicer deficiency in osteoclasts suppressed osteoblastic activity in vivo including mineral apposition rate (MAR) and bone formation rate (BFR) and also suppressed expression of genes encoding type I collagen, osteocalcin, Runx2, and Efnb2 in vivo. Dicer deficiency in osteoclasts increased the levels of bone mass indicating that the Dicer deficiency‐induced osteoclastic suppression was dominant over Dicer deficiency‐induced osteoblastic suppression. On the other hand, conditional Dicer deletion in osteoblasts by using 2.3 kb type I collagen‐Cre did not affect bone mass. These results indicate that Dicer in osteoclasts controls activity of bone resorption in vivo. J. Cell. Biochem. 109: 866–875, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Matrix metalloproteinases (MMPs) are key mediators in extra-cellular matrix remodelling and implicated primarily in bone growth, and particularly in osteoclastic bone resorption. We hypothesise that MMPs have a role in the increased bone remodelling resulting from oestrogen deficiency. Transgenic (TG) mice overexpressing TIMP-1 in their osteoblastic cells and their wild-type (WT) littermates were ovariectomised. One month after surgery, bone mineral density (BMD) and bone microarchitecture were assessed. Primary cells from WT and TG mice were used to determine how TIMP-1 affects osteoclast and osteoblastic cells. The reduction of BMD induced by ovariectomy in WT mice was not observed in the transgenic mice. The transgene overexpression also dampened the post-ovariectomy increase in bone resorption in contrast to the WT mice. In vivo, osteoclastic surfaces and D-pyridinoline were not increased in TG mice, and ex vivo, the differentiation of osteoclasts from TG bone marrow precursor cells were unaffected by in vivo oestrogen deficiency or treatment. We showed also that TIMP-1 overexpression reduces and delays the osteoblastic proliferation and differentiation respectively, and reduced the generation of the active form of TGFbeta1 in the supernatant of TG osteoblasts. Our findings support the hypothesis that in vivo inhibition of osteoblastic MMPs prevented the bone loss induced by oestrogen deficiency, with a significant decrease in bone resorption. This effect was presumably resulting from (1) a direct inhibition of osteoclastic resorption activity by the TIMP-1 and (2) the modification in the local activation of extra-cellular signalling factors such as TGFbeta1 and the OPG/RANKL ratio.  相似文献   

13.
Bone remodeling depends on the spatial and temporal coupling of bone formation by osteoblasts and bone resorption by osteoclasts; however, the molecular basis of these inductive interactions is unknown. We have previously shown that osteoblastic overexpression of TGF-β2 in transgenic mice deregulates bone remodeling and leads to an age-dependent loss of bone mass that resembles high-turnover osteoporosis in humans. This phenotype implicates TGF-β2 as a physiological regulator of bone remodeling and raises the question of how this single secreted factor regulates the functions of osteoblasts and osteoclasts and coordinates their opposing activities in vivo. To gain insight into the physiological role of TGF-β in bone remodeling, we have now characterized the responses of osteoblasts to TGF-β in these transgenic mice. We took advantage of the ability of alendronate to specifically inhibit bone resorption, the lack of osteoclast activity in c-fos−/− mice, and a new transgenic mouse line that expresses a dominant-negative form of the type II TGF-β receptor in osteoblasts. Our results show that TGF-β directly increases the steady-state rate of osteoblastic differentiation from osteoprogenitor cell to terminally differentiated osteocyte and thereby increases the final density of osteocytes embedded within bone matrix. Mice overexpressing TGF-β2 also have increased rates of bone matrix formation; however, this activity does not result from a direct effect of TGF-β on osteoblasts, but is more likely a homeostatic response to the increase in bone resorption caused by TGF-β. Lastly, we find that osteoclastic activity contributes to the TGF-β–induced increase in osteoblast differentiation at sites of bone resorption. These results suggest that TGF-β is a physiological regulator of osteoblast differentiation and acts as a central component of the coupling of bone formation to resorption during bone remodeling.  相似文献   

14.
We previously reported that fibroblast growth factor-2 (FGF-2) acts not only on osteoblasts to stimulate osteoclastic bone resorption indirectly but also on mature osteoclasts directly. In this study, we investigated the mechanism of this direct action of FGF-2 on mature osteoclasts using mouse and rabbit osteoclast culture systems. FGF-2 stimulated pit formation resorbed by isolated rabbit osteoclasts moderately from low concentrations (>/=10(-12) m), whereas at high concentrations (>/=10(-9) m) it showed stimulation on pit formation resorbed by unfractionated bone cells very potently. FGF-2 (>/=10(-12) m) also increased cathepsin K and MMP-9 mRNA levels in mouse and rabbit osteoclasts. Among FGF receptors (FGFR1 to 4) only FGFR1 was detected on isolated mouse osteoclasts, whereas all FGFRs were identified on mouse osteoblasts. FGF-2 (>/=10(-12) m) up-regulated the phosphorylation of cellular proteins, including p42/p44 mitogen-activated protein (MAP) kinase, and increased the kinase activity of immunoprecipitated FGFR1 in mouse osteoclasts. The stimulation of FGF-2 on mouse and rabbit osteoclast functions was abrogated by PD-98059, a specific inhibitor of p42/p44 MAP kinase. These results strongly suggest that FGF-2 acts directly on mature osteoclasts through activation of FGFR1 and p42/p44 MAP kinase, causing the stimulation of bone resorption at physiological or pathological concentrations.  相似文献   

15.
Huang J  Yuan L  Wang X  Zhang TL  Wang K 《Life sciences》2007,81(10):832-840
Icariin, a principal flavonoid glycoside in Herba Epimedii, is hypothesized to possess beneficial effects on bone mass. Icariin is metabolized to icariside II and then to icaritin in vivo. In the present study, we investigated the in vitro effects of icariin, icariside II and icaritin on both osteoblasts and osteoclasts. After treatment with these compounds at concentrations 10(-5)-10(-8) mol/l, osteoblasts were examined for proliferation, alkaline phosphatase activity, osteocalcin secretion and matrix mineralization, as well as expression levels of bone-related proteins. The formation of osteoclasts was assessed by counting the number of multinucleated TRAP-positive cells. The activity of isolated rat osteoclasts was evaluated by measuring pit area, actin rings and superoxide generation. Icariside II and icaritin increased the mRNA expression of ALP, OC, COL-1 and OPG, but suppressed that of RANKL. In addition, these compounds reduced the number of multinucleated TRAP-positive cells and the osteoclastic resorption area. Also decreases were observed in superoxide generation and actin ring formation that are required for osteoclast survival and bone resorption activity. These findings suggest that icaritin, which was more potent than icariin and icariside II, enhanced the differentiation and proliferation of osteoblasts, and facilitated matrix calcification; meanwhile it inhibited osteoclastic differentiation in both osteoblast-preosteoclast coculture and osteoclast progenitor cell culture, and reduced the motility and bone resorption activity of isolated osteoclasts.  相似文献   

16.
Osteoclast progenitors differentiate into mature osteoclasts in the presence of receptor activator of NF-kappaB (RANK) ligand on stromal or osteoblastic cells and monocyte macrophage colony-stimulating factor (M-CSF). The soluble RANK ligand induces the same differentiation in vitro without stromal cells. Tumor necrosis factor-alpha (TNF-alpha), a potent cytokine involved in the regulation of osteoclast activity, promotes bone resorption via a primary effect on osteoblasts; however, it remains unclear whether TNF-alpha can also directly induce the differentiation of osteoclast progenitors into mature osteoclasts. This study revealed that TNF-alpha directly induced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), which produced resorption pits on bone in vitro in the presence of M-CSF. The bone resorption activity of TNF-alpha-induced MNCs was lower than that of soluble RANK ligand-induced MNCs; however, interleukin-1beta stimulated this activity of TNF-alpha-induced MNCs without an increase in the number of MNCs. In this case, interleukin-1beta did not induce TRAP-positive MNC formation. The osteoclast progenitors expressed TNF receptors, p55 and p75; and the induction of TRAP-positive MNCs by TNF-alpha was inhibited completely by an anti-p55 antibody and partially by an anti-p75 antibody. Our findings presented here are the first to indicate that TNF-alpha is a crucial differentiation factor for osteoclasts. Our results suggest that TNF-alpha and M-CSF play an important role in local osteolysis in chronic inflammatory diseases.  相似文献   

17.
Skeletal tissue homeostasis is maintained via the balance of osteoclastic bone resorption and osteoblastic bone formation. Autophagy and apoptosis are essential for the maintenance of homeostasis and normal development in cells and tissues. We found that Bax-interacting factor 1 (Bif-1/Endophillin B1/SH3GLB1), involving in autophagy and apoptosis, was upregulated during osteoclastogenesis. Furthermore, mature osteoclasts expressed Bif-1 in the cytosol, particularly the perinuclear regions and podosome, suggesting that Bif-1 regulates osteoclastic bone resorption. Bif-1-deficient (Bif-1 −/−) mice showed increased trabecular bone volume and trabecular number. Histological analyses indicated that the osteoclast numbers increased in Bif-1 −/− mice. Consistent with the in vivo results, osteoclastogenesis induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) was accelerated in Bif-1 −/− mice without affecting RANKL-induced activation of RANK downstream signals, such as NF-κB and mitogen-activated protein kinases (MAPKs), CD115/RANK expression in osteoclast precursors, osteoclastic bone-resorbing activity and the survival rate. Unexpectedly, both the bone formation rate and osteoblast surface substantially increased in Bif-1 −/− mice. Treatment with β-glycerophosphate (β-GP) and ascorbic acid (A.A) enhanced osteoblastic differentiation and mineralization in Bif-1 −/− mice. Finally, bone marrow cells from Bif-1 −/− mice showed a significantly higher colony-forming efficacy by the treatment with or without β-GP and A.A than cells from wild-type (WT) mice, suggesting that cells from Bif-1 −/− mice had higher clonogenicity and self-renewal activity than those from WT mice. In summary, Bif-1 might regulate bone homeostasis by controlling the differentiation and function of both osteoclasts and osteoblasts (235 words).  相似文献   

18.
Monocytes and macrophages are capable of degrading both the mineral and organic components of bone and are known to secrete local factors which stimulate host osteoclastic bone resorption. Recent studies have shown that monocytes and macrophages, including those isolated from neoplastic and inflammatory lesions, can also be induced to differentiate into cells that show all the cytochemical and functional characteristics of mature osteoclasts, including lacunar bone resorption. Monocyte/macrophage-osteoclast differentiation occurs in the presence of osteoblasts/bone stromal cells (which express osteoclast differentiation factor) and macrophage-colony stimulating factor and is inhibited by osteoprotegerin. Various systemic hormones and local factors (e.g. cytokines, growth factors, prostaglandins) modulate osteoclast formation by controlling these cellular and humoral elements. Various pathological lesions of bone and joint (e.g. carcinomatous metastases, arthritis, aseptic loosening) are associated with osteolysis. These lesions generally contain a chronic inflammatory infiltrate in which macrophages form a significant fraction. One cellular mechanism whereby pathological bone resorption may be effected is through generation of increased numbers of bone-resorbing osteoclasts from macrophages. Production of humoral factors which stimulate mononuclear phagocyte-osteoclast differentiation and osteoclast activity is also likely to influence the extent of pathological bone resorption.  相似文献   

19.
Previous studies found that bone morphogenic proteins (BMPs) support osteoclast formation, but it is not clear whether this is a direct effect on osteoclasts or mediated indirectly through osteoblasts. We have shown that a mouse deficient for the BMP antagonist Twisted gastrulation suggested a direct positive role for BMPs on osteoclastogenesis. In this report, we further determine the significance of BMP signaling on osteoclast formation in vitro. We find that BMP2 synergizes with suboptimal levels of receptor activator of NF‐κB ligand (RANKL) to enhance in vitro differentiation of osteoclast‐like cells. The enhancement by BMP2 is not a result of changes in the rate of proliferation or survival of the bone marrow‐derived cultures, but is accompanied by an increase in expression of genes involved in osteoclast differentiation and fusion. Treatment with BMP2 did not significantly alter expression of RANKL or OPG in our osteoclast cultures, suggesting that the enhancement of osteoclastogenesis is not mediated indirectly through osteoblasts or stromal cells. Consistent with this, we detected phosphorylated SMAD1,5,8 (p‐SMAD) in the nuclei of mononuclear and multinucleated cells in osteoclast cultures. Levels of p‐SMAD, BMP2, and BMP receptors increased during differentiation. RNAi suppression of Type II BMP receptor inhibited RANKL‐stimulated formation of multinuclear TRAP‐positive cells. The BMP antagonist noggin inhibited RANKL‐mediated osteoclast differentiation when added prior to day 3, while addition of noggin on day 3 or later failed to inhibit their differentiation. Taken together, these data indicate that osteoclasts express BMP2 and BMP receptors, and that autocrine BMP signaling directly promotes the differentiation of osteoclasts‐like cells. J. Cell. Biochem. 109: 672–682, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Interleukin-1 (IL-1) is one of the most potent bone-resorbing factors involved in bone loss associated with inflammation. We previously reported that IL-1 prolonged the survival of multinucleated osteoclast-like cells (OCLs) formed in cocultures of murine osteoblasts/stromal cells and bone marrow cells via the prevention of spontaneously occurring apoptosis. It was reported that macrophage colony-stimulating factor (M-CSF/CSF-1) prolongs the survival of OCLs without the help of osteoblasts/stromal cells. The present study was conducted to determine whether IL-1 also directly induces the multinucleation and activation of OCLs. Mononuclear osteoclast-like cells (prefusion osteoclasts; pOCs) were purified using the "disintegrin" echistatin from cocultures of murine osteoblastic cells (MB 1.8 cells) and bone marrow cells. Both IL-1 and M-CSF prolonged the survival and induced the multinucleation of pOCs through their respective receptors. However, actin ring formation (a functional marker of osteoclasts) by multinucleated cells was observed in the pOC cultures treated with IL-1, but not those treated with M-CSF. We previously reported that enriched multinucleated OCLs as well as pOCs placed on bone/dentine slices formed few resorption pits, but their pit-forming activity was greatly increased by the addition of osteoblasts/stromal cells. Here, pit-forming activity of both pOCs and enriched OCLs placed on dentine slices was induced by adding IL-1, even in the absence of osteoblasts/stromal cells. M-CSF failed to induce pit-forming activity in pOC and enriched OCL cultures. These results indicate that IL-1 induces the multinucleation and bone-resorbing activity of osteoclasts even in the absence of osteoblasts/stromal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号