首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The puna/páramo grasslands span across the highest altitudes of the tropical Andes, and their ecosystem dynamics are still poorly understood. In this study we examined the above‐ground biomass and developed species specific and multispecies power‐law allometric equations for four tussock grass species in Peruvian high altitude grasslands, considering maximum height (hmax), elliptical crown area and elliptical basal area. Although these predictors are commonly used among allometric literature, they have not previously been used for estimating puna grassland biomass. Total above‐ground biomass was estimated to be of 6.7 ± 0.2 Mg ha?1 (3.35 ± 0.1 Mg C ha?1). All allometric relationships fitted to similar power‐law models, with basal area and crown area as the most influential predictors, although the fit improved when tussock maximum height was included in the model. Multispecies allometries gave better fits than the other species‐specific equations, but the best equation should be used depending on the species composition of the target grassland. These allometric equations provide an useful approach for measuring above‐ground biomass and productivity in high‐altitude Andean grasslands, where destructive sampling can be challenging and difficult because of the remoteness of the area. These equations can be also applicable for establishing above‐ground reference levels before the adoption of carbon compensation mechanisms or grassland management policies, as well as for measuring the impact of land use changes in Andean ecosystems.  相似文献   

2.
Eelgrass (Zostera marina) populations supply substantial amounts of organic materials to food webs in shallow coastal environments, provide habitat for many fishes and their larvae and abate erosion. The characterisation of eelgrass biomass dynamics is an important input for the assessment of the function and values for this important seagrass species. We here present original allometric methods for the non‐destructive estimation of above‐ground biomass of eelgrass. These assessments are based on measurements of lengths and areas of leaves and sheaths and mathematical models that can be identified by means of standard regression procedures. The models were validated by using data obtained from Z. marina meadows in the Punta Banda estuary B.C., Mexico, and in Jindong Bay, Korea. Using available data and concordance correlation index criteria we show that the values projected thorough the presented allometric paradigm reproduces observed values in a consistent way. The annual average value for observed above‐ground biomass was 1.46 ± 0.15 g shoot?1, while the corresponding calculated value was 1.40 ± 0.13 g shoot?1. We suggest that our method can be applied to other studies in which the architecture and growth form of leaves and sheaths are similar to those of eelgrass. This would provide reliable and simplified estimations of biomass while eliminating tedious laboratory processing and avoiding destructive sampling.  相似文献   

3.
Abstract. For seven years we studied the recovery of vegetation in a Belgian P limited rich fen (Caricion davallianae), which had been fertilized with nitrogen (200 g.m?2) and phosphorus (50 g.m?2) in 1992. The vegetation in this fen has low above‐ground biomass production (< 100 g m?2) due to the strong P limitation. Above‐ground biomass was harvested from 1992 to 1998 and P and N concentrations measured. In 1998, below‐ground biomass was also harvested. The response to fertilization differed markedly between below‐ and above‐ground compartments. Above‐ground, P was the single most important factor that continued to stimulate growth 7 yr after fertilization. Below‐ground, N tended to decrease live root biomass and increase dead root biomass and seemed to have a toxic effect on the roots. In the combined NP treatment the stimulating effect of P (an increase of live root biomass) was countered by N. The 1998 soil analysis showed no difference in soil P in the plots. Thus, Fe hydroxides are not capable of retaining P in competition with fen vegetation uptake. However, higher capture of P in root Fe coatings from N plots may partially explain this negative N effect. The results suggest that N root toxicity will be amplified in strongly P limited habitats but that its persistence will be less influenced by P availability. This mechanism may be a competitive advantage for N2 fixing species that grow in strongly P limited wetlands.  相似文献   

4.
Mycorrhizal associations are widespread in high‐latitude ecosystems and are potentially of great importance for global carbon dynamics. Although large herbivores play a key part in shaping subarctic plant communities, their impact on mycorrhizal dynamics is largely unknown. We measured extramatrical mycelial (EMM) biomass during one growing season in 16‐year‐old herbivore exclosures and unenclosed control plots (ambient), at three mountain birch forests and two shrub heath sites, in the Scandes forest‐tundra ecotone. We also used high‐throughput amplicon sequencing for taxonomic identification to investigate differences in fungal species composition. At the birch forest sites, EMM biomass was significantly higher in exclosures (1.36 ± 0.43 g C/m2) than in ambient conditions (0.66 ± 0.17 g C/m2) and was positively influenced by soil thawing degree‐days. At the shrub heath sites, there was no significant effect on EMM biomass (exclosures: 0.72 ± 0.09 g C/m2; ambient plots: 1.43 ± 0.94). However, EMM biomass was negatively related to Betula nana abundance, which was greater in exclosures, suggesting that grazing affected EMM biomass positively. We found no significant treatment effects on fungal diversity but the most abundant ectomycorrhizal lineage/cortinarius, showed a near‐significant positive effect of herbivore exclusion (p = .08), indicating that herbivory also affects fungal community composition. These results suggest that herbivory can influence fungal biomass in highly context‐dependent ways in subarctic ecosystems. Considering the importance of root‐associated fungi for ecosystem carbon balance, these findings could have far‐reaching implications.  相似文献   

5.
Abstract Current estimates of the total biomass in tropical rainforests vary considerably; this is due in large part to the different approaches that are used to calculate biomass. In this study we have used a canopy crane to measure the tree architectures in a 1 ha plot of complex mesophyll vine forest at Cape Tribulation, Australia. Methods were developed to measure and calculate the crown and stem biomass of six major species of tree and palm (Alstonia scholaris (Apocynaceae), Cleistanthus myrianthus (Euphorbiaceae), Endiandra microneura (Lauraceae), Myristica insipida (Myristicaceae), Acmena graveolens (Myrtaceae), Normanbya normanbyi (Arecaceae)) using the unique access provided by the crane. This has allowed the first non‐destructive biomass estimate to be carried out for a forest of this type. Allometric equations which relate tree biomass to the measured variable ‘diameter at breast height’ were developed for the six species, and a general equation was also developed for trees on the plot. The general equation was similar in form to equations developed for tropical rainforests in Brazil and New Guinea. The species equations were applied at the level of families, the generalized equation was applied to the remaining species which allowed the biomass of a total of 680 trees to be calculated. This has provided a current estimate of 270 t ha−1 above‐ground biomass at the Australian Canopy Crane site; a value comparable to lowland rainforests in Panama and French Guiana. Using the same tree database seven alternative allometric equations (literature equations for tropical rainforests) were used to calculate the site biomass, the range was large (252–446 t ha−1) with only three equations providing estimates within 34 t ha−1 (12.5%) of the site value. Our use of multiple species‐specific allometric equations has provided a site estimate only slightly larger (1%) than that obtained using allometric equations developed specifically for tropical wet rainforests. We have demonstrated that it is possible to non‐destructively measure the biomass in a complex forest using an on‐site canopy crane. In conjunction the development of crown maps and a detailed tree architecture database allows changes in forest structure to be followed quantitatively.  相似文献   

6.
Keryn I. Paul  Stephen H. Roxburgh  Jerome Chave  Jacqueline R. England  Ayalsew Zerihun  Alison Specht  Tom Lewis  Lauren T. Bennett  Thomas G. Baker  Mark A. Adams  Dan Huxtable  Kelvin D. Montagu  Daniel S. Falster  Mike Feller  Stan Sochacki  Peter Ritson  Gary Bastin  John Bartle  Dan Wildy  Trevor Hobbs  John Larmour  Rob Waterworth  Hugh T.L. Stewart  Justin Jonson  David I. Forrester  Grahame Applegate  Daniel Mendham  Matt Bradford  Anthony O'Grady  Daryl Green  Rob Sudmeyer  Stan J. Rance  John Turner  Craig Barton  Elizabeth H. Wenk  Tim Grove  Peter M. Attiwill  Elizabeth Pinkard  Don Butler  Kim Brooksbank  Beren Spencer  Peter Snowdon  Nick O'Brien  Michael Battaglia  David M Cameron  Steve Hamilton  Geoff McAuthur  Jenny Sinclair 《Global Change Biology》2016,22(6):2106-2124
Accurate ground‐based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost‐effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above‐ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power‐law models explained 84–95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand‐based biomass from allometric models of varying levels of generalization (species‐specific, plant functional type) were validated using whole‐plot harvest data from 17 contrasting stands (range: 9–356 Mg ha?1). Losses in efficiency of prediction were <1% if generalized models were used in place of species‐specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand‐level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost‐effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species‐specific models is only warranted when gains in accuracy of stand‐based predictions are relatively high (e.g. high‐value monocultures).  相似文献   

7.

Aims

Virus detection has often been difficult due to a low concentration in water. In this study, we developed a new procedure based on concentration of virus particles on an innovative support: poly‐l ‐lysine dendrigrafts (DGL), coupled with directed nucleic acid extraction and real‐time PCR quantification.

Methods and Results

This method was evaluated using the bacteriophage MS2 as a model virus. This virus exhibited the size and structural properties of human pathogenic enteric viruses and has often been used to assess new supports of concentration. Moreover, this bacteriophage is also a faecal contamination indicator. In this study, many water filtration conditions were tested (volume of water, concentration, etc.), and more than 80% of bacteriophage were recovered after filtration on polymer, in most conditions. We demonstrated that the method was linear (slope = 0·99 ± 0·04 and Y intercept when x = ?0·02 ± 0·28), valid (as manipulators, tested concentrations, volumes of sample and batch of polymer did not have any influence on concentration) and sensitive (allowing to concentrate up to 16 600‐fold 1 l of sample and to detect and quantify down to 750 GC l?1 and 7500 GC l?1, respectively).

Conclusions

To conclude, this support exhibits high interest to retain viruses and to allow to detect low concentration of virus in water.

Significance and Impact of the Study

This study gives valuable advance in the methods of concentration and diagnosis of virus in water.  相似文献   

8.
Paoli GD  Curran LM  Slik JW 《Oecologia》2008,155(2):287-299
Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8–196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees ≥10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0–20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 ± 13 stems ha−1, basal area 39.6 ± 1.4 m2 ha−1 and aboveground biomass 518 ± 28 Mg ha−1 (mean ± SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 ± 25 Mg ha−1. Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R Pearson = 0.368–0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60–90 cm dbh were negatively related to these factors. Soil fertility thus had a significant effect on both total aboveground biomass and its distribution among size classes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Water‐holding soil amendments such as super‐absorbent polymer (SAP) may improve native species establishment in restoration but may also interact with precipitation or invasive species such as Bromus tectorum L. (cheatgrass or downy brome) to influence revegetation outcomes. We implemented an experiment at two sites in Colorado, U.S.A., in which we investigated the interactions of drought (66% reduction of ambient rainfall), B. tectorum seed addition (BRTE, 465 seeds/m2), and SAP soil amendment (25 g/m2) on initial plant establishment and 3‐year aboveground and belowground biomass and allocation. At one site, SAP resulted in higher native seeded species establishment but only with ambient precipitation. However, by the third year, we detected no SAP effects on native seeded species biomass. Treatments interacted to influence aboveground and belowground biomass and allocation differently. At one site, a SAP × precipitation interaction resulted in lower belowground biomass in plots with SAP and drought (61.7 ± 7.3 g/m2) than plots with drought alone (91.6 ± 18.1 g/m2). At the other site, a SAP × BRTE interaction resulted in higher belowground biomass in plots with SAP and BRTE (56.6 ± 11.2 g/m2) than BRTE alone (35.0 ± 3.7 g/m2). These patterns were not reflected in aboveground biomass. SAP should be used with caution in aridland restoration because initial positive effects may not translate to long‐term benefits, SAP may uniquely influence aboveground versus belowground biomass, and SAP can interact with environmental variables to impact developing plant communities in positive and negative ways.  相似文献   

10.
Savannah ecosystems are important carbon stocks on the Earth, and their quantification is crucial for understanding the global impact of climate and land‐use changes in savannahs. The estimation of aboveground/belowground plant biomass requires tested allometric relationships that can be used to determine total plant biomass as a function of easy‐to‐measure morphological indicators. Despite recent advances in savannah ecology, research on allometric relations in savannahs remains confined to a few site‐specific studies where basal area is typically used as the main morphometric parameter with plant biomass. We investigate allometric relations at four sites along a 950‐km transect in the Kalahari across mean rainfall gradient 170 mm yr?1–550 mm yr?1. Using data from 342 harvested trees/shrubs, we relate basal area, height and crown diameter to aboveground biomass. These relationships are strongest in trees and weakest in small shrubs. Strong allometric relationships are also determined for morphologically similar groups of woody vegetation. We show that crown diameter can be used as an alternative to basal area in allometric relationships with plant biomass. This finding may enhance the ability to determine aboveground biomass over large areas using high‐resolution aerial or satellite imagery without requiring ground‐based measurements of basal area.  相似文献   

11.

Key message

In black spruce stands on permafrost, trees and understory plants showed higher biomass allocation especially to ‘thin’ fine roots (diam. < 0.5 mm) when growing on shallower permafrost table.

Abstract

Black spruce (Picea mariana) forests in interior Alaska are located on permafrost and show greater below-ground biomass allocation than non-permafrost forests. However, information on fine roots (roots <2 mm in diameter), which have a key role in nutrient uptake and below-ground carbon flux, is still limited especially for effects of different permafrost conditions. In this study, we examined fine root biomass in two black spruce stands with different depths to the permafrost table. In the shallow permafrost (SP) plot, fine root biomass of black spruce trees was 70 % of that in the deep permafrost (DP) plot. In contrast, ratio of the fine root biomass to above-ground biomass was greater in the SP plot than in the DP plot. Understory plants, on the other hand, showed larger fine root biomass in the SP plot than in the DP plot, whereas their above-ground biomass was similar between the two plots. In addition, biomass proportion of ‘thin’ fine roots (diam. <0.5 mm) in total fine roots was greater in the SP plot than in the DP plot. These results suggest that black spruce trees and understory plants could increase biomass allocation to fine roots for efficient below-ground resource acquisition from colder environments with shallower permafrost table. In the SP plot, fine roots of understory plants accounted for 30 % of the stand fine root biomass, suggesting that understory plants such as Ledum and Vaccinium spp. would have significant contribution to below-ground carbon dynamics in permafrost forests.
  相似文献   

12.
The differential discrimination of nitrogen isotopes (15N/14N) within amino acids in consumers and their diets has been routinely used to estimate organismal tropic position (TP). Analogous isotopic discrimination can occur within plants, particularly in organs lacking chloroplasts. Such discrimination likely arises from the catabolic deamination of amino acids, resulting in a numerical elevation of estimated TP, within newly synthesized biomass. To investigate this phenomenon, we examined the 15N/14N of amino acids (δ15NAA) in spring leaves and flowers from eight deciduous and two annual plants. These plants were classified on the basis of their time of bloom, plants that bloomed when their leaves were absent (Type I) versus plants that bloomed while leaves were already present (Type II). Based on the δ15NAA values from leaves, both plant types occupied comparable and ecologically realistic mean TPs (=1.0 ± 0.1, mean ± 1σ). However, the estimated TPs of flowers varied significantly (Type I: 2.2 ± 0.2; Type II: 1.0 ± 0.1). We hypothesize that these results can be interpreted by the following sequence of events: (1) Type I floral biomass is synthesized in absence of active photosynthesis; (2) the catabolic deamination of amino acids in particular, leaves behind 15N in the residual pool of amino acids; and (3) the incorporation of these 15N‐enriched amino acids within the biomass of Type I flowers results in the numerical elevation of the TPs. In contrast, the actively photosynthesizing Type II leaves energetically sustain the synthesis of Type II flower biomass, precluding any reliance on catabolic deamination of amino acids. Amino acids within Type II flowers are therefore isotopically comparable to the Type II leaves. These findings demonstrate the idiosyncratic nature of the δ15NAA values within autotrophic organs and have implications for interpreting trophic hierarchies using primary producers and their consumers.  相似文献   

13.
Question: Does experimental warming, designed to simulate future warming of the Arctic, change the biomass allocation and mycorrhizal infection of tundra plants? Location: High Arctic tundra near Barrow, Alaska, USA (71°18′N 156°40′W). Methods: Above and below ground plant biomass of all species was harvested following 3–4 yr of 1‐2°C of experimental warming. Biomass allocation and arbuscular mycorrhizal infection were also examined in the two dominant species, Salix rotundifolia and Carex aquatilis. Results: Above‐ground biomass of graminoids increased in response to warming but there was no difference in total plant biomass or the ratio of above‐ground to below‐ground biomass for the community as a whole. Carex aquatilis increased above‐ground biomass and proportionally allocated more biomass above ground in response to warming. Salix rotundifolia increased the amount of above‐ and below‐ground biomass allocated per leaf in response to warming. Mycorrhizal infection rates showed no direct response to warming, but total abundance was estimated to have likely increased in response to warming owing to increased root biomass of S. rotundifolia. Conclusions: The community as a whole was resistant to short‐term warming and showed no significant changes in above‐ or below‐ground biomass despite significant increases in above‐ground biomass of graminoids. However, the patterns of biomass allocation for C. aquatilis and S. rotundifolia did change with warming. This suggests that long‐term warming may result in changes in the above‐ground to below‐ground biomass ratio of the community.  相似文献   

14.
15.
Abstract We estimated the below‐ground net plant productivity (BNPP) of different biomass components in an intensively and continuously 45‐ha grazed site and in a neighbouring exclosure ungrazed for 16 years for a natural mountain grassland in central Argentina. We measured approximately twice as much dead below‐ground biomass in the grazed site as in the ungrazed site, with a strong concentration of total below‐ground biomass towards the upper 10 cm of the soil layer in both sites. The main contribution to total live biomass was accounted for by very fine (<0.5 mm) and fine roots (0.5–1.0 mm) both at the grazed (79%) and at the ungrazed (81%) sites. We measured more dead biomass for almost all root components, more live biomass of rhizomes, tap roots and bulbs, and less live biomass of thicker roots (>1 mm) in the grazed site. The seasonal variation of total live below‐ground biomass mainly reflected climate, with the growing season being limited to the warmer and wetter portion of the year, but such variation was higher in the grazed site. Using different methods of estimation of BNPP, we estimated maximum values of 1241 and 723 g m?2 year?1 for the grazed and ungrazed sites, respectively. We estimated that very fine root productivity was almost twice as high at the grazed site as at the ungrazed one, despite the fact that both sites had similar total live biomass, and root turnover rate was twofold at the grazed site.  相似文献   

16.
Carbon emissions from tropical land‐use change are a major uncertainty in the global carbon cycle. In African woodlands, small‐scale farming and the need for fuel are thought to be reducing vegetation carbon stocks, but quantification of these processes is hindered by the limitations of optical remote sensing and a lack of ground data. Here, we present a method for mapping vegetation carbon stocks and their changes over a 3‐year period in a > 1000 km2 region in central Mozambique at 0.06 ha resolution. L‐band synthetic aperture radar imagery and an inventory of 96 plots are combined using regression and bootstrapping to generate biomass maps with known uncertainties. The resultant maps have sufficient accuracy to be capable of detecting changes in forest carbon stocks of as little as 12 MgC ha?1 over 3 years with 95% confidence. This allows characterization of biomass loss from deforestation and forest degradation at a new level of detail. Total aboveground biomass in the study area was reduced by 6.9 ± 4.6% over 3 years: from 2.13 ± 0.12 TgC in 2007 to 1.98 ± 0.11 TgC in 2010, a loss of 0.15 ± 0.10 TgC. Degradation probably contributed 67% (96.9 ± 91.0 GgC) of the net loss of biomass, but is associated with high uncertainty. The detailed mapping of carbon stock changes quantifies the nature of small‐scale farming. New clearances were on average small (median 0.2 ha) and were often additions to already cleared land. Deforestation events reduced biomass from 33.5 to 11.9 MgC ha?1 on average. Contrary to expectations, we did not find evidence that clearances were targeted towards areas of high biomass. Our method is scalable and suitable for monitoring land cover change and vegetation carbon stocks in woodland ecosystems, and can support policy approaches towards reducing emissions from deforestation and degradation (REDD).  相似文献   

17.

Introduction

Cannabis sativa L. (cannabis) is utilised as a therapeutic and recreational drug. With the legalisation of cannabis in many countries and the anticipated regulation of potency that will accompany legalisation, analytical testing facilities will require a broadly applicable, quantitative, high throughput method to meet increased demand. Current analytical methods for the biologically active components of cannabis (phytocannabinoids) suffer from low throughput and/or an incomplete complement of relevant phytocannabinoids.

Objective

To develop a rapid, quantitative and broadly applicable liquid chromatography–tandem mass spectrometry analytical method for 11 phytocannabinoids in cannabis with acidic and neutral character.

Methodology

Bulk diffusion coefficients were calculated using the Taylor–Aris open tubular method, with four reference compounds used to validate the experimental set‐up. Three columns were quantitatively evaluated using van Deemter plots and fit‐to‐purpose performance metrics. Low (1.2 μL2) and standard (3.6 μL2) extra‐column variance ultra‐high pressure liquid chromatography (UPLC) configurations were contrasted. Method performance was demonstrated with methanolic cannabis flower extracts.

Results

Bulk diffusion coefficients and van Deemter plots for 11 phytocannabinoids are reported. The developed chromatographic method includes the challenging Δ89‐tetrahydrocannabinol isobars and, at 6.5 min, is faster than existing methods targeting similar panels of biologically active phytocannabinoids.

Conclusions

The bulk diffusion coefficients and van Deemter curves informed the development of a rapid quantitative method and will facilitate potential expansion to include additional compounds, including synthetic cannabinoids. The developed method can be implemented with low or standard extra‐column variance UPLC configurations.  相似文献   

18.
Question: Can above‐ground biomass of naturally growing Alhagi sparsifolia shrubs be estimated non‐destructively? Location: Qira oasis (37° 01′N, 80° 48′E, 1365 ma.s.l.) at the southern fringe of the Taklamakan desert, Xinjiang, NW China. Methods: Two methods were compared to estimate above‐ground biomass (AGB) of Alhagi. At first shrub AGB was estimated by manual ground measurements (called ‘allometric approach’) of length, width and height of 50 individuals. Subsequently regression equations were established between calculated shrub canopy volume and shrub AGB (r2= 0.96). These equations were used to calculate AGB from manual ground measurements in 20 sample plots within the Alhagi field. Secondly, kite‐based colour aerial photography coupled with the use of a Geographic Information System (called ‘GIS approach’) was tested. First and second order polynomial regressions between AGB data of the 50 individual shrubs and their respective canopy area allowed to automatically calculate the AGB of all remaining shrubs covered by the photograph (r2= 0.92 to 0.96). The use of non‐linear AGB regression equations required an automatised separation of shrubs growing solitary or in clumps. Separation criteria were the size and shape of shrub canopies. Results: The allometric approach was more reliable but also more time‐consuming than the GIS‐based approach. The latter led to an overestimation of Alhagi dry matter in densely vegetated areas. However, this systematic error decreased with increasing size of the surveyed area. Future research in this field should focus on improvements of AGB estimates in areas of high shrub density.  相似文献   

19.
Nitrogen availability in terrestrial ecosystems strongly influences plant productivity and nutrient cycling in response to increasing atmospheric carbon dioxide (CO2). Elevated CO2 has consistently stimulated forest productivity at the Duke Forest free‐air CO2 enrichment experiment throughout the decade‐long experiment. It remains unclear how the N cycle has changed with elevated CO2 to support this increased productivity. Using natural‐abundance measures of N isotopes together with an ecosystem‐scale 15N tracer experiment, we quantified the cycling of 15N in plant and soil pools under ambient and elevated CO2 over three growing seasons to determine how elevated CO2 changed N cycling between plants, soil, and microorganisms. After measuring natural‐abundance 15N differences in ambient and CO2‐fumigated plots, we applied inorganic 15N tracers and quantified the redistribution of 15N for three subsequent growing seasons. The natural abundance of leaf litter was enriched under elevated compared to ambient CO2, consistent with deeper rooting and enhanced N mineralization. After tracer application, 15N was initially retained in the organic and mineral soil horizons. Recovery of 15N in plant biomass was 3.5 ± 0.5% in the canopy, 1.7 ± 0.2% in roots and 1.7 ± 0.2% in branches. After two growing seasons, 15N recoveries in biomass and soil pools were not significantly different between CO2 treatments, despite greater total N uptake under elevated CO2. After the third growing season, 15N recovery in trees was significantly higher in elevated compared to ambient CO2. Natural‐abundance 15N and tracer results, taken together, suggest that trees growing under elevated CO2 acquired additional soil N resources to support increased plant growth. Our study provides an integrated understanding of elevated CO2 effects on N cycling in the Duke Forest and provides a basis for inferring how C and N cycling in this forest may respond to elevated CO2 beyond the decadal time scale.  相似文献   

20.

Aims

Slow or failed tree regeneration after forest disturbance is increasingly observed in the central European Alps, potentially amplifying the carbon (C) loss from disturbance. We aimed at quantifying C dynamics of a poorly regenerating disturbance site with a special focus on the role of non-woody ground vegetation.

Methods

Soil CO2 efflux, fine root biomass, ground vegetation biomass, tree increment and litter input were assessed in (i) an undisturbed section of a ~ 110 years old Norway spruce stand, (ii) in a disturbed section which was clear-cut six years ago (no tree regeneration), and (iii) in a disturbed section which was clear-cut three years ago (no tree regeneration).

Results

Total soil CO2 efflux was similar across all stand sections (8.5 ± 0.2 to 8.9 ± 0.3 t C ha?1 yr.?1). The undisturbed forest served as atmospheric C sink (2.1 t C ha?1 yr.?1), whereas both clearings were C sources to the atmosphere. The source strength three years after disturbance (?5.5 t C ha?1 yr.?1) was almost twice as high as six years after disturbance (?2.9 t C ha?1 yr.?1), with declining heterotrophic soil respiration and the high productivity of dense graminoid ground vegetation mitigating C loss.

Conclusions

C loss after disturbance decreases with time and ground vegetation growth. Dense non-woody ground vegetation cover can hamper tree regeneration but simultaneously decrease the ecosystem C loss. The role of ground vegetation should be more explicitly taken into account in forest C budgets assessing disturbance effects.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号