首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above‐ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a ‘space‐for‐time’ approach to test the hypothesis that a shift from lower‐productivity tundra heath to higher‐productivity deciduous shrub vegetation in the sub‐Arctic may lead to a loss of soil C that out‐weighs the increase in above‐ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg) is significantly lower at shrub (2.98 ± 0.48 kg m?2) and forest (2.04 ± 0.25 kg m?2) plots than at heath plots (7.03 ± 0.79 kg m?2). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system.  相似文献   

2.
Knowledge of the latitudinal patterns in biotic interactions, and especially in herbivory, is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. We used sap‐feeding insects as a model group to test the hypotheses that the strength of plant–herbivore interactions in boreal forests decreases with latitude and that this latitudinal pattern is driven primarily by midsummer temperatures. We used a replicated sampling design and quantitatively collected and identified all sap‐feeding insects from four species of forest trees along five latitudinal gradients (750–1300 km in length, ten sites in each gradient) in northern Europe (59 to 70°N and 10 to 60°E) during 2008–2011. Similar decreases in diversity of sap‐feeding insects with latitude were observed in all gradients during all study years. The sap‐feeder load (i.e. insect biomass per unit of foliar biomass) decreased with latitude in typical summers, but increased in an exceptionally hot summer and was independent of latitude during a warm summer. Analysis of combined data from all sites and years revealed dome‐shaped relationships between the loads of sap‐feeders and midsummer temperatures, peaking at 17 °C in Picea abies, at 19.5 °C in Pinus sylvestris and Betula pubescens and at 22 °C in B. pendula. From these relationships, we predict that the losses of forest trees to sap‐feeders will increase by 0–45% of the current level in southern boreal forests and by 65–210% in subarctic forests with a 1 °C increase in summer temperatures. The observed relationships between temperatures and the loads of sap‐feeders differ between the coniferous and deciduous tree species. We conclude that climate warming will not only increase plant losses to sap‐feeding insects, especially in subarctic forests, but can also alter plant‐plant interactions, thereby affecting both the productivity and the structure of future forest ecosystems.  相似文献   

3.
Fuel management techniques are commonly used in shrublands to reduce wildfire risk. However, more information about the ecological effects of these treatments is needed by managers and ecologists. In an effort to address this need, we performed a replicated (4 replicates per treatment) 48-ha experiment in northern California chaparral dominated by Adenostoma fasciculatum to determine the effects of two fuel reduction types (prescribed fire and mastication) and three different seasons of treatment (fall, winter, and spring) on shrub cover, height, and seedling density. Exclosures (2.5 m2 each) were also used to assess herbivory effects. By the third post-treatment year, prescribed fire treatments had higher shrub cover (71 ± 2%) than mastication (43 ± 4%). There was no treatment effect on shrub height, species richness, or composition. Seedling density was initially higher in prescribed fire treatments (31 ± 4 seedlings m−2) than mastication (3 ± 0 seedlings m−2); however, prescribed fire treatments experienced substantial mortality, especially spring burning, resulting in lower densities 3 years after treatments (18 ± 0 seedlings m−2 after fall and winter fire compared to 2 ± 0 seedlings m−2 after spring fire). A. fasciculatum remained the dominant shrub species after the treatments, and Ceanothus cuneatus recruitment was higher in fall burning. Deer herbivory only affected shrub height, especially in masticated units, resulting in heights of 55 ± 2 cm in unexclosed areas compared to 66 ± 4 cm inside exclosures by the third post-treatment year. Overall, our findings suggest that fuel treatments play an important role in shrubland community dynamics, at least in the short-term, with implications for re-treatment frequency, community structure, and wildlife habitat.  相似文献   

4.
Climate warming is predicted to affect species and trophic interactions worldwide, and alpine ecosystems are expected to be especially sensitive to changes. In this study, we used two ongoing climate warming (open‐top chambers) experiments at Finse, southern Norway, to examine whether warming had an effect on herbivory by leaf‐chewing insects in an alpine Dryas heath community. We recorded feeding marks on the most common vascular plant species in warmed and control plots at two experimental sites at different elevations and carried out a brief inventory of insect herbivores. Experimental warming increased herbivory on Dryas octopetala and Bistorta vivipara. Dryas octopetala also experienced increased herbivory at the lower and warmer site, indicating an overall positive effect of warming, whereas B. vivipara experienced an increased herbivory at the colder and higher site indicating a mixed effect of warming. The Lepidoptera Zygaena exulans and Sympistis nigrita were the two most common leaf‐chewing insects in the Dryas heath. Based on the observed patterns of herbivory, the insects life cycles and feeding preferences, we argue that Z. exulans is the most important herbivore on B. vivipara, and S. nigrita the most important herbivore on D. octopetala. We conclude that if the degree of insect herbivory increases in a warmer world, as suggested by this study and others, complex interactions between plants, insects, and site‐specific conditions make it hard to predict overall effects on plant communities.  相似文献   

5.
Shrub encroachment into arid grasslands has been associated with reduced grass abundance, increased soil erosion, and local declines in biodiversity. Livestock overgrazing and the associated reduction of fine fuels has been a primary driver of shrub encroachment in the southwestern United States, but shrublands continue to persist despite livestock removal and grassland restoration efforts. We hypothesized that an herbivory feedback from native mammals may contribute to continued suppression of grasses after the removal of livestock. Our herbivore exclusion experiment in southeastern Arizona included five treatment levels and allowed access to native mammals based on their relative body size, separating the effects of rodents, lagomorphs, and mule deer. We included two control treatments and replicated each treatment 10 times (n = 50). We introduced uniform divisions of lawn sod (Cynodon dactylon) into each exclosure for 24‐hr periods prior to (n = 2) and following (n = 2) the monsoon rains and used motion‐activated cameras to document herbivore visitations. In the pre‐monsoon trials, treatments that allowed lagomorph access had less sod biomass relative to other treatments (p < 0.001), averaging 44% (SD 36%) and 29% (SD 45%) remaining biomass after the 24‐hr trial periods. Following the onset of monsoons, differences in remaining biomass among treatments disappeared. Desert cottontails (Sylvilagus audubonii) were detected more frequently than any of the other 11 herbivore species present at the site, accounting for 83% of detections during the pre‐monsoon trials. Significantly more (p < 0.001) desert cottontails were detected during the pre‐monsoon trials (2,077) compared to the post‐monsoon trials (174), which coincided with biomass removal from lagomorph accessible treatments. We conclude that desert cottontails are significant consumers of herbaceous vegetation in shrub‐encroached arid grasslands and they, along with other native herbivores, may act as a biotic feedback contributing to the competitive advantage and persistence of shrubs.  相似文献   

6.
The carbon (C) sink strength of arctic tundra is under pressure from increasing populations of arctic breeding geese. In this study we examined how CO2 and CH4 fluxes, plant biomass and soil C responded to the removal of vertebrate herbivores in a high arctic wet moss meadow that has been intensively used by barnacle geese (Branta leucopsis) for ca. 20 years. We used 4 and 9 years old grazing exclosures to investigate the potential for recovery of ecosystem function during the growing season (July 2007). The results show greater above- and below-ground vascular plant biomass within the grazing exclosures with graminoid biomass being most responsive to the removal of herbivory whilst moss biomass remained unchanged. The changes in biomass switched the system from net emission to net uptake of CO2 (0.47 and −0.77 μmol m−2 s−1 in grazed and exclosure plots, respectively) during the growing season and doubled the C storage in live biomass. In contrast, the treatment had no impact on the CH4 fluxes, the total litter C pool or the soil C concentration. The rapid recovery of the above ground biomass and CO2 fluxes demonstrates the plasticity of this high arctic ecosystem in terms of response to changing herbivore pressure.  相似文献   

7.
The Svalbard reindeer is the only mammalian herbivore in Adventdalen (78°N), Svalbard, where it has no natural predators. To test if herbivores in the absence of predators regulate standing crop to a level independent of productivity, which is one of the predictions of the “exploitation ecosystems” model, herbivore exclosures were set up in 1992 in Salix heath, Luzula heath, Cassiope heath, and Alopecurus meadow in Adventdalen. Standing crop of vascular plants was harvested and measured inside and outside the exclosures in 1994, when the reindeer population was at peak density (ca 5.4 animals km−2), and in 1996, when the reindeer density was about 30% lower (ca 3.7 animals km−2). Standing dead material was reduced by grazing in the Luzula heath in 1994. However, we found no effect of grazing, year, or interactions between grazing and year on live standing crop. Also contrary to the predictions from the model, differences in standing crop between vegetation types were highly significant. Mean biomass of plant material was lowest in the Alopecurus meadow (36 g m−2), two fold higher in the Luzula heath, and about threefold higher in the Salix heath and Cassiope heath, indicating that reindeer do not regulate standing crop to the same level on a local scale. The predictive power of the “exploitation ecosystems” model is low due to lack of recognition of the importance of plant chemistry, plant compensation ability, variation in forage availability during the year, parasites functioning as predators, and adverse weather conditions, which may cause density-independent variations in fecundity and mortality of reindeer. Received: 28 December 1997 / Accepted: 6 April 1998  相似文献   

8.
Water‐holding soil amendments such as super‐absorbent polymer (SAP) may improve native species establishment in restoration but may also interact with precipitation or invasive species such as Bromus tectorum L. (cheatgrass or downy brome) to influence revegetation outcomes. We implemented an experiment at two sites in Colorado, U.S.A., in which we investigated the interactions of drought (66% reduction of ambient rainfall), B. tectorum seed addition (BRTE, 465 seeds/m2), and SAP soil amendment (25 g/m2) on initial plant establishment and 3‐year aboveground and belowground biomass and allocation. At one site, SAP resulted in higher native seeded species establishment but only with ambient precipitation. However, by the third year, we detected no SAP effects on native seeded species biomass. Treatments interacted to influence aboveground and belowground biomass and allocation differently. At one site, a SAP × precipitation interaction resulted in lower belowground biomass in plots with SAP and drought (61.7 ± 7.3 g/m2) than plots with drought alone (91.6 ± 18.1 g/m2). At the other site, a SAP × BRTE interaction resulted in higher belowground biomass in plots with SAP and BRTE (56.6 ± 11.2 g/m2) than BRTE alone (35.0 ± 3.7 g/m2). These patterns were not reflected in aboveground biomass. SAP should be used with caution in aridland restoration because initial positive effects may not translate to long‐term benefits, SAP may uniquely influence aboveground versus belowground biomass, and SAP can interact with environmental variables to impact developing plant communities in positive and negative ways.  相似文献   

9.
10.
The community structure of mesozooplankton was investigated in Dolgaya Bay (southern Barents Sea), a subarctic fjord, using a Juday net (0.168-mm mesh size) in July, 2008. A total of 39 species and higher taxa were found. Average abundance, biomass and diversity (±standard error) were 153,403 ± 15,855 ind m−2, 570 ± 61 mg dry mass m−2, and 2.25 ± 0.09, respectively. Copepods were the most numerous species. The mesozooplankton communities were dominated by omnivores (Oithona similis and Acartia spp.). Vertical distribution of the mesozooplankton was characterized by copepod dominance at each sampled layer. There were no significant correlations among physical variables and biological parameters, except negative correlation for the mean biomass and mean water temperature.  相似文献   

11.
Bryophytes and lichens abound in many arctic ecosystems and can contribute substantially to the ecosystem net primary production (NPP). Because of their growth seasonality and their potential for growth out of the growing season peak, bryophyte and lichen contribution to NPP may be particularly significant when vascular plants are less active and ecosystems act as a source of carbon (C). To clarify these dynamics, nonvascular and vascular aboveground NPP was compared for a subarctic heath during two contrasting periods of the growing season, viz. early-mid summer and late summer-early autumn. Nonvascular NPP was determined by assessing shoot biomass increment of three moss species (Hylocomium splendens, Pleurozium schreberi and Dicranum elongatum) and by scaling to ecosystem level using average standing crop. For D. elongatum, these estimates were compared with production estimates obtained from measurements of shoot length increase. Vascular NPP was determined by harvesting shrub and herb apical growth and considering production due to stem secondary growth of shrubs. Hylocomium splendens and Pleurozium schreberi showed highest biomass growth in late summer, whereas for D. elongatum this occurred in early summer. Maximum relative growth rates were ca. 0.003–0.007 g g−1 d−1. For D. elongatum, production estimates from length growth differed from estimations from biomass growth, likely because of an uncoupling between length growth and biomass shoot growth. Nonvascular NPP was 0.37 and 0.46 g dry weight m−2 d−1, in early and late summer, respectively, whereas in the same periods vascular NPP was 3.6 and 1.1 g dry weight m−2 d−1. The contribution of nonvascular NPP to total aboveground NPP was therefore minor in early summer but substantial in late summer, when 25% of the C accumulated by the vegetation was incorporated into nonvascular plant tissue. The expected global change-induced reduction of nonvascular plant biomass in subarctic heath is likely therefore to enhance C release during the late part of the growing season.  相似文献   

12.
Considerable uncertainty surrounds the conditions under which birds can cause trophic cascades. In a three‐year experiment, we studied the direct and indirect effects of insectivorous birds on arthropod abundance, herbivory, and growth of striped maple Acer pensylvanicum saplings in a northern hardwood forest of central New Hampshire, USA. We manipulated bird predation by erecting exclosures around saplings and directly manipulated herbivory by removing herbivores. We also examined how climate modifies these interactions by replicating the experiment at three locations along an elevational gradient. Effects of bird predation were variable. Overall, mean arthropod biomass was 20% greater on saplings within bird exclosures than on controls (p<0.05). The mean biomass of leaf‐chewing herbivores, primarily Lepidoptera larvae, was 25% greater within exclosures but not statistically different from controls. To a lesser degree, mean herbivore damage to foliage within exclosures exceeded that of controls but differences were not significant. We also did not detect significant treatment effects on sapling shoot growth. The high understory vegetation density relative to bird abundance, and low rate of herbivory during the study (mean 5% leaf area removed, controls), may have limited the ability of birds to affect sapling growth. Climate effects operated at multiple scales, resulting in a complex interplay of interactions within the food web. Regional synchrony of climatic conditions resulted in annual fluctuations in herbivore abundance and tree growth that were shared across elevations. At the same time, local environmental variation resulted in site differences in the plant, herbivore, and bird communities. These patterns resulted in a mosaic of top–down strengths across time and space, suggesting an overall pattern of limited effects of birds on plant growth, possibly interspersed with hotspots of trophic cascades.  相似文献   

13.
We investigated factors influencing recruitment in the rare endemic shrub Acacia insolita subsp. recurva (Fabaceae) from the heavily cleared south‐west of Western Australia. We examined annual seed production over 4 years, including the impact of herbivory on reproductive output. Conversion of bud to fruit was low (overall 0.02%). The lack of significant difference in canopy dimensions between caged and uncaged plants suggested that vertebrate herbivore grazing was negligible, but invertebrate predation had a negative impact on seed production (loss of >80% of fruiting potential). Soil cores determined the presence of soil‐stored seeds and an experimental burn confirmed that plants are fire‐killed and can regenerate from the seed bank. This seed reserve was found to contain <5 seeds m?2, and both freshly collected seeds and seeds retrieved from the soil had high viability (99% vs. 91%) when subjected to a germination test. Seedling recruitment 29 months post‐fire resulted in a ratio of three seedlings for every adult killed by fire. We also compared reproductive success in this rare Acacia with its common conspecific and although the rare species produced more flowers, the success of flowering did not translate into better fruit set. We conclude that insect damage to reproductive branchlets and lack of appropriate disturbance are major factors constraining recruitment. Active site management may be required for the continued persistence of this fire‐dependent legume.  相似文献   

14.
Philip G. Hahn  John L. Orrock 《Oikos》2015,124(4):497-506
Past and present human activities, such as historic agriculture and fire suppression, are widespread and can create depauperate plant communities. Although many studies show that herbivory on focal plants depends on the density of herbivores or the composition of the surrounding plant community, it is unclear whether anthropogenic changes to plant communities alter herbivory. We tested the hypothesis that human activities that alter the plant community lead to subsequent changes in herbivory. At 20 sites distributed across 80 300 hectares, we conducted a field experiment that manipulated insect herbivore access (full exclosures and pseudo‐exclosures) to four focal plant species in longleaf pine woodlands with different land‐use histories (post‐agricultural sites or non‐agricultural sites) and degrees of fire frequency (frequent and infrequent). Plant cover, particularly herbaceous cover, was lower in post‐agricultural and fire suppressed woodlands. Density of the dominant insect herbivore at our site (grasshoppers) was positively related to plant cover. Herbivore access reduced biomass of the palatable forb Solidago odora in frequently burned post‐agricultural sites and in infrequently burned non‐agricultural woodlands and increased mortality of another forb (Pityopsis graminifolia), but did not affect two other less palatable species (Schizachyrium scoparium and Tephrosia virginiana). Herbivory on S. odora exhibited a hump‐shaped response to plant cover, with low herbivory at low and high levels of plant cover. Herbivore density had a weak negative effect on herbivory. These findings suggest that changes in plant cover related to past and present human activities can modify damage rates on focal S. odora plants by altering grasshopper foraging behavior rather than by altering local grasshopper density. The resulting changes in herbivory may have the potential to limit natural recovery or restoration efforts by reducing the establishment or performance of palatable plant species.  相似文献   

15.
Ungulate herbivory can have profound effects on ecosystem processes by altering organic inputs of leaves and roots as well as changing soil physical and chemical properties. These effects may be especially important when the herbivore is an introduced species. Utilizing large mammal exclosures to prevent access by introduced elk at multiple sites along a fire chronosequence, we examined the effects of elk herbivory and fire on soil microbial activity and nutrient availability. Using time since fire as a co-variate and herbivore exclosures, paired with areas outside of the exclosures, we hypothesized that reductions in plant biomass due to herbivory would reduce organic inputs to soils and impact soil microbial activities and nutrient storage. We found three major patterns: (1) when elk were excluded, surface mineral soils had higher soil organic carbon (C), total nitrogen (N), microbial N pools, and increased extra-cellular enzyme activity of a C-acquiring enzyme across a gradient of time since fire. (2) When introduced elk are present, the activity of some extracellular enzymes as well as NO3 availability are enhanced in the soil but the post-fire patterns described above with respect to nutrient accrual over time are delayed. (3) Herbivory by an introduced ungulate upsets the trajectory of ecosystem “recovery” after wildfire and delays soil C and N dynamics by an estimated 14.5–21 years, respectively. These results suggest that introduced, browsing herbivores significantly decelerate ecosystem processes but herbivory by exotics may also result in unpredictability in specific soil responses.  相似文献   

16.
Accurate representation of temperature sensitivity (Q10) of soil microbial activity across time is critical for projecting soil CO2 efflux. As microorganisms mediate soil carbon (C) loss via exo‐enzyme activity and respiration, we explore temperature sensitivities of microbial exo‐enzyme activity and respiratory CO2 loss across time and assess mechanisms associated with these potential changes in microbial temperature responses. We collected soils along a latitudinal boreal forest transect with different temperature regimes (long‐term timescale) and exposed these soils to laboratory temperature manipulations at 5, 15, and 25°C for 84 days (short‐term timescale). We quantified temperature sensitivity of microbial activity per g soil and per g microbial biomass at days 9, 34, 55, and 84, and determined bacterial and fungal community structure before the incubation and at days 9 and 84. All biomass‐specific rates exhibited temperature sensitivities resistant to change across short‐ and long‐term timescales (mean Q10 = 2.77 ± 0.25, 2.63 ± 0.26, 1.78 ± 0.26, 2.27 ± 0.25, 3.28 ± 0.44, 2.89 ± 0.55 for β‐glucosidase, N‐acetyl‐β‐d ‐glucosaminidase, leucine amino peptidase, acid phosphatase, cellobiohydrolase, and CO2 efflux, respectively). In contrast, temperature sensitivity of soil mass‐specific rates exhibited either resilience (the Q10 value changed and returned to the original value over time) or resistance to change. Regardless of the microbial flux responses, bacterial and fungal community structure was susceptible to change with temperature, significantly differing with short‐ and long‐term exposure to different temperature regimes. Our results highlight that temperature responses of microbial resource allocation to exo‐enzyme production and associated respiratory CO2 loss per unit biomass can remain invariant across time, and thus, that vulnerability of soil organic C stocks to rising temperatures may persist in the long term. Furthermore, resistant temperature sensitivities of biomass‐specific rates in spite of different community structures imply decoupling of community constituents and the temperature responses of soil microbial activities.  相似文献   

17.
  • Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown.
  • We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses.
  • Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations.
  • Feeding by multiple herbivores differentially activates plant defences, which has plant‐mediated negative consequences for a subsequently arriving herbivore. Plant population‐specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.
  相似文献   

18.
Ecosystem carbon (C) accrual and storage can be enhanced by removing large herbivores as well as by the fertilizing effect of atmospheric nitrogen (N) deposition. These drivers are unlikely to operate independently, yet their combined effect on aboveground and belowground C storage remains largely unexplored. We sampled inside and outside 19 upland grazing exclosures, established for up to 80 years, across an N deposition gradient (5–24 kg N ha?1 yr?1) and found that herbivore removal increased aboveground plant C stocks, particularly in moss, shrubs and litter. Soil C storage increased with atmospheric N deposition, and this was moderated by the presence or absence of herbivores. In exclosures receiving above 11 kg N ha?1 year?1, herbivore removal resulted in increased soil C stocks. This effect was typically greater for exclosures dominated by dwarf shrubs (Calluna vulgaris) than by grasses (Molinia caerulea). The same pattern was observed for ecosystem C storage. We used our data to predict C storage for a scenario of removing all large herbivores from UK heathlands. Predictions were made considering herbivore removal only (ignoring N deposition) and the combined effects of herbivore removal and current N deposition rates. Predictions including N deposition resulted in a smaller increase in UK heathland C storage than predictions using herbivore removal only. This finding was driven by the fact that the majority of UK heathlands receive low N deposition rates at which herbivore removal has little effect on C storage. Our findings demonstrate the crucial link between herbivory by large mammals and atmospheric N deposition, and this interaction needs to be considered in models of biogeochemical cycling.  相似文献   

19.
Uptake rates of dissolved inorganic phosphorus and dissolved inorganic nitrogen under unsaturated and saturated conditions were studied in young sporophytes of the seaweeds Saccharina latissima and Laminaria digitata (Phaeophyceae) using a “pulse‐and‐chase” assay under fully controlled laboratory conditions. In a subsequent second “pulse‐and‐chase” assay, internal storage capacity (ISC) was calculated based on VM and the parameter for photosynthetic efficiency Fv/Fm. Sporophytes of S. latissima showed a VS of 0.80 ± 0.03 μmol · cm?2 · d?1 and a VM of 0.30 ± 0.09 μmol · cm?2 · d?1 for dissolved inorganic phosphate (DIP), whereas VS for DIN was 11.26 ± 0.56 μmol · cm?2 · d?1 and VM was 3.94 ± 0.67 μmol · cm?2 · d?1. In L. digitata, uptake kinetics for DIP and DIN were substantially lower: VS for DIP did not exceed 0.38 ± 0.03 μmol · cm?2 · d?1 while VM for DIP was 0.22 ± 0.01 μmol · cm?2 · d?1. VS for DIN was 3.92 ± 0.08 μmol · cm?2 · d?1 and the VM for DIN was 1.81 ± 0.38 μmol · cm?2 · d?1. Accordingly, S. latissima exhibited a larger ISC for DIP (27 μmol · cm?2) than L. digitata (10 μmol · cm?2), and was able to maintain high growth rates for a longer period under limiting DIP conditions. Our standardized data add to the physiological understanding of S. latissima and L. digitata, thus helping to identify potential locations for their cultivation. This could further contribute to the development and modification of applications in a bio‐based economy, for example, in evaluating the potential for bioremediation in integrated multitrophic aquacultures that produce biomass simultaneously for use in the food, feed, and energy industries.  相似文献   

20.
Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19‐year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore‐induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号