首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
5.
6.
7.
GDSL-type esterase/lipase (GELP) is mainly characterized by a conserved GDSL domain at N terminus, and is widely found in all living species, both prokaryotes and eukaryotes. GELP gene family consists of a wide range of members playing important roles in plant physiological processes, such as development, stress responses, and functional divergences. In our study, 597 GELP genes were identified from six Rosaceae genomes (i.e., Fragaria vesca, Prunus persica, Prunus avium, Prunus mume, Pyrus bretschneideri, and Malus domestica) by a comprehensive analysis. All GELP genes were further divided into ten subfamilies based on phylogenetic tree analysis. Subfamily D and subfamily E are the two largest subfamilies. Microcollinearity analysis suggested that WGD/segmental events contribute to the expansion of the GELP gene family in M. domestica and P. bretschneideri compared to F. vesca, P. persica, P. avium, and P. mume. Some PbGELPs were expressed during the fruit development of P. bretschneideri and pollen tubes, indicating their activity in these tissues. The expression divergence of PbGELP duplication gene pairs suggests that many mutations were allowed during evolution, although the structure of GELP genes was highly conserved. The current study results provided the feasibility to understand the expansion and evolution patterns of GELP in Rosaceae genomes, and highlight the function during P. bretschneideri fruits and pollen tubes development.  相似文献   

8.
9.
10.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

11.
The evolutionary conserved CCAAT binding protein NF-Y is a common regulatory DNA binding protein consisting of three distinct subunits. Unlike yeast and mammals, in which only a single copy of each subunit is encoded,Arabidopsis encodes a multi-gene family for each subunit in its genome. Compared with the NF-Y of mammals or yeast, very little is known about plant NF-Y homologs. HereArabidopsis NF-YA subunits were isolated to determine whether they could form a hete-rotrimeric NF-Y complex with mammalian NF-YB and NF-YC. This resultant chimeric NF-Y complex had DNA binding ability to the same CCAAT sequences as those of the other life systems. Therefore, it is possible that plant NF-Y homologs might have biochemical characteristics similar to mammalian NF-Y, thereby suggesting its functional conservation among organisms.  相似文献   

12.
Glutathione reductase (EC 1.6.4.2) is one of the main antioxidant enzymes of the plant cell. In Arabidopsis thaliana, glutathione reductase is encoded by two genes: the gr1 gene encodes the cytosolic-peroxisomal form, and the gr2 gene encodes the chloroplast-mitochondrial form. Little is known about the regulation of expression of plant glutathione reductase genes. In the present work, we have demonstrated that gr2 (but not gr1) gene expression in Arabidopsis leaves changes depending on changes in redox state of the photosynthetic electron transport chain. Expression of both the gr1 and gr2 genes was induced by reactive oxygen species. In heterotrophic suspension cell culture of Arabidopsis, expression of both studied genes did not depend on H2O2 level or on changes in the redox state of the mitochondrial electron transport chain. Our data indicate that chloroplasts are involved in the regulation of the glutathione reductase gene expression in Arabidopsis.  相似文献   

13.
14.
15.
16.
17.
18.

Key message

A major QTL controlling early flowering in broccoli × cabbage was identified by marker analysis and next-generation sequencing, corresponding to GRF6 gene conditioning flowering time in Arabidopsis.

Abstract

Flowering is an important agronomic trait for hybrid production in broccoli and cabbage, but the genetic mechanism underlying this process is unknown. In this study, segregation analysis with BC1P1, BC1P2, F2, and F2:3 populations derived from a cross between two inbred lines “195” (late-flowering) and “93219” (early flowering) suggested that flowering time is a quantitative trait. Next, employing a next-generation sequencing-based whole-genome QTL-seq strategy, we identified a major genomic region harboring a robust flowering time QTL using an F2 mapping population, designated Ef2.1 on cabbage chromosome 2 for early flowering. Ef2.1 was further validated by indel (insertion or deletion) marker-based classical QTL mapping, explaining 51.5% (LOD = 37.67) and 54.0% (LOD = 40.5) of the phenotypic variation in F2 and F2:3 populations, respectively. Combined QTL-seq and classical QTL analysis narrowed down Ef1.1 to a 228-kb genomic region containing 29 genes. A cabbage gene, Bol024659, was identified in this region, which is a homolog of GRF6, a major gene regulating flowering in Arabidopsis, and was designated BolGRF6. qRT-PCR study of the expression level of BolGRF6 revealed significantly higher expression in the early flowering genotypes. Taken together, our results provide support for BolGRF6 as a possible candidate gene for early flowering in the broccoli line 93219. The identified candidate genomic regions and genes may be useful for molecular breeding to improve broccoli and cabbage flowering times.
  相似文献   

19.
2C DNA content and ploidy level variation of Prunus spinosa and closely related taxa together with Prunus domestica L. and Prunus insititia L. was studied in Slovakia. The aim of the study was to define genome sizes and find differences between closely related taxa within Prunus spinosa sensu lato mentioned in previous works. According to our results, investigated taxa can be divided into three groups according to ploidy level: Prunus spinosa, Prunus dasyphylla, Prunus ×fruticans, Prunus ×dominii and Prunus ×schurii are tetraploids, Prunus ×fechtneri is pentaploid, and P. domestica and P. insititia are hexaploids. Genome size differences within tetraploid taxa were relatively small (Prunus spinosa: 1.40?±?0.02, P. ×domini: 1.44?±?0.01, P. ×fruticans: 1.48?±?0.02, P. ×schurii: 1.44?±?0.02), but statistically significant. Although further research is needed, it seems that the concept of several taxa as product of hybridization between P. spinosa and cultivated plum species has been supported by our study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号