首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
The regulatory influences of glycogen synthase kinase-3 beta (GSK3 beta) and lithium on the activity of cyclic AMP response element binding protein (CREB) were examined in human neuroblastoma SH-SY5Y cells. Activation of Akt (protein kinase B) with serum-increased phospho-serine-9-GSK3 beta (the inactive form of the enzyme), inhibited GSK3 beta activity, and increased CREB DNA binding activity. Inhibition of GSK3 beta by another paradigm, treatment with the selective inhibitor lithium, also increased CREB DNA binding activity. The inhibitory regulation of CREB DNA binding activity by GSK3 beta also was evident in differentiated SH-SY5Y cells, indicating that this regulatory interaction is maintained in non-proliferating cells. These results demonstrate that inhibition of GSK3 beta by serine-9 phosphorylation or directly by lithium increases CREB activation. Conversely, overexpression of active GSK3 beta to 3.5-fold the normal levels completely blocked increases in CREB DNA binding activity induced by epidermal growth factor, insulin-like growth factor-1, forskolin, and cyclic AMP. The inhibitory effects due to overexpressed GSK3 beta were reversed by treatment with lithium and with another GSK 3beta inhibitor, sodium valproate. Overall, these results demonstrate that GSK3 beta inhibits, and lithium enhances, CREB activation.  相似文献   

2.
Abstract : Valproic acid (VPA) is a potent broad‐spectrum anti‐epileptic with demonstrated efficacy in the treatment of bipolar affective disorder. It has previously been demonstrated that both VPA and lithium increase activator protein‐1 (AP‐1) DNA binding activity, but the mechanisms underlying these effects have not been elucidated. However, it is known that phosphorylation of c‐jun by glycogen synthase kinase (GSK)‐3β inhibits AP‐1 DNA binding activity, and lithium has recently been demonstrated to inhibit GSK‐3β. These results suggest that lithium may increase AP‐1 DNA binding activity by inhibiting GSK‐3β. In the present study, we sought to determine if VPA, like lithium, regulates GSK‐3. We have found that VPA concentration‐dependently inhibits both GSK‐3α and ‐3β, with significant effects observed at concentrations of VPA similar to those attained clinically. Incubation of intact human neuroblastoma SH‐SY5Y cells with VPA results in an increase in the subsequent in vitro recombinant GSK‐3β‐mediated 32P incorporation into two putative GSK‐3 substrates (~85 and 200 kDa), compatible with inhibition of endogenous GSK‐3β by VPA. Consistent with GSK‐3β inhibition, incubation of SH‐SY5Y cells with VPA results in a significant time‐dependent increase in both cytosolic and nuclear β‐catenin levels. GSK‐3β plays a critical role in the CNS by regulating various cytoskeletal processes as well as long‐term nuclear events and is a common target for both lithium and VPA ; inhibition of GSK‐3β in the CNS may thus underlie some of the long‐term therapeutic effects of mood‐stabilizing agents.  相似文献   

3.
4.
The therapeutic efficacy of lithium in the treatment of mood disorders is delayed and only observed after chronic administration, a temporal profile that suggests alterations at the genomic level. Lithium has been demonstrated to modulate AP-1 DNA binding activity as well as the expression of genes regulated by AP-1, but the mechanisms underlying these effects have not been fully elucidated. In the present study, we found that the lithium-induced increases in AP-1 DNA binding activity were accompanied by increases in p-cJun and cJun levels in SH-SY5Y cells. Lithium also increased cJun-mediated reporter gene expression in a dose-dependent manner, with significant effects observed at therapeutically relevant concentrations. Lithium's effects on cJun-mediated reporter gene expression in SH-SY5Y cells were more pronounced in the absence of myo-inositol and were blocked by protein kinase C (PKC) inhibitors and by cotransfection with a PKCalpha dominant-negative mutant. Chronic in vivo lithium administration increased AP-1 DNA binding activity in frontal cortex and hippocampus and also increased the levels of the phosphorylated, active forms of c-Jun NH2-terminal kinases (JNKs) in both brain regions. These results demonstrate that lithium activates the JNK signaling pathway in rat brain during chronic in vivo administration and in human cells of neuronal origin in vitro; in view of the role of JNKs in regulating various aspects of neuronal function and their well-documented role in regulating gene expression, these effects may play a major role in lithium's long-term therapeutic effects.  相似文献   

5.
Glycogen synthase kinase-3beta (GSK-3beta) is implicated in regulating apoptosis and tau protein hyperphosphorylation in Alzheimer's disease (AD). We investigated the effects of two key AD molecules, namely apoE (E3 and E4 isoforms) and beta-amyloid (Abeta) 1-42 on GSK-3beta and its major upstream regulators, intracellular calcium and protein kinases C and B (PKC and PKB) in human SH-SY5Y neuroblastoma cells. ApoE3 induced a mild, transient, Ca2+-independent and early activation of GSK-3beta. ApoE4 effects were biphasic, with an early strong GSK-3beta activation that was partially dependent on extracellular Ca2+, followed by a GSK-3beta inactivation. ApoE4 also activated PKC-alpha and PKB possibly giving the subsequent GSK-3beta inhibition. Abeta(1-42) effects were also biphasic with a strong activation dependent partially on extracellular Ca2+ followed by an inactivation. Abeta(1-42) induced an early and potent activation of PKC-alpha and a late decrease of PKB activity. ApoE4 and Abeta(1-42) were more toxic than apoE3 as shown by MTT reduction assays and generation of activated caspase-3. ApoE4 and Abeta(1-42)-induced early activation of GSK-3beta could lead to apoptosis and tau hyperphosphorylation. A late inhibition of GSK-3beta through activation of upstream kinases likely compensates the effects of apoE4 and Abeta(1-42) on GSK-3beta, the unbalanced regulation of which may contribute to AD pathology.  相似文献   

6.
This study examined the role of calcineurin, a major calcium-dependent protein phosphatase, in dephosphorylating Ser-9 and activating glycogen synthase kinase-3β (GSK-3β). Treatment with calcineurin inhibitors increased phosphorylation of GSK-3β at Ser-9 in SH-SY5Y human neuroblastoma cells. The over-expression of a constitutively active calcineurin mutant, calcineurin A beta (1–401), led to a significant decrease in phosphorylation at Ser-9, an increase in the activity of GSK-3β, and an increase in the phosphorylation of tau. Km of calcineurin for a GSK-3β phosphopeptide was 469.3 μM, and specific activity of calcineurin was 15.2 nmol/min/mg. In addition, calcineurin and GSK-3β were co-immunoprecipitated in neuron-derived cells and brain tissues, and calcineurin formed a complex only with dephosphorylated GSK-3β. We conclude that in vitro, calcineurin can dephosphorylate GSK-3β at Ser-9 and form a stable complex with GSK-3β, suggesting the possibility that calcineurin regulates the dephosphorylation and activation of GSK-3β in vivo .  相似文献   

7.
8.
9.
10.
The dissociation of the neuronal Golgi complex is a classical feature observed in neurodegenerative disorders including Alzheimer's disease. The goal of this study is to determine if the phosphorylation of tau protein is involved in neuronal Golgi disassembly. Primary cortical cultures were exposed to two Golgi toxins, brefeldin A (BFA) or nordihydroguaiaretic acid (NDGA). Immunocytochemical studies using the anti58 k antibody revealed that Golgi disassembly started in exposed neurons a few minutes after treatment. BFA and NDGA induced a rapid and transient increase in tau phosphorylation in a site-specific manner on immunoblots. In addition, the increase in tau phosphorylation directly correlated with a transient dissociation of tau from the cytoskeleton and a decrease of the acetylated tubulin. Furthermore, the activity of glycogen synthase kinase-3beta (GSK-3beta) increased transiently, as demonstrated by the kinase activity assay and by immunoblottings of serine-9 and tyrosine-216 phosphorylated of GSK-3beta. A decrease of the Akt phosphorylated form was also shown. The increase in tau phosphorylation was inhibited by the GSK-3beta inhibitor, lithium. Finally, morphometric studies showed that lithium partially blocked the Golgi disassembly caused by BFA or NDGA. Together these findings indicate that GSK-3beta activity and tau phosphorylation state are involved in the maintenance of the neuronal Golgi organization.  相似文献   

11.
We have previously reported an aberrant accumulation of activated protein kinase B (PKB), glycogen synthase kinase (GSK)-3beta, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and p70 S6 kinase (p70S6K) in neurons bearing neurofibrillary tangles (NFTs) in Alzheimer's disease (AD). However, the mechanism by which these tau candidate kinases are involved in the regulation of p70S6K and GSK-3beta phosphorylation is unknown. In the current study, 100 microM zinc sulfate was used, and influences of various components of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on p70S6K and GSK-3beta phosphorylation have been investigated in serum-deprived SH-SY5Y neuroblastoma cells. We found that zinc could induce an increase of phosphorylated (p) p70S6K, p-PKB, p-GSK-3beta, p-ERK1/2, p-JNK and p-p38, especially in long-term treatment (4-8 h). Treatment with different inhibitors including rapamycin, wortmannin, LY294002, and U0126, and their combinations, indicated that phosphorylation of p70S6K and GSK-3beta is regulated by rapamycin-dependent, PI3K and MAPK pathways. Furthermore, phosphorylation of p70S6K and GSK-3beta affected levels of tau unphosphorylated at the Tau-1 site and phosphorylated at the PHF-1 site, and p70S6K phosphorylation affected the total tau level. Thus, 100 microM zinc might activate PKB, GSK-3beta, ERK1/2, JNK, p38 and p70S6K, that are consequently involved in tau changes in SH-SY5Y cells.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) Tat induces neuronal apoptosis. To examine the mechanism(s) that contribute to this process, we studied Tat's effects on glycogen synthase kinase-3beta (GSK-3beta), an enzyme that has been implicated in the regulation of apoptosis. Addition of Tat to rat cerebellar granule neurons resulted in an increase in GSK-3beta activity, which was not associated with a change in protein expression and could be abolished by the addition of an inhibitor of GSK-3beta (lithium). Lithium also enhanced neuronal survival following exposure to Tat. Coprecipitation experiments revealed that Tat can associate with GSK-3beta, but direct addition of Tat to purified GSK-3beta had no effect on enzyme activity, suggesting that Tat's effects might be mediated indirectly. As the activation of platelet activating factor (PAF) receptors is critical for the induction of neuronal death by several candidate HIV-1 neurotoxins, we determined whether PAF can also activate GSK-3beta. Application of PAF to neuronal cultures activated GSK-3beta, and coincubation with lithium ameliorated PAF-induced neuronal apoptosis. These findings are consistent with the existence of one or more pathways that can lead to GSK-3beta activation in neurons, and they suggest that the dysregulation of this enzyme could contribute to HIV-induced neuronal apoptosis.  相似文献   

13.
Insulin Transiently Increases Tau Phosphorylation   总被引:13,自引:4,他引:9  
Abstract : The modulation of tau phosphorylation in response to insulin was examined in human neuroblastoma SH-SY5Y cells. Insulin treatment resulted in a transient increase in tau phosphorylation followed by a decrease in tau phosphorylation that correlated directly with a sequential activation and deactivation of glycogen synthese kinase-3β (GSK-3β). The insulin-induced increase in tau phosphorylation and concurrent activation of GSK-3β was rapid (<2 min) and transient, and was associated with increased tyrosine phosphorylation of GSK-3β. The increase in GSK-3β tyrosine phosphorylation corresponded directly to an increase in the association of Fyn tyrosine kinase with GSK-3β, and Fyn immunoprecipitated from cells treated with insulin for 1 min phosphorylated GSK-3β to a significantly greater extent than Fyn immunoprecipitated from control cells. Subsequent to the increase in GSK-3β activation and tau phosphorylation, treatment of cells with insulin for 60 min resulted in a dephosphorylation of tau and a decrease in GSK-3β activity. Thus, insulin rapidly and transiently activated GSK-3β and modulated tau phosphorylation, alterations that may contribute to neuronal plasticity.  相似文献   

14.
15.
In insulin-sensitive L6 myocytes, insulin stimulated glycogen synthesis in a dose-dependent manner and lithium further stimulated glycogen synthesis at all insulin concentrations. Lithium alone at 20 mM stimulated glycogen synthesis to the degree similar to the maximal insulin response. Effects of lithium and insulin were fully additive for both glycogen synthesis and glycogen synthase activity. In L6 myocytes, insulin increased phosphorylation of Akt1 and glycogen synthase kinase-3 alpha and beta (GSK-3 alpha and beta), resulting in its activation and inactivation, respectively. Unlike insulin, lithium directly inhibited GSK-3 (both alpha and beta) without affecting phosphorylation of GSK-3. Moreover, lithium in vitro could further inhibit enzyme activity of GSK-3 (both alpha and beta) that was isolated from insulin-stimulated cells (thus already phosphorylated and inactivated by insulin). In summary, insulin increases glycogen synthesis by the Akt1/GSK-3/glycogen synthase pathway, but lithium increases glycogen synthesis by direct inhibition of GSK-3 in L6 myocytes. Inhibitory effects of lithium and insulin on GSK-3 (both alpha and beta) were additive, which may account, at least in part, for their additive effects on glycogen synthase activity and glycogen synthesis in L6 myocytes.  相似文献   

16.
The goal of this study was to determine whether the intracellular distribution of the proapoptotic enzyme glycogen synthase kinase-3 beta (GSK-3 beta) is dynamically regulated by conditions that activate apoptotic signaling cascades. In untreated human neuroblastoma SH-SY5Y cells, GSK-3 beta was predominantly cytosolic, although a low level was also detected in the nucleus. The nuclear level of GSK-3 beta was rapidly increased after exposure of cells to serum-free media, heat shock, or staurosporine. Although each of these conditions caused changes in the serine 9 and/or tyrosine phosphorylation of GSK-3 beta, neither of these modifications was correlated with nuclear accumulation of GSK-3 beta. Heat shock and staurosporine treatments increased nuclear GSK-3 beta prior to activation of caspase-9 and caspase-3, and this nuclear accumulation of GSK-3 beta was unaltered by pretreatment with a general caspase inhibitor. The GSK-3 beta inhibitor lithium did not alter heat shock-induced nuclear accumulation of GSK-3 beta but increased the nuclear level of cyclin D1, indicating that cyclin D1 is a substrate of nuclear GSK-3 beta. Thus, the intracellular distribution of GSK-3 beta is dynamically regulated by signaling cascades, and apoptotic stimuli cause increased nuclear levels of GSK-3 beta, which facilitates interactions with nuclear substrates.  相似文献   

17.
18.
Gu  Ming-Yao  Kim  Joonki  Yang  Hyun Ok 《Neurochemical research》2016,41(6):1458-1467

Justicidin A is a structurally defined arylnaphthalide lignan, which has been shown anti-cancer activity; however, the neuroprotective effect of justicidin A is still untested. In this study, we investigated the action of justicidin A on amyloid beta (Aβ)25–35-induced neuronal cell death via inhibition of the hyperphosphorylation of tau and induction of autophagy in SH-SY5Y cells. Pretreatment with justicidin A significantly elevated cell viability in cells treated with Aβ25–35. Western blot data demonstrated that justicidin A inhibited the Aβ25–35-induced up-regulation the levels of hyperphosphorylation of tau in SH-SY5Y cells. In addition, treatment with justicidin A significantly induced autophagy as measured by the increasing LC3 II/I ratio, an important autophagy marker. These studies showed that justicidin A inhibited activity of glycogen synthase kinase-3beta (GSK-3β), which is an important kinase in up-stream signaling pathways; inhibited hyperphosphorylation of tau in AD; and enhanced activity of AMP-activated protein kinase (AMPK), which is the key molecule for both hyperphosphorylation of tau and induction of autophagy. These data provide the first evidence that justicidin A protects SH-SY5Y cells from Aβ25–35-induced neuronal cell death through inhibition of hyperphosphorylation of tau and induction of autophagy via regulation the activity of GSK-3β and AMPK, and they also provide some insights into the relationship between tau protein hyperphosphorylation and autophagy. Thus, we conclude that justicidin A may have a potential role for neuroprotection and, therefore, may be used as a therapeutic agent for AD.

  相似文献   

19.
Mood disorders and schizophrenia share a number of common properties, including: genetic susceptibility; differences in brain structure and drug based therapy. Some genetic loci may even confer susceptibility for bipolar mood disorder and schizophrenia, and some atypical antipsychotic drugs are used as mood stabilizers. As schizophrenia is associated with aberrant neurodevelopment, could this also be true for mood disorders? Such changes could arise pre- or post-natal, however the recent interest in neurogenesis in the adult brain has suggested involvement of these later processes in the origins of mood disorders. Interestingly, the common mood stabilizing drugs, lithium, valproic acid (VPA) and carbamazepine, are teratogens, affecting a number of aspects of animal development. Recent work has shown that lithium and VPA interfere with normal cell development, and all three drugs affect neuronal morphology. The molecular basis for mood stabilizer action in the treatment of mood is unknown, however these studies have suggested both targets and potential mechanisms. Lithium directly inhibits two evolutionarily conserved signal transduction pathways: the protein kinase Glycogen Synthase Kinase-3 (GSK-3) and inositol signaling. VPA can up-regulate gene expression through inhibition of histone deacetylase (HDAC) and indirectly reduce GSK-3 activity. VPA effects are not conserved between cell types, and carbamazepine has no effect on the GSK-3 pathway. All three mood stabilizers suppress inositol signaling, results further supported by studies on the enzyme prolyl oligopeptidase (PO) and the sodium myo-inositol transporter (SMIT). Despite these intriguing observations, it remains unclear whether GSK-3, inositol signaling or both underlie the origins of bipolar disorder.  相似文献   

20.
Glycogen synthase kinase-3 (GSK-3) is a highly conserved serine/threonine protein kinase implicated in diverse cellular processes. Activity of GSK-3 is essential for meiotic chromatin segregation in oocytes, yet expression and/or function of GSK-3 have not been reported in mammalian preimplantation embryos. Objectives of this study were to characterize GSK-3 protein expression/phosphorylation in mouse preimplantation embryos, to assess the effect of GSK-3 activity inhibition on early mitotic events, and to differentiate nuclear and cytoplasmic anomalies in GSK-3 inhibited embryos. Both GSK-3 isoforms were expressed during embryo development, with a differential expression of alpha versus beta. Phosphorylation of GSK-3alpha/beta at residues Y279/Y216 indicated constitutive activation throughout preimplantation development. Phosphorylation at N-terminal residues S21/S9 indicated inhibition of GSK-3alpha/beta activity that was differentially regulated during early development; both alpha and beta isoforms were phosphorylated during early divisions, whereas at the blastocyst stage, only beta was phosphorylated. Cytoplasmic microinjection of zygotes with anti-GSK-3alpha/beta antibody significantly compromised embryonic development past the two-cell stage compared to controls. Reversibility of developmental block was tested via pharmacological inhibitors of GSK-3, lithium chloride (LiCl) and alsterpaullone. Similar to immunoneutralization, significantly fewer zygotes cultured with either LiCl or alsterpaullone developed past the two-cell stage compared to controls and this mitotic block was not reversible. Inhibition of GSK-3 activity significantly compromised timing of pronuclear membrane breakdown and mitosis initiation, nuclear development, and cytokinesis. Inhibition of GSK-3 also resulted in abnormal chromatin segregation, evidenced by incomplete karyokinesis and micronuclei formation. These results suggest that GSK-3 activity is critical for early preimplantation embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号